DE LA RECHERCHE À L'INDUSTRIE

FCC-hh machine summary

Antoine CHANCE on behalf of the FCC-hh machine team

CEA/DRF/IRFU/DACM

FCC week 2019 28th June 2019

Energy-Frantier Calified Energy-Frantier Calified has received funding innovation be zazyzawa the innovation programme under grant No 63/305. The information herein only reflects the views of Its authors and the European Commission is not responsible for any use that information.

The European Circular Energy-Frontier Collider

www.cea.fr

Tuesday morning

Latice integration	Or Antoire Chance
Graund floor	08:30 - 08:4
Correction schemes	Devid Bootin
Orsund feer	05.45 - 09.0
Field Quality at injection for FOC-H	Dectary Delete
Ground feer	09:06 - 09:2
FCC.hts single beam intensity limitations and cures	Olver Bone Frankeitein
Ground fear	09/24 - 09:4
Impedance budget and stability	Segay Anergey
Graund fear	08.42 - 33.0
Coffee break	
Cronce Plaza Busselo Le Palace	30.00 - 30.3
FCC-hts Longitudinal beam dynamics and RF requirements	Dr han Kapev
Ground fear	20:30 - 20:4
Electron daud	Lota Melher
Ground foor	12.45 - 11.0
Status of FCC-bh collimation studies	Roderk Broce
Ciriuna Boor	11:00-11:3
Collimation inefficiency	James Moton
Ground feer	12:15 - 11:3
Cold losses and deposited power density	Motaminad URRASTER
Ground floor	11:30 - 11:4
Thermo-mechanical studies of collimator robustness	Clarge Color
Am and four	11:40 - 11 9

30 talks.

Tuesday afternoon

Opers		Asinen Merin
Ground Rear		12:00 - 12:40
Alternative optics		Leon Van Resenvelupt
Ground foor		12.48 - 14.00
Exam Deam effects		Tablese Parlon
Ground foor		14:06 - 14:29
Dynamic aperture Studies		Enila Cuz Alanz
Ground foor		1424-1442
Energy deposition in the FCC-hit	ER	Exces Aurenn
Ground Reer		1442-1500
Synchrotron radiation backgroup	ds in the experimental insertion region of the FCC-hh	Manualia Descalo
Graune faor		26:30 - 26:4
Low luminosity interaction region	19	Michael Holer
Orguna Neor		38:45 - 37.0
Injector Design		Jan Sorburgh
Orgunal Neor		17.00 - 17.1
Injection and extraction insertion		Apriesoka Chmieliroka
Orgunal Neor		17.35 - 17.3
Ion option for FOC-hh		Moheela Schaumann
Orman Reve		17.30 - 17.4
Cround foor FCC-hh beavy-los collination		Andrey Abramov

Wednesday morning

Study on the bears induced vacuum effects in the FCC-bh beam vacuum chamber	/gras/delatorr
Ground feor	00:30 - 00:5
Material properties of relevance to cryogenic vacuum cystems	Luice Spatino
Ground feor	00.00 - 09.0
R and PY fram candidate materials for the FCC-Ith Vacaum system.	Roberto Cirvito
Ground floor	09:30 - 09:3
Photo desception studies at the WNDY set up at LNP	Mana Argeboor
Graune feor	09:00 - 09:9
Course Plaza Bruckets Le Plaze Evaluation of LASER ablated surface angineering of copper and stainless steel for particl accelerators	10:00 - 10:3 le Reze Valzaden d
Recent Results on NEG Coating Characterisation	Auto Sirvinskate
Grounel Neor	33.60 - 11.9
	Luis Antonia Gonzalez Gonez 4
Photodesorption Studies on FCC-bh Beam Screen Prototypes at KARA	
Photodesorption Studies on FCC-th Beam Screes Prototypes at KARA Ground foor	11:13 - 11:3

