LAr Calorimetry for FCC-ee – First Performance Studies

FCC-hh Calorimetry Group; Martin Aleksa, Jana Faltova, <u>Valentin Volkl</u>, Clement Helsens, Ana Henriques Correia, Coralie Neubuser, Anna Zaborowska 28/08/18

CERN / University Innsbruck

Recap: Requirements for Calorimetry for FCCee

Recap:

- All particles under 182.5 GeV: 22 X_0 and 5-7 λ sufficient
 - but low momentum range down to 300 MeV
 - light tracker, low noise
- Jet resolution of $30\%/\sqrt{E}$
 - * \rightarrow most likely requires Particle Flow
- EM resolution as good as possible $(a \leq 15\%/\sqrt{E})$
- Position resolution of photons:
 - $\sigma_{x} = \sigma_{y} = (6 GeV/E \oplus 2) \text{ mm}$
- Particle ID
 - $e^{\pm} \pi^{\pm}$ separation
 - * τ decays with collimated final states, separate different decay modes with minimal overlap (e.g. π_0 close to π^{\pm})

 we have adapted Inclined-Absorber LAr electromagnetic calorimeter designed for FCC-hh

Reference FCC-hh Dimensions – FCC-ee option

For, FCC-ee, ECal can be scaled to 60cm, adapting LAr-gap but keeping layer structure the same

TileCal adapted dimensions

Hadronic Tile-Calorimeter can be scaled to 1.2m, keeping the number of layers (10).

Material Scan

0.09

-0.8 -0.6 -0.4 -0.2

.

0 0.2 0.4 0.6 0.8 cos θ

DD4hep Detector Implementation Display

Valentin Volkl, FCC Week 2019

DD4hep Detector Implementation Display

Valentin Volkl, FCC Week 2019

Event Displays

2.4 Gev e⁻

2.4 Gev π^-

Event Displays

24 Gev **e**⁻

24 Gev π^-

Sampling Fraction (50 GeV e-)

• Sampling fractions for each layer obtained from Full Simulation

Thicknesses:

- LAr gap: 1.8 mm (inner radius) - 3.8 mm (outer radius)
- Pb absorber: 2mm
- read-out electrode PCB:

1.2mm

Valentin Volkl, FCC Week 2019

Energy Distributions

- Single e⁻, reconstructed with Sliding Window Algorithm
- No correction yet for energy deposited in upstream material

Energy resolution

FCC-ee Preliminary

- ECal single electron resolution
 - without noise or background
 - no magnetic field

Electronics Noise

Electronic noise without trace capacitance

J. Faltova

- Noise term to be optimised
 - Sliding Window Cluster sizes taken from FCC-hh, need to be adapted

FCC-ee preliminary

- single electron energy resolution
 - with electronics noise
 - no backgounds
 - no magnetic field

Conclusion

- First Full Simulation Study of LAr Calorimetry for FCC-ee
- Variables still to be investigated:
 - other subdetectors
 - solenoid coil position
 - beam backgrounds
- · Jet Reconstruction, Particle Flow studies still to be done