The MYRRHA project and the challenges of its linear accelerator

Dirk Vandeplaschce

Future Circular Collider week Brussels, June 26th, 2019
Transmutation: better solution for Spent Nuclear Fuel

Source: European Commission Strategy Paper on Partitioning & Transmutation (2005), SCK-CEN MYRRHA Project Team

Duration Reduction 1.000x
Volume Reduction 100x
MYRRHA = Accelerator Driven System
Key Objectives

1. Demonstrate the ADS concept at pre-industrial scale
2. Demonstrate transmutation
3. Multipurpose and flexible irradiation facility (with fast neutron source)

Target

- **main reaction**: spallation
- **output**: $2 \cdot 10^{17}$ n/s
- **material**: LBE (coolant)

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>particles</td>
<td>power</td>
</tr>
<tr>
<td>protons</td>
<td>65 to 100 MW$_{th}$</td>
</tr>
<tr>
<td>beam energy</td>
<td>k_{eff}</td>
</tr>
<tr>
<td>600 MeV</td>
<td>0.95</td>
</tr>
<tr>
<td>beam current</td>
<td>spectrum</td>
</tr>
<tr>
<td>2.4 to 4 mA</td>
<td>fast</td>
</tr>
<tr>
<td></td>
<td>coolant</td>
</tr>
<tr>
<td></td>
<td>LBE</td>
</tr>
</tbody>
</table>
Belgian Government decision on September 7, 2018

- **Decision to build** in Mol a new large research infrastructure MYRRHA

- Belgium **allocated budget** of 558 M€ for the period 2019 - 2038:
 - 287 MEUR investment (CapEx) for building MINERVA (Accelerator up 100 MeV + PTF) for 2019 - 2026
 - 115 MEUR for further design, R&D and Licensing for phases 2 (accelerator up to 600 MeV) & 3 (reactor) for 2019-2026.
 - 156 MEUR for OpEx of MINERVA for the period 2027-2038

- Establishment of an **International Non-Profit Organization**
 - in charge of the MYRRHA facility for welcoming international partners

- **Political support** for establishing MYRRHA international partnerships
 - Belgium mandates Vice Prime Minister Kris Peeters for promoting and negotiating international partnerships
MYRRHA application portfolio

Multipurpose Hybrid Research Reactor for High-tech Applications

SNF*/ Waste

Fusion

Medical Radioisotopes

Fundamental research

Support Fission GEN IV

Support to SMR LFR

*SNF = Spent Nuclear Fuel

Source: SCK•CEN MYRRHA Project Team, MYRRHA Business Plan
MYRRHA: reactor pool type
70 kW dump #1

Single Spoke linac 352.2 MHz 60 cavities

LEBT RFQ RT-CH cavity

~ 25 m

Double Spoke linac 352.2 MHz or β = 0.51 elliptical linac 704.4 MHz

200 MeV

β = 0.70 elliptical linac 704.4 MHz 60 cav., 101 m

600 MeV

5 element elliptical cavity elliptical cavity envelope with cold tuning mechanism design of the test cryomodule for the elliptical cavity

700 MHz Solid State RF amplifier prototyping

Single Spoke cryomodule

power coupler cold tuning system
MYRRHA’s phased implementation strategy

Benefits of phased approach:

- Reducing technical risk
- Spreading investment cost
- First R&D facility available in Mol end of 2026

Phase 1 – 100 MeV

Phase 2 – 600 MeV

Phase 3 – Reactor

Source: SCK•CEN MYRRHA Project Team
MYRRHA masterplan: Linac 100 MeV + Proton Target Facility

- Cryogenics
- Beam line
- RF-gallery
- Auxiliaries
- Proton Target Facility
- Front-end building

~ 125 m
High level requirements 600 MeV

- beam particle: protons
- beam energy: 600 MeV
- beam intensity: 4 mA
- beam delivery: CW with regular holes
- proton beam extraction \rightarrow PTF
- beam MTBF: 250 hours, a failure = a beam trip > 3 s

Source: [TBD]
High level requirements 100 MeV

- beam particle: protons
- beam energy: 100 MeV
- beam intensity: 4 mA
- beam delivery: CW with regular holes
- proton beam extraction → PTF 100 MeV
- full power proton beam → fusion target

- beam MTBF: tbd, a failure = a beam trip > 3 s
- feed reliability model

Source: [TBD]
Goals of the Phase 1 accelerator

- evaluation of the reliability of the 600 MeV MYRRHA driver
 - test platform for the fault recovery procedure
 - test platform for redundancy schemes
 - test platform for individual components
- test of industrial approach
 - series of cryomodules
 - control system
- feed of a PTF as a secondary target *in parallel* with the primary target

Source: [TBD]
100 MeV / integrated R&D topics

+ R&D on distributed items:

- Solid State RF amplifiers, LLRF, diagnostics, controls, ...
1. Injector, at LLN up to 5.9 MeV

- Overview
 - full injector = 17 MeV : 15 copper CH cavities, separated function design
 - 5 mA max → 4-rod RFQ
1. Injector, at LLN up to 5.9 MeV

- RFQ: 4-rod, 176.1 MHz, 44 kV for 108 kW
 - now connected to SSA
 - present status: conditioning
 - LLRF: being finalized

- MEBT1: matching section
 - longitudinal: 2 rebuncher cavities (1/4 wave)
 - transverse: quadrupole triplet
 - steerers, diagnostics (ACCT, BPM)

- CH-string: 1 – 7

Source: [TBD]
Integrated prototyping: spoke cryomodule
Integrated prototyping : spoke cryomodule