Beam parameters D. Schulte et al.							
	LHC	HL-LHC	FCC-hh Initial	FCC-hh Nominal			
C.M. Energy [TeV]	14 100						
Injection Energy [TeV]	0	.45		3.3			
Peak Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5	<30			
Integrated Luminosity/day [fb ⁻¹]	0.47	2.8	2.2	8			
Bunch distance Δt [ns]	25						
Bunch charge N [10 ¹¹]	1.15	2.2	1				
Number of bunches	punches 2808			10400			
Norm. emitt. [mm]	3.75	2.5		2.2			
Max ξ for 2 IPs	0.01	0.015	0.01 (0.02)	0.03			
IP beta-function β [m]	0.55	0.15	1.1	0.3			
IP beam size σ [μm]	~16	~7	6.8	3.5			
RMS bunch length σ_z [cm]	7	7.55		8			
Assumed Turn-around time [h]			5	4			
Stored Energy per beam [GJ]	0.392	0.694		8.3			
SR power per ring [MW]	0.0036	0.0073		2.4			

24/06/2019

4

Courtesy: Dalena

DA results at injection

- Sextupole and decapole corrections required to have minimum DA above the target of 12 σ
- · Negligible impact of Experimental Insertion Regions (EIR) on DA
- Minimum DA ~ 8.3 σ at injection energy of 1.3 TeV

17/10/201

B. Dalena, 4th EuroCirCol meeting

- ▶ Integrated MCD in lattice to correct *b*₅.
- Larger intra-beam distance: 250 mm.
 - Shorter MQ (smaller b₂ in MB), longer and weaker MB
 - Updated arc lattice

- Consolidated correction scheme.
- Most of residual errors acceptable.
 - β-beating and dispersion beating are too large but uncorrected.
- Alternative FODO arc cells with 60°.

Courtesy: Boutin

cea

OVERVIEW OF THE RESULTS

Observable	Injection	Collision
Hori. orbit	0.80 mm	0.79 mm
Vert. orbit	0.73 mm	0.73 mm
Hori. angle	26 µrad	$26 \mu rad$
Vert. angle	$25 \mu rad$	27 μ rad
Hori. beta-beating	22 %	34 %
Vert. beta-beating	24 %	42 %
Hori. disp. beating	$0.023 \frac{1}{\sqrt{m}}$	$0.036 \frac{1}{\sqrt{m}}$
Vert. disp. beating	$0.028 \frac{1}{\sqrt{m}}$	$0.027 \frac{1}{\sqrt{m}}$
Hori. orbit corr. str.	0.31 Tm	4.7 Tm
Vert. orbit corr. str.	0.28 Tm	4.2 Tm
Skew quad. str.	8.57 T/m	148 T/m
Trim quad. str.	3.68 T/m	140 T/m

Results satisfactory except for beta-beating

Some DIS and all insertion correctors are not included into the results

 Beta-beating and dispersion beating need further investigation

- Integrated MCD in lattice to correct b₅.
- Larger intra-beam distance: 250 mm.
 - Shorter MQ (smaller b₂ in MB), longer and weaker MB
 - Updated arc lattice.

D. BOUTIN, CORRECTION SCHEMES, 25 JUNE 2019 | PAGE 14

- Consolidated correction scheme.
- Most of residual errors acceptable.
 - β-beating and dispersion beating are too large but uncorrected.
- Alternative FODO arc cells with 60°.

- Integrated MCD in lattice to correct b₅.
- Larger intra-beam distance: 250 mm.
 - Shorter MQ (smaller b₂ in MB), longer and weaker MB
 - Updated arc lattice.

- Consolidated correction scheme.
- Most of residual errors acceptable.
 - β-beating and dispersion beating are too large but uncorrected.
- Alternative FODO arc cells with 60°.

