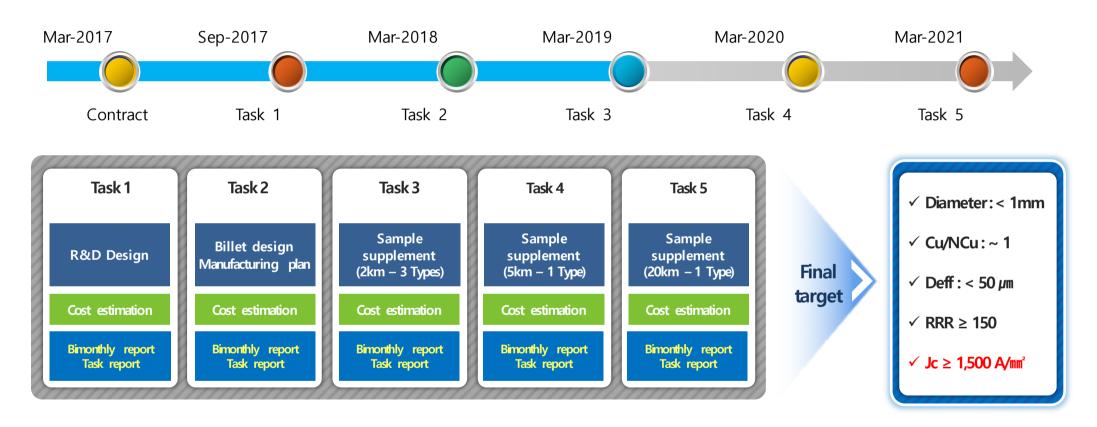

Development progress in KAT

27th Jun. 2019 Jiman Kim

Outline


- **Introduction**
- **Development progress of Nb₃Sn strand for FCC**
- Additional improvement activities
- Conclusion

Introduction

Conductor development program between CERN and KAT

- Collaboration agreement between CERN and KAT was established in Mar-2017.
- KAT is currently approaching the end of Task 3.
- Delivery of 6km sample is in progress.

Introduction

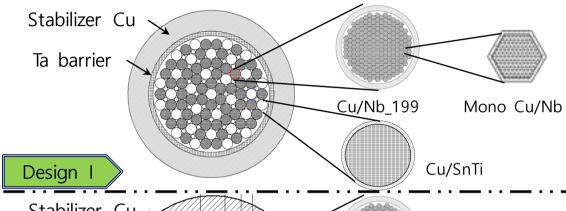
● Local collaboration for Nb₃Sn development

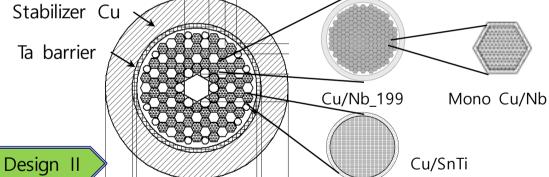
- Strand design and manufacture
- Project management

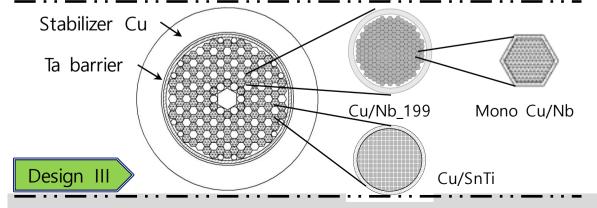
Hydrostatic extrusion process

- Wire design consultationStrain performance test
- Item Specification Extrusion load 6 MN Working extrusion pressure 1 GPa Container bore diameter 90 mm Wire-wound Containertype Maximum billet diameter $80\,\mathrm{mm}$ Maximum billet length 350 mm Maximum stem speed 50 mm/sec Main hy draulic power 345 kW

Low temperature test at 16T, 4.2K




Thermodynamic simulation of reaction


Item	Specification
Maximum field	18 Tesla
Temperature range	1.7~300K
Magnet bore size	52 mm
Sample space	37mm
Field center(from top flange)	1496mm

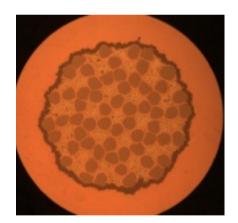
Design summary for FCC

✓ Designed parameters

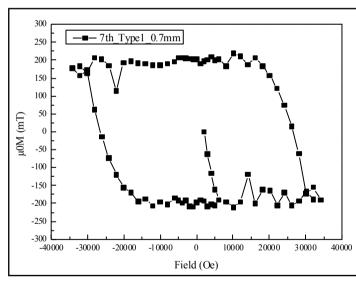
Parameter	Unit	Design I	Design II	Design III	
Diameter	mm	1.0	1.0	1.0	
Cu/N-Cu		1.0	1.0	1.0	
No. Filaments	ea	11,940	13,134	26,268	
Dia. Filament	μm	4.0	3.7	2.7	
Dia. Sub't	μm	68	57	44	
Cu fraction	%	35.5	35.8	36.9	

✓ Estimation of performance

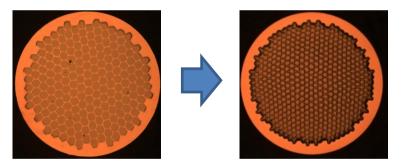
Parameter	Unit	Design I	Design II	Design III	
Mono Ic	Α	0.0344	0.0315	0.0176	
lc	Α	411	414	462	
Jc	A/mm²	1,047	1,055	1,207	



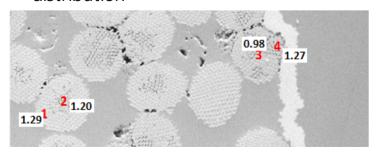
- Optimization of design I (91 Modules)
 - Samples having various structures were produced and tested.
 - Nb/SnTi volume ratio explored from 1.37 to 1.85.
 - Position of Nb multi and SnTi mono is very important parameters to decide Jc performance.


					_160 at
Nb 199 x	56	60	60	60	66
Nb/SnTi	1.37	1.85	1.47	1.47	1.69
Jc@16T	932	1,027	895	956	985
Deff N	lot meas.	103.4	126.1	95.0	75.3

- Optimization of design I (91 Modules)
 - Opportunities of this design :
 - 1) relatively large effective diameter(~160μm@φ1mm, ~ 100 μm@φ0.7mm)
 - 2) Limitation of the final filament diameter : $\sim 4 \mu m$
 - 3) Low Ti content in Nb₃Sn filament : < 1.2 at.% (Typical value of ITER strand ~ 1.8 at.%)

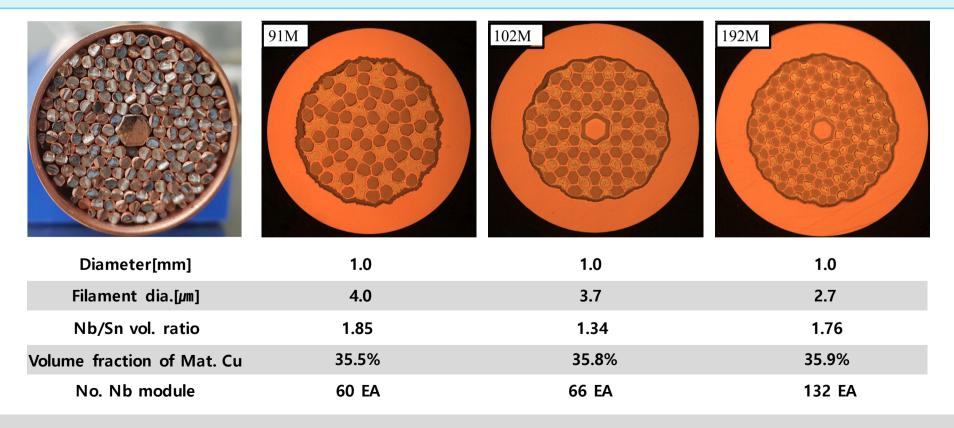


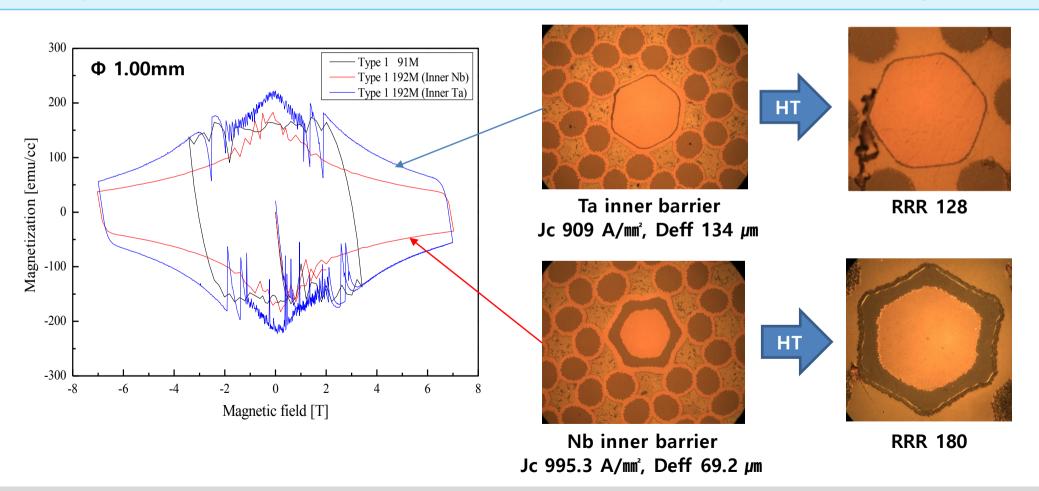
Dia. 0.7mm Jc 1,027 A/mm²@16T Deff : 103 μm



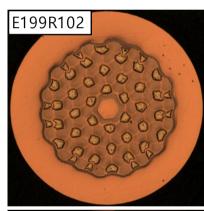
1) Relatively large effective diameter

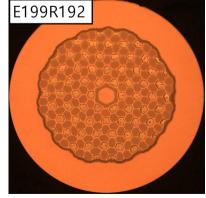
2) Increase no. Nb(199 → 499) to decrease filament diameter → Difficult to draw down


3) Low Ti content and inhomogeneous distribution


- Optimization with design II and III
 - Next step: To decrease effective diameter, <u>number of restacked modules should be increased</u>.
 (91M → 102M(Design II) → 192M(Design III))
 - At this stage, we created a new design using the inner barrier at the core position.

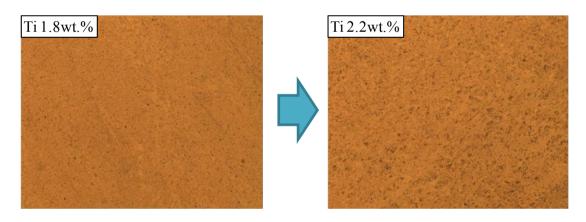
 Purpose of center Cu area → Adjust Nb/SnTi, Improve cold drawing property(Stress distribution)
 - Finally, **Design III(192M)** was adopted as a main structure for **6km deliverable samples**.

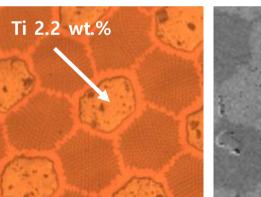

- Optimization with design II and III
 - Inner barrier material decision : Nb vs $\underline{\text{Ta}} \rightarrow \text{The use of Ta showed } \underline{\text{unstable magnetization properties}}$.
 - Higher Jc was achieved with Nb inner barrier samples(995.3 A/mm²@φ1mm, 1,080 A/mm²@φ0.7mm).