2. Single Spoke cryomodule, by IPN Orsay

- Cavities
 - 2 new single spoke cavities under fabrication
 - treatment procedures finalized (excellent test results)
- Cryostat : manufacturing launched
- Power couplers : new development by LPSC
 - dedicated coupler test stand to be set up at LAL Orsay
 - cold test cavity+coupler to be foreseen "asap"
 - 4 couplers under call for tender (2 versions)
- Valve box : for prototype cryomodule
- Cold Tuning System : special development, compatible with fault recovery
 - final design stage

Source: [TBD]
3. Control system: industrial scenario

- fundamental role in
 - overall reliability \rightarrow need for "redundancy-compatible" architectures
 - fault recovery procedure and MPS

- present status
 - covering very basic needs for now
 - fundamental EPICS central services: soon
 - towards a coherent global framework: following ESS
 - first steps into μTCA

Source: [TBD]
The approach to Fault Tolerance

- Initial approach: intuitive, experience based
- Reliability of individual components
 - Ranking & selection
 - Increase the MTBF by operation point
- Global linac design
 - → Margins for reliability
 - → Margins for fault tolerance
 - Given the prerequisite of modularity

Source: [TBD]
The approach to Fault Tolerance

- The mechanism(s) of fault tolerance: some form of redundancy
 - at the level of the modular linac: serial redundancy
 - the adjacent cavity scenario
 - requirement 1: individually powered cavities
 - requirement 2: 3 seconds recovery time

 fault recovery procedure

- at the level of the individual cavity linac: parallel redundancy
 - requirement: 3 seconds recovery time

 fast switching
Double Spoke linac 352.2 MHz or
\(\beta = 0.51 \) elliptical linac 704.4 MHz

- 5 element elliptical cavity
- elliptical cavity envelope with cold tuning mechanism

\(\beta = 0.70 \) elliptical linac 704.4 MHz 60 cav., 101 m

- design of the test cryomodule for the elliptical cavity

- 700 MHz Solid State RF amplifier prototyping

- Single Spoke linac 352.2 MHz 60 cavities

- power coupler
- single spoke cryomodule
- cold tuning system

- 70 kW dump #1

- 0.03 MeV
- 1.5 MeV
- 17 MeV
- 100 MeV
The approach to Fault Tolerance

- other applications of *serial* redundancy:
 - Solid State RF power amplifiers

- other applications of *parallel* redundancy:
 - power converters
 - hardware components of the control system

effective needs to be obtained from modeling

- beam diagnostics: redundancy from overdetermined systems
 - statistical methods
 - model fitting
 - decision taking, fault identification or (better) fault prediction

Source: [TBD]
The approach to Fault Tolerance

- Basic requirements for effective redundancy:
 - reproducible modules
 - control of the process of industrialisation / serialisation
 - QC
 - control of MTTR
The challenges for MINERVA 100 MeV

- Beam dynamics supporting the fault tolerance
 - start-to-end simulations
 - error studies
 - optimisation of the longitudinal acceptance

- Fault recovery procedure
 - 3 seconds: the rationale is operational
 - 3 seconds: 3 main tasks
 1. fault detection / identification of the cause
 2. reconfiguration
 - obtain new configuration
 - install new configuration
 - i.e., fast cavity detuning

Source: [TBD]
The challenges for MINERVA 100 MeV

3. beam recovery
 - fast tools (esp. for 2.)
 - data base applications (storage of alternate configurations)
 - simulations (calculation of alternate configurations)
 - decision taking
 - Reliability modeling
 - compulsory for making the step phase 1 (100 MeV) → phase 2 (600 MeV)
 - predictive model
 - collaboration with CERN being set up
 - modeling
 - fault tracking tools: feeding the models with data

Source: [TBD]
The challenges for MINERVA 100 MeV

- **Machine Protection System**
 - main fault indication system
 - HPPA → MPS with 10's of µs response is vital
 - false interlocks must be identified immediately

- **compatible Control System**
 - procured from industry
 - compatible in performance
 - demands from reliability
 - Fault Recovery Procedure
 - compatible in its own reliability (and redundancy)
 - capabilities of "virtual operator" → AI tools

Source: [TBD]
Linac fault statistics: RF share of 40 – 50%

- redundancy? (CW for MYRRHA)

- search for serial redundancy → modularity
 - transistor-based approach offers this
 - cfr. Soleil = pioneer

- search for a compact realisation
 - IBA's interest
 - partnership through MYRTE (H2020)
 - → RFQ amplifier 192 kW CW, 176 MHz
 - connected to RFQ cavity, no circulator

Source: [TBD]
Solid State RF Amplifiers

- RFQ amplifier by IBA
- 176 MHz, 192 kW CW
- very positive initial testing (1 retrofit campaign)
- connected to RFQ cavity without circulator
- ready for long duration tests
- other amplifiers (176 and 352 MHz) through a bilateral collaboration agreement

Source: [TBD]
Conclusion

- MYRRHA: medium term ADS demonstrator in view of
 - transmutation of minor actinides
 - production of innovative medical radioisotopes
- reactor R&D (Pb-Bi cooled, pool type) is ongoing
- accelerator reliability (availability?) is of vital importance
- need for scenarios, tools, methods, ... and a new way of thinking
- Cfr. many future accelerator projects: need for reliability becomes a common concern
- Common problems should be tackled in common: collaborations
- 100 MeV prototype will be built for learning, hopefully to the benefit of the community

Source: [TBD]
In Belgium, for Europe and beyond: sustainable & innovative applications from nuclear research
Copyright © 2019 - SCK•CEN

PLEASE NOTE!
This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a "personal communication. By courtesy of SCK•CEN".

SCK•CEN
Studiecentrum voor Kernenergie
Centre d'Etude de l'Energie Nucléaire
Belgian Nuclear Research Centre

Stichting van Openbaar Nut
Fondation d'Utilité Publique
Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL