RF Summary

F. Peauger

SRF session

SRF and powersources R&D overview	Anne-Marie Valente-Feliciano
Crowne Plaza Brussels Le Palace	14:30 - 15:00
HOM damping design studies for ECC-ee cavities	Shahnam Gorgi Zadel
1st floor	08:30 - 08:48
Requirements for longitudinal HOM damping in ECC-bb	Ivan Karnov
1st floor	08:48 - 09:00
Possible Designs of HOM Couplers for Superconducting 400 MHz RF Cavities	Nils Petry
1st floor	09:06 - 09:2
R&D of seamless elliptical cavities	Cristian Pir
1st floor	09:24 - 09:4
Electrodeposition of copper for seamless cavity	Guillaume Jonathan Rosaz
1st floor	09:42 - 10:0
ND film and DE babaries	Anna Maria Valanta Falizian
1et floor	10:20 10:4
PE performances of superconducting costings on conner for the ECC study	Dr Marco Arze
1st floor	10:48 - 11:0
Development of a T is test stand to analyze superconducting thin-film coatings	Dorothea Eonnes
	11.06 - 11.2
Characterization of a poblum thin film deposited on 6 Gbz SBE cavities	Reza Valizade
1st floor	11:24 - 11:4
FCC-ee ERL option for low power and/or high energy	Maria Chamizo Llatas et a
1st floor	11:42 - 12:0
Antius shielding far Organisatulas	Anton Europiau Ivana
	Aniton Evgeniev Ivano
Ist noor	13.30 - 13.3
i est results and Operational experience of the High Power IOT development for ESS	Morten Jense
	13.52 - 14.1
nign emiciency klystrons development at CERN	Jinchi C
	14:14 - 14:3
rowards a nign emciency klystron for LHC	Armel Beuna

Total of 15 talks (+ 5 posters)

3 talks on HOM couplers

6 talks on cavity fabrication and coatings

covered by FCC-ee machine design summary 1 talk on cryomodule magnetic shielding

3 talks on high power RF sources

HOM damping design studies for FCC-ee cavities Shahnam Gorgi Zadeh (Univ. Rostock) Universität

- Different configuration of HOM couplers have been studied (hook, probe, DQW, rectangular waveguide, ridged waveguide)
- For each FCCee machine, detailed evaluation of HOM power has been calculated (up to 30 kW for Z)
- For the Z and W machine: combination of waveguides and coaxial (hook or DQW) couplers have been proposed (+ absorbers at the cryomodule extremities)

 \rightarrow Integration into cryomodule configuration to be studied ?

Traditio et Innovatio

Rostock

4 Hook-type couplers + 1 Rectangular WG (4H1RecWG)

6

Requirements for longitudinal HOM damping in FCC-hh Ivan Karpov (CERN)

- Thresholds of beam stability have been evaluated with semi analytical model
- Realistic accelerator cycle have been used
- \rightarrow Wide Opened Waveguide FCC-hh crab cavities shows too high impedance and needs to be revisited

Possible Designs of HOM Couplers for Superconducting 400 MHz RF Cavities Nils Petry (IAP)

- New HOM coupler design proposed
- Impedance calculated for the first 200 modes

\rightarrow not as efficient as the LHC type design, investigations are ongoing

R&D of seamless elliptical cavities Cristian Pira (INFN)

- Cheap fabrication and potentially better performances
- Successive steps of spinning and annealing operations
- \rightarrow good shape accuracy achieved on one cavity
- \rightarrow some cracks and orange peel observed: need further studies (simulations + experiment on smaller cavities)
- \rightarrow why not limiting the spinning process to the equator region only ?

1st Thermal Annealing

2nd Thermal Annealing

1st Thermal Annealing

2nd Thermal Annealing

Spinning of Cavity #2 completed

3rd Thermal Annealing

Electrodeposition of copper for seamless cavity Guillaume Jonathan Rosaz (CERN)

- No risk of mechanical cracks
- Possibility to include the stainless steel flanges in the process (no welding required at all)
- \rightarrow Mechanical and RF properties at cold temperature checked (RRR > 200)
- \rightarrow one demonstrator fabricated

 \rightarrow one prototype cavities (1.3 GHz) under fabrication, to be RF tested

NB film engineering with energetic condensation for tailored RF behavior Jefferson Lab

Anne-Marie Valente-Feliciano (JLAB)

- Several "knobs to turn" to tune Nb film structure have been presented
- Mitigation of Q-slope is the main objective
- \rightarrow Energetic condensation techniques show promising SRF results with unprecedented thin film material properties, considerably improved compared to the state-of-the-art

RF performances of superconducting coatings on copper for the FCC study Marco Arzeo (CERN)

 \rightarrow Best Nb/Cu HiPIMS samples in the last two years !

