Cross section and differential distributions for top quarks near the production threshold

Thomas Rauh

AEC, University of Bern

M. Beneke, Y. Kiyo, P. Marquard, J. Piclum, A. Penin, M. Steinhauser, arXiv:1506.06864
 M. Beneke, A. Maier, TR, P. Ruiz-Femenía, arXiv:1711.10429
 WHIZARD, A. Hoang, M. Stahlhofen, T. Teubner, arXiv:1712.02220
 F. Simon, arXiv:1902.07246

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

• Allows extremely precise determination of the top quark mass, goal:

 $\delta \overline{m}_t(\overline{m}_t) \leq 50 \,\mathrm{MeV}$

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

 Allows extremely precise determination of the top quark mass, goal:

 $\delta \overline{m}_t(\overline{m}_t) \leq 50 \,\mathrm{MeV}$

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

 Allows extremely precise determination of the top quark mass, goal:

 $\delta \overline{m}_t(\overline{m}_t) \leq 50 \,\mathrm{MeV}$

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

 Allows extremely precise determination of the top quark mass, goal:

 $\delta \overline{m}_t(\overline{m}_t) \leq 50 \,\mathrm{MeV}$

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Motivation

Consider the top threshold region of the $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section:

• Allows extremely precise determination of the top quark mass, goal:

 $\delta \overline{m}_t(\overline{m}_t) \leq 50 \,\mathrm{MeV}$

- Sensitive to Γ_t , α_s , y_t Requires very precise theory predictions:
- Inclusive result known at NNNLO QCD + NNLO SM + LL ISR + NNNLO Yukawa
- Differential result known at (N)LL + NLO QCD

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Top quarks near threshold

Relevant scales and Coulomb effects

Near threshold tops are non-relativistic with velocity $v\sim lpha_s$

• Multiple scales are relevant:

hard m_t top mass soft $m_t v$ momentum ultrasoft $m_t v^2$ energy

• Coulomb singularities $(\alpha_s/v)^n$ from *n* exchanges of potential gluons

$$k^0 \sim m_t v^2$$
, ${f k} \sim m_t v$

k

- Conventional perturbation theory in α_s fails
- · Coulomb singularities must be resummed to all orders
- Done with potential non-relativistic QCD (PNRQCD)

[Pineda, Soto 1998; Beneke, Signer, Smirnov 1999; Brambilla, Pineda, Soto, Vairo 2000; Beneke, Kiyo, Schuller 2013]

Born approximation

Total inclusive cross section from the optical theorem:

Resummed cross section at LO

Coulomb resummation yields narrow toponium resonances

$$\sigma_{t\bar{t}}(s) \sim lpha_{\mathsf{EW}}^2 v \sum_{k=0}^{\infty} \left(rac{lpha_s}{v}
ight)^k$$

$$\Gamma_t = 0$$

Resummed cross section at LO

Coulomb resummation yields narrow toponium resonances which are smeared out by top decays

$$\sigma_{t\bar{t}}(s) \sim lpha_{\mathsf{EW}}^2 v \sum_{k=0}^{\infty} \left(rac{lpha_s}{v}
ight)^k$$

Resummed cross section at NNNLO

$$\sigma_{t\bar{t}}(s) \sim \alpha_{\mathsf{EW}}^2 v \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{v}\right)^k \times \begin{cases} 1 & \mathsf{LO} \\ \alpha_s, v & \mathsf{NLO} \\ \alpha_s^2, \alpha_s v, v^2 & \mathsf{NNLO} \\ \alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 & \mathsf{NNNLO} \end{cases}$$

Resummed cross section at NNNLO

$$\sigma_{t\bar{t}}(s) \sim \alpha_{\text{EW}}^2 v \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{v}\right)^k \times \begin{cases} 1 & \text{LO} \\ \alpha_s, v & \text{NLO} \\ \alpha_s^2, \alpha_s v, v^2 & \text{NNLO} \\ \alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 & \text{NNNLO} \end{cases}$$

Resummed cross section at NNNLO

$$\sigma_{t\bar{t}}(s) \sim \alpha_{\mathsf{EW}}^2 v \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{v}\right)^k \times \begin{cases} 1 & \mathsf{LO} \\ \alpha_s, v & \mathsf{NLO} \\ \alpha_s^2, \alpha_s v, v^2 & \mathsf{NNLO} \\ \alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 & \mathsf{NNNLO} \end{cases}$$