Courtesy: Martin Main IR Optics: Energy deposition in triplet Thick shielding option now default: Triplet magnets are exposed to high levels of 35 mm of INERMET180 (Tungsten) radiation from collision debris Aperture large enought to accomodate Exp Large apertures necessary to house thick + Exp. + Ini. + Exp $\beta^* = 0.2 \, \text{m}$ shielding inside See talk by B. Humann, this session 1.4 km Can reach β^* beyond Ultimate / have comfortable margins 2.8 km → extraction D J **B-col** _____ 1.4 km 30 20 10 = 0.2 m, 35 mm shieldin Н -206 Distance from IP im イロト イクトイミト イミト モージベ

- Updated optics.
- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

Courtesy: Humann

Dose & DPA Q1b split:

Updated optics.

- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

FEE

Courtesy: Humann

25/06

Energy Deposition in FCC-hh EIR 16

- Updated optics.
- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

Courtesy: Boscolo

SR that reaches the experimental area

- · MDISim used to produce geometry and magnetic field description
- · SR simulation with GEANT4 from -700 m from IP, Gaussian proton beam

Lattice v9	half crossing angle	Power (TAS) [W]	Power(Be) [W]	N y (Be) [10 ⁹]	Em(Be) [keV]
In Mark	No	9	1	1	0.2
Initial	yes, 52µrad	27	1.2	2	0.2
Nominal	No	9	1	1	0.2
Nominal	yes, 100µrad	47	13	16	0.2

 Slight increase of SR with the nominal crossing angle, due to the magnets that are switched on to produce it.

EuroCirC

- Updated optics.
- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

Courtesy: Cruz

Results - Different β*

 Explore different options of β* for the baseline design (β*=0.15, 0.2, 0.3, 1.1 m) *R. Martin/Overview of the IR*

- β*=1.1 m ok even w/o non-linear corr
- Increase of 5-10σ for other cases
- Non-linear correctors crucial for acceptable DA for cases β*=0.15 and 0.2.
- Final results w/non-linear correctors:
 DA > 20σ for β*=0.3 and 1.1 m
 DA > 10σ for β*=0.15 and 0.2m

E. Cruz-Alaniz

- Updated optics.
- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

FCC Week 2019

35

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

- Updated optics.
- Margins on beam-stay clear (up to $\beta^* = 0.2$ m.
- Proposal to split Q1b to reduce peak energy deposition.
- Critical deposition in Q7: collimator to optimize.

- SR radiation is negligible.
- Linear correction scheme updated.
- Non linear correctors are mandatory for DA.
- Alternative triplet exists (same Qpoles).
- Flat optics (no crab cavities).

$\fbox{2}$ Low \mathscr{L} + injection insertion

Courtesy: Hofer

Injection optics

- For optimal machine protection, some constraints on injection optics apply
 - Phase advance between kicker and TDI close to 90 degree, such that miskick translates into additional orbit offset at TDI
 - Small dispersion to reduce kicker aperture and ease of protection device setup
 - · Large beam size at the TDI to limit peak energy density on the absorber [1]
- Currently very flat beam at TDI ($\beta_x = 37 m$, $\beta_y = 932 m$)

Updated optics.

- Energy depositions is handled (500 fb⁻¹).
- New shielding design of MKI to reduce impedance.
 - Some solutions to mitigate impedance.

- New generator technologies required and studied
- Loss studies for injection failures are ongoing.

$\fbox{2}$ Low \mathscr{L} + injection insertion

Courtesy: Hofer

- Updated optics.
- Energy depositions is handled (500 fb⁻¹).
- New shielding design of MKI to reduce impedance.
 - Some solutions to mitigate impedance

- New generator technologies required and studied
- Loss studies for injection failures are ongoing.

$\fbox{2}$ Low \mathscr{L} + injection insertion

- Updated optics.
- Energy depositions is handled (500 fb⁻¹).
- New shielding design of MKI to reduce impedance.
 - Some solutions to mitigate impedance.

