BSM theory prospects in the flavor sector

Fady Bishara

FCC Week 2019 – June 27th Burssels

European Research Council Established by the European Commission

Motivation

Is the mechanism responsible for EWSB and fermion mass generation in the SM <u>minimal</u>?

What we know:

• One complex scalar doublet acquires a vev, breaks EW symmetry and gives W/Z and third generation fermions (most) of their masses

What we don't know:

- Do the first and second generation fermions also get their masses from the same doublet?
- Is this Higgs vev the only source of EWSB?

The SM itself is not minimal with regards to its matter content. And, 20/26 of its free parameters are associated with the flavor sector.

Parametrization

In the SM, $\kappa_q = 1$ while $\tilde{\kappa}_q = \kappa_{qq'} = \tilde{\kappa}_{qq'} = 0$

Important def'ns:
$$\kappa_i = \frac{y_i}{y_i^{\text{SM}}}, \qquad \bar{\kappa}_i = \frac{y_i}{y_b^{\text{SM}}}$$

For lepton Yukawas, see, e.g.:

Dery, Efrati, Nir, Soreq, & Susic [arXiv:1408.1371]; Dery, Efrati, Hiller, Hochberg, & Nir [arXiv:1304.6727]; Dery, Efrati, Hochberg, & Nir [arXiv:1302.3229]

Flavor violation

- Neutral current FV is generically present in any extension of the SM.
- Arises due to misalignment between the mass and Yukawa matrices e.g., in D6 extension:

$$M_{u,d} = \frac{v_{\rm W}}{\sqrt{2}} \left(Y_{u,d} + Y'_{u,d} \frac{v_{\rm W}^2}{2\Lambda^2} \right), \qquad y_{u,d} = Y_{u,d} + \frac{3Y'_{u,d}}{2\Lambda^2} \frac{v_{\rm W}^2}{2\Lambda^2}$$

- Unless additional assumptions are imposed, FV is "naturally" $O(1) \rightarrow NP$ flavor problem
- In models of flavor discussed earlier, they are typically suppressed by yukawa couplings and CKM matrix elements

Yukawa modifications in flavor models

$[{\rm FB},$ Brod, Uttayarat, Zupan: 1504.04022] – see also CERN YR4 Chap. IV.6 [1610.07922] + references therein for the specific models

Model	κ_t	$\kappa_{c(u)}/\kappa_t$	$ ilde{\kappa}_t/\kappa_t$	$\tilde{\kappa}_{c(u)}/\kappa_t$
SM	1	1	0	0
MFV	$1 + \frac{\operatorname{Re}(a_u v^2 + 2b_u m_t^2)}{\Lambda^2}$	$1 - \frac{2\operatorname{Re}(b_u)m_t^2}{\Lambda^2}$	$\frac{\mathrm{Im}(a_u v^2 + 2b_u m_t^2)}{\Lambda^2}$	$\frac{\text{Im}(a_u v^2)}{\Lambda^2}$
NFC	$V_{hu} v / v_u$	1	0	0
MSSM	$\cos \alpha / \sin \beta$	1	0	0
FN	$1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right)$	$1 + O\left(\frac{v^2}{\Lambda^2}\right)$	$\mathcal{O}\left(rac{v^2}{\Lambda^2} ight)$	$\mathcal{O}\left(rac{v^2}{\Lambda^2} ight)$
GL2	$\cos \alpha / \sin \beta$	$\simeq 3(7)$	0	0
RS	$1 - \mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$1 + \mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$\mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$	$\mathcal{O}\left(\frac{v^2}{m_{KK}^2}\bar{Y}^2\right)$
pNGB	$1 + \mathcal{O}\left(\frac{v^2}{f^2}\right) + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v^2}{M_*^2}\right)$	$1 + \mathcal{O}\left(y_*^2 \lambda^2 \frac{v^2}{M_*^2}\right)$	$\mathcal{O}\left(y_*^2\lambda^2\frac{v^2}{M_*^2}\right)$	$\mathcal{O}\left(y_*^2\lambda^2\frac{v^2}{M_*^2}\right)$

- Generally, modifications $\sim v^2/\Lambda^2 \ll \mathcal{O}(1)$
- Exception: GL2 (modified GL) where

$$\mathcal{L}_{\text{yuk}} = c_{ij}^f \left(\frac{H_1^{\dagger}H_1}{M^2}\right)^{n_{ij}^f} \bar{F}_L^i f_R^j H_{1,2}$$

[Giudice, Lebedev: 0804.1753] [FB, Brod, Uttayarat, Zupan: 1504.04022] [Carena, Gemmler, Bauer: 1506.01719, 1512.03458]

Off diagonal Yukawas in flavor models

 $[{\rm FB},\,{\rm Brod},\,{\rm Uttayarat},\,{\rm Zupan};\,1504.04022]$ – see also CERN YR4 Chap. IV.6 [1610.07922] + references therein for the specific models; see also Gori, Grojean, Juste, Paul, [1710.03752]

Mode	$\kappa_{ct(tc)}/\kappa_t$		$\kappa_{ut(tu)}/\kappa_t$	$\kappa_{uc(cu)}/\kappa_t$
MFV	$\frac{\operatorname{Re}\left(c_{u}m_{b}^{2}V_{cb}^{(*)}\right)}{\Lambda^{2}}$	$\frac{1}{v} \frac{\sqrt{2}m_{t(c)}}{v}$	$\frac{\operatorname{Re}\left(c_{u}m_{b}^{2}V_{ub}^{(*)}\right)}{\Lambda^{2}}\frac{\sqrt{2}m_{t(u)}}{v}$	$\frac{\operatorname{Re}\left(c_{u}m_{b}^{2}V_{ub(cb)}V_{cb(ub)}^{*}\right)}{\Lambda^{2}}\frac{\sqrt{2}m_{c(u)}}{v}$
FN	$\mathcal{O}\left(\frac{vm_{t(c)}}{\Lambda^2}\right)$	$V_{cb} ^{\pm 1}$	$\mathcal{O}\left(\frac{vm_{t(u)}}{\Lambda^2} V_{ub} ^{\pm 1}\right)$	$\mathcal{O}\left(rac{vm_{c(u)}}{\Lambda^2} V_{us} ^{\pm 1} ight)$
GL2	$\epsilon(\epsilon^2)$)	$\epsilon(\epsilon^2)$	ϵ^3
RS	$\sim \lambda^{(-)2} rac{m_{t(c)}}{v}$	$-\bar{Y}^2 \frac{v^2}{m_{KK}^2}$	$\sim \lambda^{(-)3} \frac{m_{t(u)}}{v} \bar{Y}^2 \frac{v^2}{m_{KK}^2}$	$\sim \lambda^{(-)1} rac{m_{c(u)}}{v} ar{Y}^2 rac{v^2}{m_{KK}^2}$
pNGB	$\mathcal{O}(y_*^2 \frac{m_t}{v} \frac{\lambda_{L(R),2}}{v})$	$\frac{\lambda_{L(R),3}m_W^2}{M_*^2}\big)$	$\mathcal{O}(y_*^2 \frac{m_t}{v} \frac{\lambda_{L(R),1} \lambda_{L(R),3} m_W^2}{M_*^2}$	$\mathcal{O}(y_*^2 rac{m_c}{v} rac{\lambda_{L(R),1} \lambda_{L(R),2} m_W^2}{M_*^2})$
Model	$\kappa_{ct(tc)}$	Notes/	Assumptions	References
SM	$< 4 \times 10^{-8}$	loop-le	vel	[1311.2028]
MFV	$\sim 10^{-6(-8)}$	$\Lambda = 1$ (ΓeV	[0904.2387] [PLB188('87)99], [hep-ph/0207036]
FN	$\sim 10^{-3(-2)}$	$\Lambda = 1$ (ΓeV	[hep-ph/9310320]
GL2	$\sim 10^{-2(-4)}$	$\epsilon \sim 1/6$	30	[0804.1753], [1504.04022]
RS	$\sim 10^{-2(-2)}$	$\bar{Y} = 4,$	$m_{KK} = 2.2 \text{ TeV}$	[09061990], [1505.07018]
pNGB	$\sim 10^{-3(-2)}$	$g_* = 47$	$\pi, M_* = 3 \text{ TeV}$	[1303.5701], [1408.4525]

Fermion Yukawas status

1st and 2nd generation Yukawas

- ... Ideas for a hadron collider
- Exclusive Higgs decays $h \to MV$
- Vh and associated hQ production
- Higgs differential distributions
- Charge assymmetry in $W^{\pm}h$

Bodwin et al.: 1306.5770 & 1407.6695; Kagan et al. 1406:1722Koenig & Neubert, 1505.03870

Perez et al. 1503.00290 & 1505.06689;Brivio et al. 1505.06689

Bishara et al. Soreq et al. 1606.09621

Yu [1609.06592]

Exclusive Higgs decays: $h \rightarrow J/\psi\gamma$

 $BR_{h\to J/\psi\gamma} = 2.95 \cdot 10^{-6} (1.07 - 0.07\kappa_c) Bodwin et al. 13, 14 Koenig, Neubert 15$

• ATLAS/CMS search:

 $\mathcal{BR}(h \to J/\psi\gamma) < 1.5 \times 10^{-3} \text{ at } 95\% \text{ CL}$ ATLAS 1501.03276 $< 3.5 \times 10^{-4} \text{ at } 95\% \text{ CL}$ ATLAS 1807.00802

• Can be extended to strange quark (even u & d) Kagan, Perez, Petriello, Soreq, Stoynev, and Zupan [1406.1722]

The interesting case of $\gamma + \gamma$

- Interference \rightarrow sensitive to sign of y_b
- Strong (accidental) cancellation between the direct and indirect constributions → extremely sensitive to deviations from SM

ATLAS [1807.00802]: $BR(h\to\Upsilon(1s)\gamma)/BR(h\to\gamma\gamma)<0.22$

Fermion Yukawas status

$$Br(h \to \phi(\rho)\gamma < 4.8 \times 10^{-4} \ (8.8 \times 10^{-4})$$
 at 95% CL

· Order of magnitude improvement on previous ATLAS bound on $Br(h\phi+\gamma)$ [1607.03400] and first bound on $Br(h\rho+\gamma)$

Light quarks: u, d, s

Eby, Petriello, Zupan [unpublished]

$$Br_{h\to\phi\gamma} = \frac{10^{-6} \left[(2.88 \pm 0.12) \kappa_{\gamma}^2 - (.750 \pm .029) \bar{\kappa}_s \kappa_{\gamma} + (4.88 \pm .31) 10^{-2} \bar{\kappa}_s^2 \right]}{\left[1 + \bar{\kappa}_s^2 B r_{h\to b\bar{b}}^{\rm SM} + (\kappa_{\gamma}^2 - 1) B r_{h\to\gamma\gamma}^{\rm SM} \right]},$$

$$Br_{h\to\rho\gamma} = \frac{10^{-5} \left[(1.89 \pm 0.11) \kappa_{\gamma}^2 - (.228 \pm .017) \bar{\kappa}_u \kappa_{\gamma} - (.114 \pm 0.008) \bar{\kappa}_d \kappa_{\gamma} + ... \right]}{\left[1 + (\bar{\kappa}_d^2 + \bar{\kappa}_u^2) B r_{h\to b\bar{b}}^{\rm SM} + (\kappa_{\gamma}^2 - 1) B r_{h\to\gamma\gamma}^{\rm SM} \right]},$$

VH production + flavour tagging

Perez et al.: 1503.00290

They consider hc final state and find (LHC_{14}) $|\kappa_c| < 3.9 \quad @ 95\% \text{ C.L. with } 3000 \text{ fb}^{-1}$

Higgs transverse momentum

- Additional emissions probe the structure of the loop in $gg \to h+jets$
- The loop has a chirality suppression but ...
- The charm is special \rightarrow non-Sudakov double logs dynamically enhance its contribution
- The p_T spectra of the Higgs and the jet have been measured by ATLAS & CMS

See also: [Soreq, Zhu, & Zupan: 1606.09621] for similar work on the u and d yukawas

Measured distributions

Contributions and their scaling

- Many contributions with different scaling in the $m_Q \lesssim p_T \lesssim m_h$ region
- The quark initiated contribution dominates for $\kappa_Q \gg 1$ [Soreq, Zhu, & Zupan: 1606.09621]
- Normalized distributions in this regime are sensitive to light d.o.f. but heavy new physics can affect the tail

[Banfi, Martin, Sanz: 1606.09621]

Buschmann, Goncalves, Kuttimalai, Schonherr, Krauss, Plehn: 1410.5806] Buschmann, Englert, Goncalves, Plehn, Spannowsky: 1405.7651] + others

Contributions and their scaling

Results for $p_{\rm T,h}$

First generation Yukawas

See also Felix Yu [1609.06592] for W^{\cong} Charge asymmetry sensitive to \Im (5) deviations in $\bar{\kappa}_{u,d,s}$ at 14 TeV w/3 ab⁻¹

$$A = (\sigma(W^+h) - \sigma(W^-h))/(\sigma(W^+h) + \sigma(W^-h))$$

Diagonal Yukawas at FCCee

FCC-ee: The Lepton Collider

Table 1.1. Relative statistical uncertainty on $\sigma_{HZ} \times BR(H \to XX)$ and $\sigma_{\nu\bar{\nu}H} \times BR(H \to XX)$, as expected from the FCC-ee data, obtained from a fast simulation of the CLD detector and consolidated with extrapolations from full simulations of similar linear-collider detectors (SiD and CLIC).