Resummed cross section at NNNLO

$$\sigma_{t\bar{t}}(s) \sim \alpha_{\text{EW}}^2 v \sum_{k=0}^{\infty} \left(\frac{\alpha_s}{v}\right)^k \times \begin{cases} 1 & \text{LO} \\ \alpha_s, v & \text{NLO} \\ \alpha_s^2, \alpha_s v, v^2 & \text{NNLO} \\ \alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 & \text{NNNLO} \end{cases}$$

Resummed cross section at NNNLO

- NNNLO S-wave
 [Beneke, Kiyo, Marquard, Penin, Piclum,
 Steinhauser 2015]
- NLO P-wave [Beneke, Piclum, TR 2013]
- QQbar_Threshold code

[Beneke, Kiyo, Maier, Piclum 2016; Beneke, Maier, TR, Ruiz-Femenía 2017]

- Stabilization of perturbative expansion at NNNLO
- 3% uncertainty due to scale variation from 50 to 350 GeV
- Similar conclusions at NNLL (5% uncertainty) [Hoang, Stahlhofen 2013]

Work beyond NNLO QCD

	Effective field theory	QCD cross section	Non-QCD effects
2000 -	Pineda, Soto 1998 Beneke, Signer, Smirnov 1999 Brambilla, Pineda, Soto, Vairo 1999 Luke, Manohar, Rothstein 2000 Manohar, Stewart 2000	Hoang et al., 2000 Kniehl, Penin, Steinhauser, Smirnov 2001	Fadin, Khoze 1987 Grzadkowski, Kühn, Krawczyk, Stuart 1987 Guth, Kühn 1992
	Hoang, Stewart 2002 Beneke, Chapovsky, Signer, Zanderighi 2003 Beneke, Chapovsky, Signer, Zanderighi 2004	Hoang, Manohar, Stewart, Teubner 2001 Wüster 2003 Hoang 2003	Hoang, Reißer 2004
2005 -	Beneke et al. 2007	Beneke, Kiyo, Schuller 2005 Pineda, Signer 2006 Hoang, Stahlhofen 2006 Beneke, Kiyo, Penin 2007	Eiras, Steinhauser 2006 Hoang, Reißer 2006
2010	Actis, Beneke, Falgari, Schwinn, Signer 2008	Beneke, Kiyo, 2008 Anzai, Kiyo, Sumino 2009 Smirnov, Smirnov, Steinhauser 2009	Kiyo, Seidel, Steinhauser 2008 Beneke, Jantzen, Ruiz-Femenía 2010
2010 -	-	Hoang, Stahlhofen 2011	Hoang, Reißer, Ruiz-Femenía 2010 Penin, Piclum 2011
	Beneke, Kiyo, Schuller 2013	Hoang, Stahlhofen 2013 Beneke, Piclum, Rauh 2013 Marquard, Piclum, Seidel, Steinhauser 2014	Jantzen, Ruiz-Femenía 2013 Ruiz-Femenía 2014
2015 -	-	Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser 2015	Beneke, Piclum, Maier, Rauh 2015
	Lee, Smirnov, Smirnov, Steinhauser 2016 Beneke, Kiyo, Maier, Piclum 2016		
		WHIZARD, Hoang, Stahlhofen, Teubner 2017	Beneke, Maier, Rauh, Ruiz-Femenía 2017
	1	Beneke, Kiyo, Schuller, in preparation	

Work beyond NNLO QCD

Non-resonant contributions

The physical final state is $W^+W^-\bar{b}bX$

- $\Gamma_t \sim m_t \alpha \sim m_t \alpha_s^2$ is not suppressed with respect to the ultrasoft scale
- · Narrow width approximation is unphysical!
- Top decay modifies cross section in non-perturbative way (smearing of toponium resonances)

Top instability implies existence of contributions to the cross section from hard subgraphs that connect to the initial and final state

Effective theory setup

Contributions can be organized systematically within Unstable Particle

Effective Theory [Beneke, Chapovsky, Signer, Zanderighi 2003-4]

$$\sigma(s) \sim \operatorname{Im}\left\{\sum_{k,l} C^{(k)} C^{(l)} \int d^4 x \, \langle e^- e^+ | \mathsf{T}[i\mathcal{O}^{(k)\dagger}(0) \, i\mathcal{O}^{(l)}(x)] | e^- e^+ \rangle_{\mathsf{EFT}} \right. \\ \left. + \sum_k C^{(k)}_{4e} \, \langle e^- e^+ | i\mathcal{O}^{(k)}_{4e}(0) | e^- e^+ \rangle_{\mathsf{EFT}} \right\}$$

Effective theory setup

Contributions can be organized systematically within Unstable Particle Effective Theory [Beneke, Chapovsky, Signer, Zanderighi 2003-4]

Resonant contribution involving non-rel. tops. Width resummed into propagators $E \rightarrow E + i\Gamma_t$

$$\sigma(s) \sim \operatorname{Im}\left\{\sum_{k,l} C^{(k)} C^{(l)} \int d^4 x \left\langle e^- e^+ |\mathsf{T}[i\mathcal{O}^{(k)\dagger}(0) i\mathcal{O}^{(l)}(x)]|e^- e^+ \right\rangle_{\mathsf{EFT}} + \sum_k C^{(k)}_{4e} \left\langle e^- e^+ |i\mathcal{O}^{(k)}_{4e}(0)|e^- e^+ \right\rangle_{\mathsf{EFT}}\right\}$$

Effective theory setup

Contributions can be organized systematically within Unstable Particle Effective Theory [Beneke, Chapovsky, Signer, Zanderighi 2003-4]

Resonant contribution involving non-rel. tops. Width resummed into propagators $E \rightarrow E + i\Gamma_t$

$$\sigma(s) \sim \operatorname{Im}\left\{\sum_{k,l} C^{(k)} C^{(l)} \int d^4 x \, \langle e^- e^+ |\mathsf{T}[i\mathcal{O}^{(k)\dagger}(0) \, i\mathcal{O}^{(l)}(x)]| e^- e^+ \rangle_{\mathsf{EFT}} \right. \\ \left. + \sum_k C^{(k)}_{4e} \, \langle e^- e^+ | i\mathcal{O}^{(k)}_{4e}(0)| e^- e^+ \rangle_{\mathsf{EFT}} \right\}$$

Non-resonant contribution from $W^+W^-b\bar{b}$ production in hard process

 $\mathcal{O}_{4e}^{(k)}$

Effective theory setup

Contributions can be organized systematically within Unstable Particle Effective Theory [Beneke, Chapovsky, Signer, Zanderighi 2003-4]

Resonant contribution involving non-rel. tops. Width resummed into propagators $E \rightarrow E + i\Gamma_t$

$$\sigma(s) \sim \operatorname{Im}\left\{\sum_{k,l} C^{(k)} C^{(l)} \int d^4 x \left\langle e^- e^+ |\mathsf{T}[i\mathcal{O}^{(k)\dagger}(0)i\mathcal{O}^{(l)}(x)]| e^- e^+ \right\rangle_{\mathsf{EFT}}\right\}$$

$$+\sum_{k} C_{4e}^{(k)} \langle e^{-}e^{+} | i \mathcal{O}_{4e}^{(k)}(0) | e^{-}e^{+} \rangle_{\text{EFT}} \bigg\}$$

Non-resonant contribution from $W^+W^-b\bar{b}$ production in hard process

Both parts contain spurious divergences! Only the sum is finite. Calculations must be done in the same regularization scheme.

Public code

Implementation of NNNLO QCD + NNLO SM + LL ISR + NNNLO Yukawa results is available on <u>HEPForge</u>

• Home

- Download
- Documentation
 Version 2
 - Version 1
- Changelog

QQbar_threshold

QQbar_threshold computes the top-quark pair production cross section near threshold in electronpositron annihilation at NNNLO in resummed non-relativistic perturbation theory [1, 2]. It includes Higgs, QED, electroweak and non-resonant corrections at various accuracies and a consistent implementation of initial-state radiation. Details can be found in

- M. Beneke, Y. Kiyo, A. Maier, and J. Piclum Near-threshold production of heavy quarks with QQbar_threshold Comput. Phys. Commun. 209 (2016) 96-115, arXiv:1605.03010 [hep-ph]
- M. Beneke, A. Maier, T. Rauh, and P. Ruiz-Femenía Non-resonant and electroweak NNLO correction to the e⁺ e⁺ top anti-top threshold arXiv:1711.10429 [hep-ph]

Please cite these (and possibly other articles, where the theoretical input was first computed) when QQbar_threshold is used for published work.

The functionality of the package can also be used to compute the bound state energies and residues of bottomonium S-wave states and high moments of the bottom production cross section at NNNLO, including the continuum (see M. Beneke, A. Maier, J. Piclum, T. Rauh, Nucl.Phys. B891 (2015) 42-72, arXiv:1411.3132 [hep-ph]).