- New generator technologies required and studied
- Loss studies for injection failures are ongoing.

cea Extraction insertion

Courtesy: Chmielinska

Extraction

New Baseline:

- IPD, 2.8 km for extraction of beam 1 and 2
- 2.5 km dumpline with dilution kicker system to create sweep pattern at graphite beam dump
- Design mainly driven by machine protection
 - Safely extract 8.5 GJ beam
 - Reduce failure probabilities
 - Avoid downtime in case of failure

EUTOCICO 25/06/2019, FCC Week 2019, Brussels A. Chmielinska, FCC-hh Injection and Extraction

- New proposed baseline.
 - reduced system length, pot. less kick strength required
- Highly segmented extraction kicker system (150 modules).
- Up to 4 kickers can safely pre-fi re without damage to the machine.

- Impact of 1.5 sigma oscillation in case of single erratic acceptable.
- System designed to run with min. 10% less dilution/kick strength
- 4 abort gaps with 1.5 us proposed to reduce machine impact in case of failure

cea Extraction insertion

Courtesy: Molson

- New proposed baseline.
 - reduced system length, pot. less kick strength required
- Highly segmented extraction kicker system (150 modules).
- Up to 4 kickers can safely pre-fi re without damage to the machine.

- Impact of 1.5 sigma oscillation in case of single erratic acceptable.
- System designed to run with min. 10% less dilution/kick strength
- 4 abort gaps with 1.5 us proposed to reduce machine impact in case of failure

cea Extraction insertion

Courtesy: Chmielinska

EUROCICOI 25/06/2019, FCC Week 2019, Brussels A. Chmielinska, FCC-hh Injection and Extraction

- New proposed baseline.
 - reduced system length, pot. less kick strength required
- Highly segmented extraction kicker system (150 modules).
- Up to 4 kickers can safely pre-fi re without damage to the machine.

- Impact of 1.5 sigma oscillation in case of single erratic acceptable.
- System designed to run with min. 10% less dilution/kick strength
- 4 abort gaps with 1.5 us proposed to reduce machine impact in case of failure

Courtesy: Bruce

Éxp. + Exp.

1.4 km

1.4 km

Н

Ini. + Exp.

2.8 km - extraction

Present baseline collimation system

 Most loaded collimators (primaries and first secondary) in CFC (carbon-fibre composite) for robustness, other secondaries in molybdenum-graphite with Mo coating for better impedance (taking over the HL-LHC design)

		Collimator	Material	Number	Injection $(n\sigma)$	Collision $(n\sigma)$:
	primary	β TCP	CFC	2	7.6	7.6	
	secondary		CFC/MoGr	11	8.8	8.8	Betatron
	absorber	pressi	W	5	12.6	12.6	cleaning
D	dispersion suppressor	β TCLD	W	3	21.0	35.1	oloaning
U	primary	δTCP	CFC	1	10.8	18.7	
	secondary	δ TCSG	MoGr	4	13.0	21.7	Momentum
	absorber	δ TCLA	W	5	14.4	24.1	cleaning
	dispersion suppressor	δ TCLD	W	4	21.0	35.1	-
	tertiary	TCT	W	12	14.0	10.5	Experiments
	dispersion suppressor	experimental TCLD	W	8	21.0	35.1	Experiments
	dump protection (ABT)) TCDQ	CFC	1	9.8	9.8	Extraction
	absorber	extraction TCLA	W	2	11.8	11.8	EXITACTION
	dispersion suppressor	extraction TCLD	W	1	21.0	35.1	

Still to be added in lattice: active physics debris absorbers

For 2.2 µm emittance

R. Bruce, 2019.06.25

- Updated optics of momentum collimation insertion (larger dispersion) and DIS (reduction of peaks).
- Updated collimator lists.
- Cleaning at injection is acceptable (also in energy collimation section).
- May need skew collimator.

Extended studies in cold parts

TCLD is a must do have in DIS.

