Measuring Higgs self-coupling at the FCC

Giacomo Ortona (INFN) Michele Selvaggi (CERN)

also based on: [1606.09408], [1802.01607], [1809.10041]

FCC week 2019 - 27/06/2019 - Bruxelles

Why measure HH?

 $V = \lambda v^2 H$

- mass. Purely determined by EWSB (in the SM).

• Measurement of HH gives access to the magnitude of the Higgs self-interaction:

$$H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

• Higgs trilinear coupling constant λ only depends on the Higgs field VEV and Higgs

Shape of the Higgs potential is determined by the self coupling value (EWPT)

Prospects for HH measurements **CMS** LHC bbVV Observed 78.6×SM

- O(10)-O(3)
- Could detect large anomalous coupling

Expected 88.8×SM

bbbb Observed 74.6×SM Expected 36.9×SM

bbττ Observed 31.4×SM Expected 25.1×SM

bbγγ Observed 23.6×SM Expected 18.8×SM

Combined Observed 22.2×SM Expected 12.8× SM

- HL-LHC

 - Potential for <u>evidence</u> (3σ precision)

FCC-ee : single H couplings + indirect measurement 3)

- Potential for <u>observation</u> (5 σ precision)
- FCC-hh : precision measurement 4)

Measuring the Higgs self-coupling at FCC-ee

- High precision measurement of Higgs BR
- Large Luminosity, high precision on single Higgs couplings
 - Possible to determine Higgs self coupling via indirect measurement
- at 365 GeV

McCullough [1312.3322] DeVita et al.[1711.033978]

• A 100% modification of the Higgs self-coupling changes the HZ cross section by 2% at 240 GeV and 0.5%

- With baseline design, **2 IPs**, 15 years at sqrt(s)=90+160+240+350+365 GeV
 - $\delta \kappa_{\lambda} \approx 42 \%$ (34% combined with HL-LHC)
 - To be compared with 30 years of ILC₂₅₀₊₅₀₀
- With **4IPs** and 15 years of running:
 - $\delta \kappa_{\lambda} \approx 25 \%$ (21% combined with HL-LHC)
 - To be compared with 15 years of CLIC₃₈₀₊₁₅₀₀
 - 5σ sensitivity by 2050

Blondel and Janot [1809.10041]

- If all other **SM coupling fixed** (in particular HHVV, HVV coupling): • $\delta \kappa_{\lambda} \approx 12 \%$ (2 IPs - baseline FCC-ee) • $\delta \kappa_{\lambda} \approx 9 \%$ (4 IPs)
 - Single Higgs cross section at loop level depends on HVV and HHVV:
 - At least two energy points lift the degeneracy

Higgs self-coupling at FCC-hh

HL-LHC

G. Heinrich et.al [1608.04798]

gluon fusion:

- Very small c diagram
- HL-LHC projections : $\delta k_{\lambda\,\prime}\,k_{\lambda}\,\approx\,50\text{--}100\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40$ (and Lx10)
 - x400 in event yields and x20 in precision
- main channels studied:
 - bbyy (golden channel)
 - bbZZ(4I)
- bbbbj bbττ

Very small cross-section due to negative interference with box

HH@ FCC-hh: production at 100 TeV and decay

• Higher order in QCD helps λ -dependent K-factor sensitivity (not only the rate) \rightarrow included here (bbyy, bbZZ)!

HH →bbγγ

- Large QCD backgrounds (jjyy and y+jets)
- Main difference w.r.t LHC is the very large **ttH background**
- Strategy:
 - exploit correlation of means in $(m_{\chi\chi}, m_{hh})$ in signal
 - build a parametric model in 2D
 - perform a **2D Likelihood fit** on the coupling modifier k_{λ}
 - $\delta k_{\lambda} / k_{\lambda} = 5-7\%$ (stat stat+syst.) in this channel alone