 $QQbar_threshold is written in C++ and Wolfram Language. It can be used as a C++ library or through a Mathematica interface.$

For questions, comments, and bug reports write to qqbarthreshold@projects.hepforge.org.

Non-QCD effects NNLO SM and NNNLO Yukawa contributions

- Uncertainty due to renormalization scale variation between 50 GeV and 350 GeV
- Effects significantly larger than QCD uncertainty
- · Shape changes particularly in the important region at and below threshold

Initial state radiation

- ISR reduces cross section by 30-45 %
- · Band is envelope of different LL accurate implementations
- NLL precision is a must for a lepton collider (not just for ttbar)

Determination of SM parameters

Results of a full simulation assuming ILC luminosity spectrum [Simon 2019]

Implementation in WHIZARD [Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Matched cross section:

Implementation in WHIZARD

Matched cross section:

 f_s = switch-off function to turn off resummation in relativistic regime

$$\sigma_{\text{matched}} = \sigma_{\text{NLO}}(\alpha_{\text{H}}) + \sigma_{\text{resum}}(f_{s}\alpha_{\text{H}}, f_{s}\alpha_{\text{S}}, f_{s}\alpha_{\text{US}}) - \sigma_{\text{resum}}^{\text{expand}}(f_{s}\alpha_{\text{H}})$$

Fixed order $W^+W^-b\bar{b}$ cross section at NLO in QCD from WHIZARD Resummed cross section at (N)LL with form factors $\tilde{F}_{NLL} = F_{NLL} - 1$ in the resonant contribution

Subtraction to remove double counting

Implementation in WHIZARD

Matched cross section:

(N)LL+NLO accuracy depending on observable:

$$\sigma \sim lpha_{\mathsf{EW}}^2 v \sum_{k,i} \left(rac{lpha_s}{v}
ight)^k \left(lpha_s \ln v
ight)^i imes egin{cases} 1 & \mathsf{LL} \ lpha_s, v & \mathsf{NLL} \end{cases}$$

Ultrasoft gluon exchanges involving the decay products are missing, but cancel in sufficiently inclusive quantities.

Examples at the peak $\sqrt{s} = 2m_t^{1S}$

(RIVET event analysis; FASTJET generalized k_T algorithm, R = 0.4, p = -1; $E_{iet} > 1 \text{GeV}$)

[Bach, Chokoufé Nejad, Hoang, Kilian, Reuter, Stahlhofen, Teubner, Weiss 2017]

Top-antitop threshold in WHIZARD \swarrow

Maximilian Stahlhofen - JGU Mainz

Summary & Outlook

- Determination of several SM parameters possible from scan of the total $e^+e^- \rightarrow W^+W^-\bar{b}bX$ cross section near the top threshold
- NNNLO QCD + NNLO SM + LL ISR + NNNLO Yukawa prediction known and available in QQbar_Threshold
- Theoretical uncertainty of 2-5% (energy-dependent), translates to

parameter	8 point scan	10 point scan
mt	(± 10.3 (stat) ± 44 (theo)) MeV	(12.2(stat) \pm 40(theo)) MeV

[Simon 2019]

Fully differential results at (N)LL+NLO implemented in WHIZARD

- Increase precision: NNNLO+NNLL QCD, NLL ISR, N⁴LO Yukawa, NLL differential, ...
- · Phenomenology of differential distributions, parameter sensitivity

Power counting

$$\begin{split} \alpha_{\rm EW} \sim \alpha_t \equiv \frac{\lambda_t^2}{4\pi} \sim \alpha_s^2 \sim v^2, \\ \sigma_{\rm QCD\,only} \sim \alpha_{\rm EW}^2 v \sum_{k=0}^\infty \left(\frac{\alpha_s}{v}\right)^k \times \begin{cases} 1 & {\rm LO} \\ \alpha_s, v & {\rm NLO} \\ \alpha_s^2, \alpha_s v, v^2 & {\rm NNLO} \\ \alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 & {\rm NNNLO} \end{cases}, \end{split}$$

$$\sigma \sim \alpha_{\text{EW}}^{2} v \sum_{k=0}^{\infty} \left(\frac{\alpha_{\text{s}}}{v}\right)^{k} \times \begin{cases} \frac{\alpha_{\text{em}}}{v} & \text{NLO} \\ \left(\frac{\alpha_{\text{em}}}{v}\right)^{2}, \frac{\alpha_{\text{em}}}{v} \times \{\alpha_{\text{s}}, v\}, \alpha_{\text{EW}}, \sqrt{\alpha_{\text{EW}}\alpha_{t}}, \alpha_{t} & \text{NNLO} \\ \left(\frac{\alpha_{\text{em}}}{v}\right)^{3}, \left(\frac{\alpha_{\text{em}}}{v}\right)^{2} \times \{\alpha_{\text{s}}, v\}, \frac{\alpha_{\text{em}}}{v} \times \{\alpha_{\text{s}}^{2}, \alpha_{\text{s}}v, v^{2}, \sqrt{\alpha_{\text{EW}}\alpha_{t}}\}, \\ \alpha_{t} \times \{\frac{\alpha_{\text{em}}}{v}, \alpha_{\text{s}}, v\}, \dots & \text{NNNLO} \end{cases}$$

$$+ lpha_{EW}^2 \times \begin{cases} lpha_{EW} & \text{NLO} \\ lpha_{EW} lpha_s & \text{NNLO} \\ \dots & \text{NNNLO} \end{cases},$$

Organization of the calculation

Split cross section into three separately finite parts (I), (II) and (III):

$$\sigma^{\text{NNLO}} = \underbrace{\left[\sigma_{\text{sq}} + \sigma_{\text{res, rest}}\right]}_{(I)} + \underbrace{\left[\sigma_{\text{int}}^{(\text{EP div})} + \sigma_{\mathcal{C}^{(k)}_{\text{Abs,bare}}}\right]}_{(II)} + \underbrace{\left[\sigma_{\text{int}}^{(\text{EP fin})} + \sigma_{\text{aut}}\right]}_{(III)}.$$

- (I): computational scheme for 'squared contribution' fixed by existing QCD results (Dim reg with NDR for $\gamma^5)$
- (II): Use freedom of scheme choice to simplify calculation (some parts done in four dimensions)
- (III): Endpoint finite part of 'interference contribution' must be computed consistent with MadGraph

Divergence structure

Top-quark decay width

$$\mathcal{L}_{\text{bilinear}} = \psi^{\dagger} \left[i\partial^{0} + \frac{\vec{\partial}^{2}}{2m_{t}} + \frac{i\Gamma_{t}}{2} + \frac{(\vec{\partial}^{2} + im_{t}\Gamma_{t})^{2}}{8m_{t}^{3}} + \dots \right] \psi + \text{anti-quark}$$

• $\psi^{\dagger} \frac{i\Gamma_t}{2} \psi$: same order as kinetic term, shifts $E \to E + i\Gamma_t$ $(E = \sqrt{s} - 2m_t)$ Causes divergences at NNLO: $\sigma \supset \sigma_0 \text{Im}\left[\frac{E}{\epsilon}\right] \to \sigma_0 \text{Im}\left[\frac{E+i\Gamma_t}{\epsilon}\right]$

Top-quark decay width

$$\mathcal{L}_{\text{bilinear}} = \psi^{\dagger} \left[i\partial^{0} + \frac{\vec{\partial}^{2}}{2m_{t}} + \frac{i\Gamma_{t}}{2} + \frac{(\vec{\partial}^{2} + im_{t}\Gamma_{t})^{2}}{8m_{t}^{3}} + \dots \right] \psi + \text{anti-quark}$$

- $\psi^{\dagger} \frac{i\Gamma_t}{2} \psi$: same order as kinetic term, shifts $E \to E + i\Gamma_t$ $(E = \sqrt{s} 2m_t)$ Causes divergences at NNLO: $\sigma \supset \sigma_0 \text{Im}\left[\frac{E}{\epsilon}\right] \to \sigma_0 \text{Im}\left[\frac{E+i\Gamma_t}{\epsilon}\right]$
- $-\psi^{\dagger} \frac{\Gamma_t^2}{8m_t} \psi$: additional shift $\rightarrow E + i\Gamma_t \Gamma_t^2/(8m_t)$, but treated perturbatively

Top-quark decay width

$$\mathcal{L}_{\text{bilinear}} = \psi^{\dagger} \left[i\partial^{0} + \frac{\vec{\partial}^{2}}{2m_{t}} + \frac{i\Gamma_{t}}{2} + \frac{(\vec{\partial}^{2} + im_{t}\Gamma_{t})^{2}}{8m_{t}^{3}} + \dots \right] \psi + \text{anti-quark}$$