- Extended thermo-mechanical studies.
 - Collimation system survives.
 Outgassing from collimators, power loads on warm magnets passive absorbers, material of cooling pipes

Antoine CHANCE

FCC-hh machine summary

10

Courtesy: Molson

- Updated optics of momentum collimation insertion (larger dispersion) and DIS (reduction of peaks).
- Updated collimator lists.
- Cleaning at injection is acceptable (also in energy collimation section).
- May need skew collimator.

Extended studies in cold parts.

TCLD is a must do have in DIS.

- Extended thermo-mechanical studies.
 - Collimation system survives.
 Outgassing from collimators, power loads on warm magnets passive absorbers, material of cooling pipes

Courtesy: Varasteh

MB.C11RJ (Power density) (Loss density) 2x107 70 1.5x10⁷a 60 50 1x10⁷ ≧ 30 5x10⁶ Peakp 20 -800 -600 -400 -200 200 400 600 800 z (cm) Maximum power density deposited in FCC-hh main dipole is 80 mW/cc

density increases as E^(1.15) for low radial resolution and as E(1.36) for 3mm radial bins ...corrected by the respective loss density ratio...

M. Varasteh FCC Conference 2019 - BRUSSELS, BELGIUM

(three radial bins of 1.86cm)

- Updated optics of momentum collimation insertion (larger dispersion) and DIS (reduction of peaks).
- Updated collimator lists. ►
- Cleaning at injection is acceptable (also in energy collimation section).
- May need skew collimator.

- Extended studies in cold parts.
 - TCLD is a must do have in DIS.

Courtesy: Gobbi

- Updated optics of momentum collimation insertion (larger dispersion) and DIS (reduction of peaks).
- Updated collimator lists.
- Cleaning at injection is acceptable (also in energy collimation section).
- May need skew collimator.

- Extended studies in cold parts.
 - TCLD is a must do have in DIS.
- Extended thermo-mechanical studies.
 - Collimation system survives.
 - Outgassing from collimators, power loads on warm magnets passive absorbers, material of cooling pipes.

cea RF system + insertion

Courtesy: Karpov

 \rightarrow For $V_{\rm RF}$ = 12 MV at 3.3 TeV, 1.35 ns bunch length is required for stability

- Updated optics.
- RF power, single-bunch stability and coupled-bunch stability gave an updated of beam and RF parameters.
 - At flat top $V_R F = 38$ MV.
 - At flat bottom $\tau_{4\sigma} = 1.35$ ns.
 - Long. emittance blowup $\propto \sqrt{E}$.

- RF power consumption was calculated for different transient beam loading compensation schemes.
 - Full compensation requires 600 kW peak power during acceleration (against 400 kW without compensation).

cea RF system + insertion

Courtesy: Karpov

Power consumption during cycle*

→ Keeping constant amplitude and phase of the cavity voltage during the FCC-hh cycle would require about 600 kW peak power (half-detuning scheme).
→ The full-detuning scheme, requires about 25% more power compared with the case without transient beam loading compensation.

*I. Karpov, P. Baudrenghien, submitted to PRAB

- Updated optics.
- RF power, single-bunch stability and coupled-bunch stability gave an updated of beam and RF parameters.
 - At flat top $V_R F = 38$ MV.
 - At flat bottom $\tau_{4\sigma} = 1.35$ ns.
 - Long. emittance blowup $\propto \sqrt{E}$.

- RF power consumption was calculated for different transient beam loading compensation schemes.
 - Full compensation requires 600 kW peak power during acceleration (against 400 kW without compensation).

Cea Dynamic aperture + beam-beam

Courtesy: Tambasco

Global compensation of long range interactions

- Negative polarity for octupoles.
- Phase advance PA/PG compatible DA and beam-beam at collision.
- DA>5σ with multipolar errors + beam-beam (Ultimate).
 - Challenging. Needs for new DA optimization paths.