$\sqrt{s} \; (\text{GeV})$	240		365	
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu\overline{\nu}$ H
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
${ m H} ightarrow { m gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
m H ightarrow au au	± 0.9		± 1.8	± 8
$\mathrm{H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22
$ H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

Notes. All numbers indicate 68% CL intervals, except for the 95% CL sensitivity in the last line. The accuracies expected with 5 ab^{-1} at 240 GeV are given in the middle column, and those expected with 1.5 ab^{-1} at $\sqrt{s} = 365 \text{ GeV}$ are displayed in the last column.

305

Top FCNC

Summary

- Measuring light quark Yukawas crucial to understand mass generation mechanism in SM
- Higgs p_T distribution is sensitive to modified charm Yukawa, constraints at HL-LHC on modification of y_c of O(few) and on $y_s/y_b{}^{\rm SM}<0.5$
- LHCb upgrade II projection $abs(\kappa_c) < 2.2$ and ILC O(10%)
- VH production at LHCb $abs(\kappa_c) < 2-3$
- Bounds on BR(t→hc) will cut well into parameter space of flavor models
- Other ideas: strange tagging? Proposal for future e+e- using charged Kaon reco. can something similar be done at LHC?

Duarte-Campderros, Perez, Schlaffer, Soffer [Perez talk at 1st FCC physics workshop and Schaffer talk at CLIC physics]

Thank you!

LHCb projections for HL-LHC

LHCb Upgrade II: constraints on Kc

projections taken from talk by Mike Williams

Slide from Uli Haisch talk at Elba 2017 Based on bounds from M. Williams' talk

Projections for the ILC

Uli Haisch based on Ono & Miyamoto [1207.0300]

Normalised distributions @ 8 TeV

 $\mathcal{O}(1)$ deviations in $\kappa_c \rightarrow \sim \text{few \%}$ effect on the shape

Contributions to spectrum @ 8 TeV

Quark mass effects

- Exact mass dependence only known at L.O. [Ellis, Hinchliffe, Soldate, and van der Bij: Nuc.Phys. B297 (1988)] [Baur and Glover: Nuc.Phys. B339 (1990)]
 L.O. differential distributions include non-factorizing terms ~ ln²(p²_⊥/m²_Q) [Mantler, Wiesemann [1210.8263], [Banfi, Monni, and Zanderighi: 1 [Grazzini and Sargsyan 1306.4581]
 These ln² terms do not wist for n < m
- These \ln^2 terms do not exist for $p_T < m_Q$
- Recent progress in the direction of NLO, NLL
 - \rightarrow Soft double Logs resummed in the abelian limit [Melnikov, Penin: 1602.09020]
 - \rightarrow Two loop virtual corrections in the $m_Q \rightarrow 0$ limit [Melnikov, Tancredi, Wever: 1610.03747 and 1702.0

Varying the systematic errors...

Kc

VH production + flavour tagging

$$\begin{split} \mu_{b} &= \frac{\sigma \operatorname{BR}_{b\bar{b}}}{\sigma_{\operatorname{SM}} \operatorname{BR}_{b\bar{b}}^{\operatorname{SM}}} \\ &\to \frac{\sigma \operatorname{BR}_{b\bar{b}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma \operatorname{BR}_{c\bar{c}} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\sigma_{\operatorname{SM}} \operatorname{BR}_{b\bar{b}}^{\operatorname{SM}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{\operatorname{SM}} \operatorname{BR}_{c\bar{c}}^{\operatorname{SM}} \epsilon_{c_{1}} \epsilon_{c_{2}}} \\ &= \left(\mu_{b} + \frac{\operatorname{BR}_{c\bar{c}}^{\operatorname{SM}}}{\operatorname{BR}_{b\bar{b}}^{\operatorname{SM}}} \frac{\epsilon_{c_{1}} \epsilon_{c_{2}}}{\epsilon_{b_{1}} \epsilon_{b_{2}}} \mu_{c} \right) \middle/ \left(1 + \frac{\operatorname{BR}_{c\bar{c}}^{\operatorname{SM}}}{\operatorname{BR}_{b\bar{b}}^{\operatorname{SM}}} \frac{\epsilon_{c_{1}} \epsilon_{c_{2}}}{\epsilon_{b_{1}} \epsilon_{b_{2}}} \right) \end{split}$$

Fermion mass generation

See Altmannshofer et al. [1610.02398] for a 2HDM model where 1^{st} and 2^{nd} generation fermions couple predominantly to one doublet whereas the 3^{rd} generation fermions and the weak gauge bosons couple to the other doublet