- $\psi^{\dagger} \frac{i\Gamma_t}{2} \psi$: same order as kinetic term, shifts $E \to E + i\Gamma_t$ $(E = \sqrt{s} 2m_t)$ Causes divergences at NNLO: $\sigma \supset \sigma_0 \text{Im}\left[\frac{E}{\epsilon}\right] \to \sigma_0 \text{Im}\left[\frac{E+i\Gamma_t}{\epsilon}\right]$
- $-\psi^{\dagger} \frac{\Gamma_t^2}{8m_t} \psi$: additional shift $\rightarrow E + i\Gamma_t {\Gamma_t}^2/(8m_t)$, but treated perturbatively
- $\psi^{\dagger} \frac{i\Gamma_t \vec{\partial}^2}{4m_t^2} \psi$: time dilatation, reduces toponium width $\Gamma_n = 2\Gamma_t \frac{\Gamma_t \alpha_s^2 C_F^2}{4n^2} + \dots$ Non-Hermitian Hamiltonian $H \Rightarrow$ eigenstates do not form a basis

$$\begin{array}{ccc} H \left| n \right\rangle = \mathcal{E}_{n} \left| n \right\rangle, & H^{\dagger} \left| \tilde{m} \right\rangle = \tilde{\mathcal{E}}_{m} \left| \tilde{m} \right\rangle, & \tilde{\mathcal{E}}_{n} = \mathcal{E}_{n}^{*} = (\mathcal{E}_{n} - i\Gamma_{n}/2)^{*} \\ \uparrow & \uparrow & \\ \text{exponentially} & \text{exponentially} & \left\langle n \right| \tilde{m} \right\rangle = \delta_{nm} \\ \text{decaying states} & \text{growing states} \end{array}$$

Non-relativistic Green function: $G(E) = \left\langle \vec{0} \middle| \hat{G}(E) \middle| \vec{0} \right\rangle = \mathfrak{T}_n \frac{\psi_n(\vec{0})\psi_n^*(\vec{0})}{\varepsilon_n - E}$

Contains endpoint divergences when the hard tops go on-shell [Jantzen, Ruiz-Femenia '13]

'Squared contribution': Gluon corrections to h1, endpoint divergent but UV & IR finite

Contains endpoint divergences when the hard tops go on-shell [Jantzen, Ruiz-Femenía '13]

'Interference contribution': endpoint & UV divergent

'Squared contribution': Gluon corrections to h1, endpoint divergent but UV & IR finite

Contains endpoint divergences when the hard tops go on-shell [Jantzen, Ruiz-Femenía '13]

'Interference contribution': endpoint & UV divergent

'Squared contribution': Gluon corrections to h1, endpoint divergent but UV & IR finite + O(100) endpoint finite diagrams (not drawn)

'Automated contribution': endpoint finite but UV divergent, computed with automated tools (MadGraph)

Contains endpoint divergences when the hard tops go on-shell [Jantzen, Ruiz-Femenía '13]

Contains endpoint divergences when the hard tops go on-shell [Jantzen, Ruiz-Femenia '13]

Dependence on μ_w scale

Regularizing width-related/endpoint divergences dimensionally splits some of the large logarithms by introducing the scale μ_w

The dependence on μ_w cancels exactly at a given order.

We choose a central scale of $\mu_w = 350 \text{ GeV}$ to minimize the unknown logarithms from the NNNLO non-resonant part.

Invariant mass cut

Consider "loose" invariant mass cuts

$$(m_t - \Delta M_t)^2 \leq p_{t,\overline{t}}^2 \leq (m_t + \Delta M_t)^2$$
,

with $\Delta M_t \gg \Gamma_t$. Since the off-shellness in the resonant part is parametrically of the order Γ_t they only affect the non-resonant part:

Individual contributions

Determination of SM parameters

Correlation between top Yukawa and strong coupling

- Estimate theory uncertainty by determining what parameter shift is needed to obtain curves outside the scale variation band
- Naive expectation: $\delta \kappa_t \approx^{+20}_{-25}$ % and $\delta \alpha_s \approx 0.0015$
- · Effects from variation of Yukawa coupling and strong coupling very similar
- · Need full simulation to see how well they can be disentangled

NNLL cross section

Total cross section

Implementation of threshold resummation

Top-antitop threshold in WHIZARD \swarrow

Resolve realistic final state:

Idea: add threshold resummation via form factor:

Double pole approximation

Top-antitop threshold in WHIZARD

Ensure gauge invariance: Double Pole Approximation

(N)LL + NLO matched cross section

Top-antitop threshold in WHIZARD \swarrow

Matching NLO+NLL with relativistic NLO continuum:

Initial state radiation

Top-antitop threshold in WHIZARD

Including **QED ISR** via convolution with structure function:

... polarization of colliding leptons can also be taken into account.

[fb]