HH \rightarrow 4b+j boosted

- Large rates allow to look for boosted HH recoiling against a jet (low m_{HH} drives the sensitivity)
- relies on identification two boosted Higgs-jets
- fit the di-jet mass spectrum dominated by the large QCD background
- $\delta k_{\lambda} / k_{\lambda} = 20-40\%$ depending on assumed background rate

$HH \rightarrow bb4I$

- New channel opening at FCC-hh !!
- clean channel with mostly reducible backgrounds (single Higgs)
- Simple cut and count analysis on (4e, 4μ and $2e2\mu$ channels)

Backgrounds:

- $ttH, H \rightarrow 4$ leptons
- 4I + jets (ZZ*, Z*Z*, ZZ) continuum
- $pp \rightarrow Hbb \rightarrow 4lbb$

$\delta k_{\lambda} / k_{\lambda} = 15-20\%$

depending on systematics assumptions

[Borgonovi, Braibant, De Filippis, Fontanesi, GO, MS]

bbWW→bblvqq

Backgrounds:

Method:

V+jets

2

A.U.

0.6

0.5

0.4

0.3

0.2

0.1

- 80 < mbb < 150 GeV
- pT(WW) > 150 GeV
- BDT

BDTG Cut

• ttbar \rightarrow bbWW

bbtt

PRELIMINARY !!!

The $bb\tau\tau$ channel

Detector assumptions:

- No Pile-up
- Nominal FCC-hh detector resolutions:
 - b-tagging : $\epsilon_b = 85\%$, $\epsilon_{j \to b} = 1\%$ (~ HL-LHC)
 - τ -tagging : $\varepsilon_{\tau} = 80\%$, $\varepsilon_{j \rightarrow \tau} = 1\%$. (~ HL-LHC)

- Exploit large branching ratio $2*BR(H \rightarrow bb)*BR(H \rightarrow \tau\tau) \approx 7.3\%$
- Final states: both $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ considered:
- <u>Backgrounds:</u>
 - Top pair
 - single Higgs (VH, ttH, ggH)
 - Z + bb $\rightarrow \tau \tau$ + bb
 - $\tau_{\text{lep}} \tau_{\text{had}}$ has larger B contamination
 - ttbar with τ_{had} + e/mu (in addition to $\tau_{lep}\tau_{had}$)

Preselection Thad Thad

- <u>Simple preselection:</u>
 - At least two τ -tagged jets with:
 - $p_T(\tau_{had}) > 45 \text{ GeV}, |\eta(\tau_{had})| < 3.0$
 - At least two b-tagged jets with:
 - p_T(b) > 30 GeV, |η(b)| < 3.0
 - Lepton-veto (p_T(l) > 25 GeV, |η(l)| < 3.0)

DISCRIMINATING VARIABLES

Preselection Thad Tlep

- <u>Simple preselection</u>:
 - One hadronic τ -tagged jet with:
 - $p_T(\tau_{had}) > 45 \text{ GeV}, |\eta(\tau_{had})| < 3.0$
 - At least two b-tagged jets with:
 - p_T(b) > 30 GeV, |η(b)| < 3.0
 - Exactly one lepton
 - (p_T(l) > 25 GeV, |η(l)| < 3.0)

smaller S/B

DISCRIMINATING VARIABLES

BDT training - Thad Thad

- **BDT** training input:
 - 4-vectors of τ_1, τ_2, b_1, b_2
 - 4-vectors of $H_{\tau\tau}$, H_{bb} , HH
 - E_T miss
 - MT2, $m_T(\tau_1)$, $m_T(\tau_2)$, H_T

Final Selection:

- $100 < m_{bb} < 130 \text{ GeV}$ •
- $80 < m_{\tau\tau} < 130 \text{ GeV}$ •
- **BDT > 0.34**

TRAINED vs. ttbar

BDT training - Thad Tlep

- **BDT** training input:
 - 4-vectors of τ_1, τ_2, b_1, b_2
 - 4-vectors of $H_{\tau\tau}$, H_{bb} , HH
 - E_T miss
 - MT2, $m_T(\tau_1)$, $m_T(\tau_2)$, H_T

TRAINED vs. Top pair

Final Selection:

- $100 < m_{bb} < 130 \text{ GeV}$
- $80 < m_{\tau\tau}$ (MET corr.) < 130 GeV
- **BDT > 0.26**

17

Systematics assumptions

	Very aggressive (I)			
Tau ID	Ι%			
b-jet ID	0,25 %			
ele ID	0,25 %			
mu ID	0,1 %			
ttbar norm.	Ι%			
single H norm.	Ι%			
Luminosity	Ι%			

Aggressive (II)	Conservative (III)
2,5 %	5 %
0,5 %	Ι%
0,5 %	I %
0,25 %	0,5 %
I %	Ι%
I %	Ι%
I %	I %

Expected sensitivity: bbThadThad

varying uncertainties:

 $\delta \kappa_{\lambda}(\text{stat}) \approx 3\%$ $\delta \kappa_{\lambda}$ (stat + syst) \approx 5-10% varying (0.5x-5x) background yields:

always assuming SC.III

assuming SC.III \rightarrow SC. I

 $\delta \kappa_{\lambda} \approx 5-15$ %

19

Expected sensitivity: bbThadTlep

varying uncertainties:

 $\delta \kappa_{\lambda}(\text{stat}) \approx 6\%$ $\delta \kappa_{\lambda}$ (stat + syst) \approx 10-12% varying (0.5x-5x) background yields:

always assuming SC.III

assuming SC.III \rightarrow SC. I

 $\delta \kappa_{\lambda} \approx 6-16\%$

20

Combination $bb\tau\tau$

Fully hadronic versus semi-leptonic

Combination of all channels

Conclusions & outlook

- FCC-ee can measure in single Higgs production:
 - $\delta \kappa_{\lambda}(\text{stat}) \approx 35\% (21\%)$ with 2 IPs (4IPs)
- FCC-hh can reach $\delta \kappa_{\lambda}$ (stat) $\approx 5\%$ using double Higgs production, via:
 - bby $\gamma: \delta \kappa_{\lambda} \approx 5-7\%$
 - $bb\tau\tau$: $\delta\kappa_{\lambda} \approx 5-10\%$ (using $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$)
 - bb4l: $\delta \kappa_{\lambda} \approx 10-20\%$
 - bbbb: $\delta \kappa_{\lambda} \approx 20-30\%$
 - bbWW: $\delta \kappa_{\lambda} \approx 40\%$

BACKUP

Baseline

- - cut-based analysis
 - reported sensitivity on λ after 30 ab⁻¹ at 100 TeV

UPDATES:

- more recent FCC-hh detector description (4T vs 6T, smaller detector size)
- QCD background generation using **5f scheme** (jjj_y, jj_y)
- Up-to-date k-factors for backgrounds (ttH) and signal (λ -dependent)

Detailed analysis performed in 2016 (summarised in the Yellow Report [1606.09408])

studied impact of detector performance, systematics, background normalisation

	$\Delta_S = 0.00$	$\Delta_S = 0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_B = 1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

up-to-date parton shower/underlying event modelling (Pythia8 vs Pythia6)

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6\right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2}\right) G^a_{\mu\nu} G^{\mu\nu}_a$$
$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t\right) \bar{t}_L t_R h + \text{h.c.}\right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2}\right) \bar{t}_L t_R h^2 + \text{h.c.}\right]$$
arXiv:1410.3471

ttHH non-linear interaction

The relevant lagrangian terms of $gg \rightarrow HH$ production in D=6 EFT

SM diagrams

Higgs-gluon contact interactions

do not have full sensitivity to "measure" SM λ_{hhh}

- $\sigma^{SM}_{hh}(13TeV) = 33.45fb^{+4.3\%}_{-6.0\%}(scale unc.) \pm 3.1\%(PDF+\alpha_{S} unc)^{[1]}$
- The non-resonant double Higgs production allows to directly probe the Higgs trilinear coupling (λ_{hhh}). Even if in Run2 we