 Nb3Sn A15 compounds which have the potential to outperform niobium

 \rightarrow very encouraging results obtained on A15-on-Cu samples

Development of a Tc test stand to analyze superconducting thinfilm coatings Dorothea Fonnesu (CERN)

- New set-up developed at CERN to measure critical temperature of superconductors
- Validated on Niobium sample
- Many measurements performed on thin films

Characterization of a nobium thin film deposited on 6 GHz SRF cavities Reza Valizadeh (STFC)

- Different polishing technics of samples studied
- Microstructure of the thin film characterized
- Hfp value measured between 140 to 155 mT

Science & Technology Facilities Council

Active shielding for Cryomodules Anton Ivanov (CERN)

- Objective: reduce the residual resistance due to magnetic flux trapping
- [Solenoid + 2 x cos theta saddle coils] proposed around the V6 cryostat at CERN (M. Karppinen)
- ~ 0.25 μT in a volume of 400 MHz LHC-type cavity

Test results and Operational experience of the High Power IOT development for ESS Morten Jensen (ESS)

- Two multibeams IOTs developed for ESS
- High power test performed at CERN
- \rightarrow Peak RF power of 1.2 MW achieved in pulsed mode (3.5 ms, 14 Hz)

= World record !

 \rightarrow Is 1.2 MW in <u>CW mode feasible</u> ?

FCC week 2019 – Brussels

RF Summary F. Peauger

High efficiency klystrons development at CERN Jinchi Cai (CERN)

- New computer code KlyC developed at CERN and fully benchmarked
- FCC-ee 800 MHz klystron design finished with efficiency ~80%.
- Scaling procedure and efficieny limits are well established

FCC-ee klystron 800 MHz 133.9 kV 12.5 A **80% efficiency** Prf = 1.3 MW

Towards a high efficiency klystron for LHC Armel Beunas (THALES)

- Upgrade of the existing LHC 400 MHz 300 kW klystrons for HL-LHC
- New beam-RF interaction structure designed by CERN
- Predicted power is 345 kW at 54kV 9A with and a gain of 36.5 dB and 71% efficiency

Conclusion

- The FCC(-ee) RF system is based on a solid and well established technology
- A significant R&D effort is made to improve the performances and reduce the cost of each component
- Next:
 - Pursue R&D, specially on cavity fabrication and thin films
 - Prototyping phase ?
 - «equipped FCC cavity» with power coupler, HOM couplers, tuner, magnetic shielding
 - Full FCC cryomodule

Thank you for your attention

	Z		WW		ZH		tī 1		tt 2	
	per	booster	per	boo-	per	booster	2	booster	2	booster
	beam	booster	beam	ster	beam	booster	beams		beams	
Total RF voltage	100	140	750	750	2000	2000	9500	9500	10930	10930
[MV]										
Frequency [MHz]	400									
RF voltage [MV]	100	140	750	750	2000	2000	4000	2000	4000	2000
E _{acc} [MV/m]	5.1	8	9.6	9.6	9.8	9.8	10		10	
# cell / cav	1	4	4		4	1	4		4	
V _{cavity} [MV]	1.92	12	14.4	14.4	14.7	14.7	15		15	
# cavities	52	12	52	52	136	136	272	136	272	136
# CM	13	3	13	13	34	34	68	34	68	34
T operation [K]	4.5		4.5		4.5		4.5		4.5	
Dyn losses/cav [W]	14	11	210	26	202	29	210	30	210	30
Stat losses/cav [W]	8		8		8		8		8	
Q_{ext}	$4.4\ 10^4$		$6.6\ 10^{5}$		$1.9\ 10^6$		$4 10^6$		$4.7\ 10^6$	
$P_{cav}[kW]$	962		962		368		175		149	
Frequency [MHz]	800									
RF voltage [MV]							5500	7500	6930	8930
E _{acc} [MV/m]							19.8	20	19.8	19.8
# cell / cav						5		5		
$V_{cavity}[MV]$							18.6	18.75	18.6	18.6
# cavities							296	400	372	480
# CM							74	100	93	120
T operation [K]						2		2		
Dyn losses/cav [W]							66	10	66	10
Stat losses/cav [W]						8		8		
Q_{ext}							$3.9\ 10^6$		5.610^6	
P _{cav} [kW]							176		155	

Table 3.12: Detailed RF configuration of each machine and booster ring.

