Physics with ions at the Future Circular Collider FCC week 2019 FCC Brussels, 28th June 2019 David d'Enterria LHC (for the FCC-ions team)

M. Schaumann: Ions at FCC-hh: https://indico.cern.ch/event/727555/contributions/3452761 A. Dainese et al. arXiv:1605.01389; Ch. 16, FCC-CDR EPJC79 (2019) 474; New material

Unique fundamental physics with heavy-ions

Central heavy-ion collisions:

- 1) ONLY way known to experimentally study the thermodynamics & phase transitions of a non-Abelian quantum-field theory. Collective ✔ QCD, ★ EWK in the lab.
- QGP = Least viscous fluid known. Test-bed for string theory applications via AdS/CFT duality.
- Understand early Universe "bath" (~1μs): WIMP decoupling, axion mass, imprints on gravitational wave spectrum? ...

Ultra-peripheral heavy-ion collisions:

☞ Strongest electromagnetic fields in the Universe (~10¹⁵ T).

2) Unique SM & BSM studies via photon-photon collisions: light-by-light, axion-like particles, magn. monopoles, Higgs,...

Note: Likely, no other place in Universe produces Pb-Pb collisions at multi-TeV c.m. energies (heaviest cosmic-rays colls.: Fe-Air up to √s_{max}≈ 400 TeV).

Heavy-ion collisions at the FCC-hh

CM energy $\sqrt{s} = 100$ TeV for pp means: $\sqrt{s_{NN}} = \sqrt{s}\sqrt{Z_1Z_2/A_1A_2}$ for A-A colls. PbPb: $\sqrt{s}_{NN} = 39$ TeV, $L_{int} = 110$ nb⁻¹/month pPb: $\sqrt{s}_{NN} = 63$ TeV, $L_{int} = 29$ pb⁻¹/month Lint: ×10–30 larger than LHC

Huge increase in pQCD cross sections (yields) to probe QGP:

PbPb(39 TeV): Bulk QGP properties

Quantity	Pb-Pb 2.76 TeV	Pb–Pb 5.5 TeV	Pb-Pb 39 TeV
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600
Total N _{ch}	17000	23000	50000
$\mathrm{d} E_{\mathrm{T}}/\mathrm{d}\eta$ at $\eta=0$	1.8–2.0 TeV	2.3–2.6 TeV	5.2–5.8 TeV
Homogeneity volume	5000 fm ³	6200 fm ³	11000 fm ³
Decoupling time	10 fm/c	11 fm/c	13 fm/c
ε at $\tau = 1$ fm/c	12–13 GeV/fm ³	16–17 GeV/fm ³	35–40 GeV/fm ³

Fig. 2: Left: space-time profile at freeze-out from hydrodynamical calculations for central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.5$ TeV and 39 TeV. Right: time evolution of the QGP temperature as estimated on the basis of the Bjorken relation and the Stefan-Boltzmann equation (see text for details).

×2–2.5 larger particle & energy densities (~40 GeV/fm³) than LHC

PbPb(39 TeV): Thermalized charm in QGP

Expect abundant secondary production of $c\overline{c}$ pairs in the medium from $gg \rightarrow c\overline{c}, q\overline{q} \rightarrow c\overline{c}$ + NLO ... (~500 $c\overline{c}$ pairs!)

Up to 50-100% "enhancement" wrt primary charm
 Sensitive to QGP properties: T vs τ, and τ₀ (active *ndof* in QCD EoS)

×3 larger charm-anticharm densities than at the LHC

PbPb(39 TeV): $Q\overline{Q}$ melting & recombination in QGP

 Melting compensated by b-b recombination?
 Density of bottom pairs large enough for Y(1S) recombination?
 [A.Andronic, et al., JPG38 (2011) 124081]

PbPb(39 TeV): Boosted-top quark in QGP

■ Top-quark decays (τ~0.1 fm/c) before hadronization into W+b. But, boosted t→W→qq' traverses QGP:

t → b + 2jets (66%) ttbar → bbar + 2jets + 1 ℓ + MET(v) (45%)

- \rightarrow Colour reconnection of decay b,q,q'?
- \rightarrow Enhanced gluon radiation in QGP?
- → Boosted t-tbar = Color-singlets probe medium opacity at diff. time scales:
- Reconstructed m_w(qq) vs p_T(t) provides space-time QGP tomography:

PbPb(39 TeV): $H \rightarrow \gamma \gamma$ in the QGP

PbPb(39 TeV): $H \rightarrow \gamma \gamma$ in the QGP

- after typical CMS/ATLAS cuts Higgs boson (τ ~50 fm) final-state

[Ghiglieri & Wiedemann, arXiv:1901.04503] $\delta\Gamma_{H\to gg} = -\Gamma_{H\to gg}^{\rm vac} \alpha_{\rm s} \frac{T^4}{M_H^4} \frac{112\,\pi^3}{45} \left(8 - n_f^T\right)$ for H-decay in the plasma rest frame. Negligible modification of Higgs decay width in QGP ~ $(T/m_{\mu})^4$ ~10⁻⁶...

pPb(63 TeV): Nuclear parton distrib. functions

pPb(63 TeV): Nuclear parton distrib. functions

PbPb(39 TeV): SM & BSM via γγ collisions

Ultraperipheral interactions: Nuclei survive.

• Unique SM & BSM γ - γ processes acessible without pileup:

FCC-week 2019, Brussels, June 2019

12/16

PbPb(39 TeV): SM & BSM via γγ collisions

Ultraperipheral interactions: Nuclei survive.

• Unique SM & BSM γ - γ processes acessible without pileup (e.g. ALPs):

PbPb(39 TeV): Higgs boson via γ - γ \rightarrow H \rightarrow bb

Expected exclusive Higgs over bb background after cuts:

System	Nominal runs			Upgraded pA scenario					
	$\frac{\mathcal{L}_{AB}}{(\mathrm{cm}^{-2}\mathrm{s}^{-1})}$	Δt (s)	$\langle N_{\rm pileup} \rangle$	$\begin{array}{c} N_{\rm Higgs} \\ {\rm total} \; (H \rightarrow b\bar{b}) \end{array}$		$\frac{\mathcal{L}_{AB}}{(\mathrm{cm}^{-2}\mathrm{s}^{-1})}$	Δt (s)	$\langle N_{\rm pileup} \rangle$	$\frac{N_{\text{Higgs}}}{\text{total } (H \to b\bar{b})}$
<i>pp</i> (14 TeV)	10 ³⁴	107	25	77 (55)		10 ³⁴	107	25	77 (55)
<i>p</i> Pb (8.8 TeV) PbPb (5.5 TeV)	$\frac{1.5 \cdot 10^{29}}{5 \cdot 10^{26}}$	10^{6} 10^{6}	$\begin{array}{c} 0.05\\ 5\cdot 10^{-4}\end{array}$	0.050 (0.035) 0.009 (0.007)		$1 \cdot 10^{31} \\ 5 \cdot 10^{26}$	$\frac{10^7}{10^7}$	$\begin{array}{c}1\\5\cdot10^{-4}\end{array}$	34 (25) 0.15 (0.1)
PbPb at $\sqrt{s_{_{\rm NN}}} = 39 \text{ TeV}$		cross section		visible cross section		j	$N_{ m evts}$		
(<i>b</i> -j		jet (mis)tag efficiency)		aft	after $p_T^j, \cos \theta_{jj}, m_{jj}$ cuts		$\mathcal{L}_{int} =$	$(\mathcal{L}_{\rm int} = 110 \text{ nb}^{-1})$	
$\gamma \gamma \to \mathcal{H} \to b \bar{b}$		1.02 nb (0.50 nb)		0.19 nb			21.1		
$\gamma \gamma ightarrow b ar{b} \ [\mathrm{m_{bar{b}}} = 100 - 150 \ \mathrm{GeV}]$		24.3 nb (11.9 nb)		0.23 nb			25.7		
$\gamma \gamma \rightarrow c \bar{c} \ [\mathrm{m_{c \bar{c}}} = 100 - 150 \ \mathrm{GeV}]$		525 nb (1.31 nb)			0.02 nb			2.3	
$\gamma \gamma \rightarrow q \bar{q} \ [\mathrm{m}_{\mathrm{q}\bar{\mathrm{q}}} = 100 - 150 \ \mathrm{GeV}]$		590 nb (0.13 nb)		0.002 nb		0.25			

5 σ significance in first PbPb (pPb) month (year):

FCC-week 2019, Brussels, June 2019

→ Measurement of H-γ coupling not based on decay but schannel prod.

Н

PbPb(39 TeV): BSM searches (e.g. magnetic mopoles)

Magnetic fields produced in peripheral heavy-ion collisions are the strongest known in the universe, $\sim 7.5 \text{GeV}^2$ at LHC energies.

- Magnetic monopoles:
 - Explain charge quantization.
 - Predicted by GUT/string theory.
- 't Hooft-Polyakov magn.monopoles not accesible in p-p,e⁺e⁻ collisions (pair prod. expon. suppressed), but x-section σ~exp(-m²/(gB)):

Unique FCC mass bounds m>1 TeV

Unique heavy-ion physics at FCC

• Unparalleled physics possibilities at $\times 7$ & $\times 10$ larger \sqrt{s} & L_{int} than LHC:

energy densities: ~40 GeV/fm³

~500 charm pairs in QGP

dσ_{b5}/dy=163 μb

dσ_{b5}/dy=109 μb

dσ_{bb}/dy=73 μb

300 350 400

ALPs.

Mono-

poles...

Gould, Ho & Rajantie '19

D. d'Enterria (CERN)

Npart

150 200

 $aF\tilde{F}$ coupling

p-p $\sqrt{s} = 7 \text{ TeV}$

--PbPb (LHC '18) --PbPb (SPS)

-Neutron stars -Reheating/BBN

ATLAS, 2

50 100 250

Back-up slides

t-tbar total x-sections in p-p, p-Pb, Pb-Pb

Pb-Pb:

LHC(5.5 TeV) = $3.4 \mu b$ FCC(39 TeV) = $300 \mu b$

p-Pb:

LHC(8.8 TeV) = 59 nbFCC(63 TeV) = $3.2 \mu \text{b}$

p-p (reference):

LHC(5.5 TeV) = 75 pb LHC(8.8 TeV) = 270 pb FCC(39 TeV) = 6.5 nb FCC(63 TeV) = 15 nb

nPDF anti-shadowing increases σ_{H} by +(2-8)%

[DdE, K.Krajczaár, H.Paukkunen PLB746 (2015) 64-72]

FCC-week 2019, Brussels, June 2019

Differential top-pair p_r distributions

■ FCC: p_T reach up to ~2 TeV

FCC-week 2019, Brussels, June 2019

19/16

Higgs total x-sections in p-p, p-Pb, Pb-Pb

• MCFM σ (ggF+VBF+VH) scaled to NNLO+NNLL pp x-sections

Pb-Pb:

LHC(5.5 TeV) = 500 nbFCC(39 TeV) = $12 \mu \text{b}$

p-Pb:

LHC(8.8 TeV) = 6 nbFCC(63 TeV) = 120 nb

p-p (reference):

LHC(5.5 TeV) = 12 pb LHC(8.8 TeV) = 27 pb FCC(39 TeV) = 270 pb FCC(63 TeV) = 490 pb

[DdE, arXiv:1701.08047]

→ Cross-sections increase by about ×20 from LHC to FCC

$H \rightarrow \gamma \gamma$ counts after cuts

Analysis based on NNLO MCFM v.8.0 pseudo-data for $H(\gamma\gamma)$ plus $\gamma\gamma$ backgrounds after typical CMS/ATLAS cuts

System	$\sqrt{S_{_{ m NN}}}$	$\mathcal{L}_{ ext{int}}$	Н	$\rightarrow \gamma \gamma$	$\to \operatorname{Z}\operatorname{Z}^*(4\ell)$
	(TeV)		$\sigma_{ m tot}$	yields	yields
PbPb	5.5	10 nb^{-1}	500 nb	6	0.3
pPb	8.8	1 pb^{-1}	6.0 nb	7	0.4
PbPb	39	33 nb^{-1}	11.5 μb	450	25
pPb	63	8 pb^{-1}	115 nb	950	50

LHC (nominal L_{int}): ~2 Higgs bosons/month in Pb-Pb

HE-LHC (nominal L_{int}): ~10 Higgs bosons/month in Pb-Pb
 FCC (nominal L_{int}): ~500 H bosons/month in Pb-Pb

Higgs nPDF modification factor (p-Pb,Pb-Pb)

EPS09 nuclear PDFs modify slightly x-sections wrt. pp PDFs:

[DdE arXiv:1701.08047]

FCC-week 2019, Brussels, June 2019

$H \rightarrow \gamma \gamma$ observation in Pb-Pb (LHC, FCC)

$H \rightarrow \gamma \gamma$ observation in p-Pb (LHC, FCC)

→ LHC (8.8 TeV, 1 pb⁻¹):

Nominal lumi: $S/\sqrt{B}\sim0.4$ (0.6, adding 4*l*) L_{int} = 40 pb⁻¹: 3σ evidence 4.2 σ combined with H(4*l*)

→ FCC (63 TeV, 8 pb⁻¹):

110

115

100

Nominal lumi: $S/\sqrt{B} \sim 7.7\sigma$ observation

135

m_{γγ} (GeV)

D. d'Enterria (CERN)

130

125

140

pPb(63 TeV): Triple- hard scatterings

Kinematical reach at FCC down to x~10⁻⁷ (10⁻⁴ with W,Z at y~0)