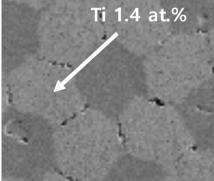


- 6km sample delivery for Task III
 - 6km samples were manufactured and being delivered to CERN.
 - Minimum piece length was 100m and maximum piece length was 752m.
 - Totally, 9 restacking billets were assembled with short length(1M) → increase variation

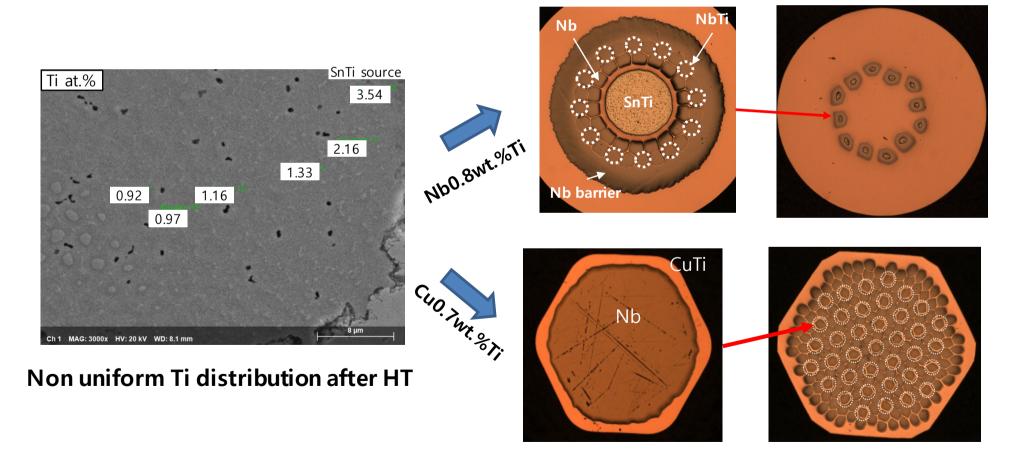
Billet No. Dia.	Dia.	a. No.	Sub't	Vol.% in matrix			NIb/OaT:	Filament
	(mm) Nb filament	dia.	Cu	Nb	SnTi	Nb/SnTi	Dia. (μm)	
E199R102-1	1.004	13,134	55.5	40.5	33.5	26.0	1.29	3.42
E199R192-1	1.004	26,268	45.3	36.8	42.1	21.2	1.99	2.86
E199R192-2	1.004	26,268	43.8	34.3	40.9	24.8	1.64	2.66
E199R192-3	1.004	26,268	44.4	37.3	40.3	22.4	1.80	2.56
E199R192-4	1.004	26,268	43.2	36.9	38.0	25.1	1.52	2.59
E199R192-5	1.004	26,268	43.6	33.7	41.7	24.6	1.69	2.76
E199R192-6	1.004	26,268	44.9	33.6	42.3	24.2	1.75	2.88
E199R192-7	1.004	26,268	44.1	33.5	42.8	23.7	1.80	2.78
E199R192-8	1.004	26,268	44.2	32.3	43.5	24.2	1.80	2.84




Additional improvement activities



- Increasing Ti content in SnTi alloy
 - As the Nb volume ratio increased, the <u>Ti content in the Nb₃Sn strand became insufficient</u>.
 → If <u>Nb/SnTi is equal to 1.7</u> with 34% Cu ratio, the estimated <u>Ti content in Nb₃Sn is 1.2 at.%</u>.
 - Increasing Ti content in SnTi alloy(1.8 wt.%) would be required.
 → 2.2 wt.% SnTi alloy was manufactured by ourselves and applied in our strands
 - Consequently, the increase of Ti content resulted in Jc degradation from 995A/mm² to 850A/mm².
 → The main causes can be Ti non-uniform distribution and Nb₃Sn diffusion tendency change.



Estimated Ti content in Nb₃Sn after HT

Additional improvement activities

- Apply additional Ti source(Nb0.8wt.%Ti, CuTi)
 - Non uniform Ti distribution is also considered to be one of the main causes of Jc degradation.
 - → Since Ti traveling from SnTi source is very difficult, additional Ti source is required.
 - Nb0.8wt.%Ti and Cu0.7wt.%Ti have been applied and evaluation is in progress.

Conclusions

Current status of development

- Various type's strand have been produced and evaluated, and optimization studies on design III(192Module) are in progress.
- A total of 6km strands is being delivered to CERN for the completion of Task III.
- For the next steps..
 - Further study would be required on increasing Ti content.
 - In order to solve non-uniform issue of Ti distribution, the introduction of additional Ti sources(NbTi, CuTi) is under consideration.

Thank you!