- Large β -beating due to beam-beam.
- Updated DA with new lattice and error table of dipoles.
 - DA below target value when octupoles are used at injection.
 - Still above collimation settings.
 - DA reduced also by RF bucket

Cea Dynamic aperture + beam-beam

Courtesy: Tambasco

DA with multipolar errors

- Negative polarity for octupoles.
- Phase advance PA/PG compatible DA and beam-beam at collision.
- DA>5σ with multipolar errors + beam-beam (Ultimate).
 - Challenging. Needs for new DA optimization paths.

- Large β -beating due to beam-beam.
- Updated DA with new lattice and error table of dipoles.
 - DA below target value when octupoles are used at injection.
 - Still above collimation settings.
 - DA reduced also by RF bucket.

Cea Dynamic aperture + beam-beam

Courtesy: Dalena

Effect of Landau Damping CHC

- · Minimum DA below target with LO (like for LHC)
- Minimum above the collimation settings ⇒ is not considered a big issue
- DA is dominated by multipoles random components with sextupole and decapole correction
- · DA seeds distribution is non Gaussian

- Negative polarity for octupoles.
- Phase advance PA/PG compatible DA and beam-beam at collision.
- DA>5σ with multipolar errors + beam-beam (Ultimate).
 - Challenging. Needs for new DA optimization paths.

- Large β -beating due to beam-beam.
- Updated DA with new lattice and error table of dipoles.
 - DA below target value when octupoles are used at injection.
 - Still above collimation settings.
 - DA reduced also by RF bucket.

Cea Single and two beam stability

24.06.19 | ETIT | Accelerator physics group | Oliver Boine-Frankenheim | 9

- Landau damping has been addressed:
 - Octupoles, energy scaling and damping of "non-rigid" bunch modes
 - Electron lenses and combinations.
 - Beam Transfer Function simulation of stable beams and time evolution of unstable beams
- Energy scaling of electron cloud induced effects: induced tune shift negligible for FCC-hh
- Fully squeezed optics does not allow margins at end of squeeze.
 - ▶ Initial collisions at larger β^* .
 - Collide and Squeeze.

Cea Single and two beam stability

Courtesy: Tambasco

Two beam stability: Collide & Squeeze

In order to avoid stability reduction during the squeeze, collisions at larger $\,\beta^*$ are foreseen (as for the HL-LHC)

Beam-beam wise we cancel long-range beam-beam effects and have only head-on \rightarrow go to reduced separations when beams transverse emittances have been reduced due to damping

- Landau damping has been addressed:
 - Octupoles, energy scaling and damping of "non-rigid" bunch modes
 - Electron lenses and combinations.
 - Beam Transfer Function simulation of stable beams and time evolution of unstable beams
- Energy scaling of electron cloud induced effects: induced tune shift negligible for FCC-hh
- Fully squeezed optics does not allow margins at end of squeeze.
 - Initial collisions at larger β^* .
 - Collide and Squeeze.

Н

Cea Beam screen

Courtesy: Boine-Frankenheim

- Mechanical design updated and validated by impedance team.
- Resistive wall impedance to reduce:
 - Cu coating thickness: 0.3 mm.
 - Stainless edge increases impedance.
 - Mitigation proposals: coating the edge or bending, sharp cuts.

- Reduction of SEY (Electron cloud).
 - a-C coating (baseline).
 - Alternatives need other treatments like LASE coating
- Reduction of photoelectron yield.
 - Saw-tooth sufficiently efficient.
 - Radiation absorbers may be an investigation of 5 and 5

cea Beam screen

- Mechanical design updated and validated by impedance team.
- Resistive wall impedance to reduce:
 - Cu coating thickness: 0.3 mm.
 - Stainless edge increases impedance.
 - Mitigation proposals: coating the edge or bending, sharp cuts.

- Reduction of SEY (Electron cloud).
 - a-C coating (baseline).
 Alternatives need other treatments like LASE coating
- Reduction of photoelectron yield.
 - Saw-tooth sufficiently efficient.
 - Radiation absorbers may be an issue if concention of 5 ms

Antoine CHANCE

FCC-hh machine summary

28 June 2019 12 / 17

cea Beam screen

Courtesy: Mether

Mitigation scenario for alternative beams

- o LASE surface treatments an option for decreasing the SEY beyond a-C
 - » Within constraints imposed by the impedance
- o Coating or other mitigation scheme to be considered also in drifts

- Mechanical design updated and validated by impedance team.
- Resistive wall impedance to reduce:
 - Cu coating thickness: 0.3 mm.
 - Stainless edge increases impedance.
 - Mitigation proposals: coating the edge or bending, sharp cuts.

- Reduction of SEY (Electron cloud).
 - a-C coating (baseline).
 - Alternatives need other treatments like LASE coating.
- Reduction of photoelectron yield.
 - Saw-tooth sufficiently efficient.
 Radiation absorbers may be an issue if assorbing of 5 as

Antoine CHANCE

FCC-hh machine summary

28 June 2019 12 / 17

cea Beam screen

Courtesy: Mether

Photoelectron yield in drifts

New more detailed simulations with photoelectrons based on ray-tracing simulations as well as photoelectron yield measurements on Cu and LASE surfaces (WP4)

- Mechanical design updated and validated by impedance team.
- Resistive wall impedance to reduce:
 - Cu coating thickness: 0.3 mm.
 - Stainless edge increases impedance.
 - Mitigation proposals: coating the edge or bending, sharp cuts.

- Reduction of SEY (Electron cloud).
 - a-C coating (baseline).
 - Alternatives need other treatments like LASE coating.
- Reduction of photoelectron yield.
 - Saw-tooth sufficiently efficient.
 - Radiation absorbers may be an issue if separation of 5 ns.

Courtesy: Valizadeh

24 - 28 June 2019

- LASE surface enables small SEY but impact on impedance not very well known. Needs for experiments.
 - Promising results: SEY of 1.1/O.8 with a surface resistance increase by 14%/60%..
 - To be continued.

- Photodesorptions measured at KARA.
 - Validation of saw tooth strategy.
 - LASE treatment has a dramatic effect.
 - Experiments at DAFNE very soon
- Discrepancy between SEY models.
 - Needs for validation experiments.

PSD Results

	SS		Cu			
α Surface [ref]			α	Surface	[ref]	
0.99	Unbaked/RT Ec=3.75 KeV	[4]	0.88	Baked/RT Ec=26.3 KeV	[1]	
0.54	Baked/RT Ec=4 KeV	[5]	0.61	Unbaked/RT Ec=486 eV		
			0.32	Unbaked/77K Ec=50 eV		
			0.88	Baked/RT Ec=3.75 KeV		

 η of Prototype #1 decreases with the same rate as SS at similar Ec under the same surface conditions

 η of Prototype #3 (sawtooth) decreases with a rate much lower that for Cu at the same surface conditions and similar Ec. Closer to Cu at 77K and Ec = 50eV

 η of Prototype #3 (LASE) decreases with an extremely low rate.

Photodesorption studies on FCC-hh Beam Screen Prototypes at KARA FCC Week 2019 June 26th

- LASE surface enables small SEY but impact on impedance not very well known. Needs for experiments.
 - Promising results: SEY of 1.1/0.8 with a surface resistance increase by 14%/60%..
 - To be continued.

- Photodesorptions measured at KARA.
 - Validation of saw tooth strategy.
 - LASE treatment has a dramatic effect.
 - Experiments at DAFNE very soon
- Discrepancy between SEY models.
 - Needs for validation experiments

Luis Gonzalez

CERN TE-VSC

- LASE surface enables small SEY but impact on impedance not very well known. Needs for experiments.
 - Promising results: SEY of 1.1/O.8 with a surface resistance increase by 14%/60%..
 - To be continued.

- Photodesorptions measured at KARA.
 - Validation of saw tooth strategy.
 - LASE treatment has a dramatic effect.
 - Experiments at DAFNE very soon
- Discrepancy between SEY models.

Needs for validation experiments

A comparison of two different SEY models for Cu surfaces was presented in Amsterdam

Secondary emission yield model

- LASE surface enables small SEY but impact on impedance not very well known. Needs for experiments.
 - Promising results: SEY of 1.1/O.8 with a surface resistance increase by 14%/60%..
 - To be continued.

- Photodesorptions measured at KARA.
 - Validation of saw tooth strategy.
 - LASE treatment has a dramatic effect.
 - Experiments at DAFNE very soon
- Discrepancy between SEY models.
 - Needs for validation experiments.

cea Injector design

Courtesy: Borburgh

Parameter	Unit	6 T scSPS	reuse LHC	new 4 T LHC	1 T 100 km
Circumference	km	6.9	26.7	26.7	100
Apertures		1	2	1	2
Injection energy	GeV	26	450	450	450
Extraction energy	TeV	1.3	3.3	3.3	3.3
Injection field	Т	0.12	0.6	0.6	0.14
Maximum field	Т	6	4	4	1.1
Energy/field swing factor		50	7	7	7
Individual dipole length	m	12	14.3	14.3	8
Overall dipole filling factor		0.65	0.66	0.66	0.63
Number of dipoles		372	1232	1232	7856
Number of quads		216	480	480	1250
Total HEB bunches		640	2600	2'600	11'000
Stored HEB energy per beam	MJ	15	167	167	670
HEB filling time	min	0.5	7.5	3.8	30.1
HEB ramp rate	T/s	0.4	0.026	0.08^{*}	0.011*
Total HEB cycle length	minutes	1.1	12	4.9	32
HEB cycles per FCC fill		34	4	8	2
FCC filling time (25 ns)	minutes	37	46	39	32

Overall performance compa

🕎 25 June 201

FCC Week Bruss

- scSPS option (@1.3 TeV) excluded because of dynamic aperture. Large energy swing may be an issue.
- Existing LHC with 5x faster ramp.
 - 3.3 TeV beam (baseline),
 - Longer filling time than desired.
 - High operating cost and complexity, availability concerns.

- 4 T, 27 km, purposed built single aperture HEB alternative:
 - Less complex machine.
 - Slightly faster filling time (39 minutes).
- Costing is needed for real comparison of both options.

Antoine CHANCE

FCC-hh machine summary

cea lon operation

Courtesy: Schaumann

Nucleon-Nucleon Luminosity Evolution

- FCC-hh could be a very high performance heavy-ion collider.
- Lead but also lighter ions are considered.
 - Operationally less challenging
 - potential for higher performance compared to baseline Pb.

- Collimation system has a good cleaning performance.
- As for FCC-pp, the TCLD is a must do have.

cea lon operation

Courtesy: Abramov

Betatron cleaning at collision – B1H IRJ

- FCC-hh could be a very high performance heavy-ion collider.
- Lead but also lighter ions are considered.
 - Operationally less challenging
 - potential for higher performance compared to baseline Pb.

- Collimation system has a good cleaning performance.
- As for FCC-pp, the TCLD is a must do have.

- A lot of different aspects have been covered: optics, collimation, dynamic aperture, collimation, machine protection, single and two beam stability, beam-beam, experimental set-up ...
- All results are compiled in the long CDR.
- FCC-hh machine design is in good shape.
- Selected outlook:
 - Development of IA algorithms to predict DA.
 - To split inner triplet quadrupole to reduce peak dose.
 - New materials or system design for collimation.
 - Electron lenses or RF quads.
 - Experimental data for surface properties (SEY, impact of LASE treatment on impedance,...).
 - and many other topics.

