Update on W mass measurement studies at FCC-ee

Marina Béguin
On behalf of the WG2 working group

June 25, 2019
$\sqrt{s} = 160 \text{ GeV}, L = 12 \text{ ab}^{-1}$
$\rightarrow 60 \cdot 10^6 \text{ WW}$

$\sqrt{s} = 240 \text{ GeV}, L = 5 \text{ ab}^{-1}$
$\rightarrow 80 \cdot 10^6 \text{ WW}$

$\sqrt{s} = 365 \text{ GeV}, L = 1.7 \text{ ab}^{-1}$
$\rightarrow 20 \cdot 10^6 \text{ WW}$
WW diboson physics at FCC-ee

- Measurements of the W mass and width directly and with threshold scan;
- W partial branching ratios;
- Strong coupling constant;
- CKM matrix;
- Gauge self-couplings ...

... with unprecedented accuracy
Precise relation between M_W, M_H, M_t is a crucial test of the internal consistency of SM and failure might reveal new physics.

Methods

- At WW threshold;
- Direct determination
\(\Delta M_{W, \text{stat}} = \left(\frac{d\sigma}{dM_W} \right)^{-1} \Delta \sigma \)
\[\Delta M_{W, \text{stat}} = \left(\frac{d\sigma}{dM_W} \right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{\mathcal{L}}} \frac{1}{\sqrt{\epsilon p}} \]

with
\[p = \frac{\epsilon \sigma}{\epsilon \sigma + \sigma_B} \]
\[\Delta M_{W,\text{stat}} = \left(\frac{d\sigma}{dM_W} \right)^{-1} \frac{\Delta \sigma}{\sqrt{\mathcal{L}}} \frac{1}{\sqrt{\frac{\sqrt{\mathcal{L}}}{\sqrt{\epsilon p}}} \right) \\
\oplus \left(\frac{d\sigma}{dM_W} \right)^{-1} \frac{\Delta \sigma_B}{\epsilon} \\\n\oplus \left(\frac{d\sigma}{dM_W} \right)^{-1} \sigma \left(\frac{\Delta \epsilon}{\epsilon} \oplus \frac{\Delta \mathcal{L}}{\mathcal{L}} \right) \]
M_W at WW threshold

Optimal energy: $E = 161.4$ GeV

$\Delta M_W = 0.23$ MeV

LEP: $\Delta M_W = 210$ MeV

$L = 10$ pb$^{-1}$

LEP : $\Delta M_W = 210$ MeV

$L = 12$ ab$^{-1}$

$\epsilon = 0.75$

$\sigma_B = 0.3$ pb
M_W at WW threshold

Optimal energy : $E = 161.4$ GeV
$\Delta M_W = 0.23$ MeV

LEP : $\Delta M_W = 210$ MeV
$L = 10$ pb$^{-1}$

\[
\Delta M_{W,stat} = \left(\frac{d\sigma}{dM_W} \right)^{-1} \sqrt{\frac{\sigma}{\sqrt{L}} \frac{1}{\epsilon p}}
\]
\[
\oplus \left(\frac{d\sigma}{dM_W} \right)^{-1} \frac{\Delta\sigma_B}{\epsilon}
\]
\[
\oplus \left(\frac{d\sigma}{dM_W} \right)^{-1} \sigma \left(\frac{\Delta\epsilon}{\epsilon} \oplus \frac{\Delta L}{L} \right)
\]

Need systematic controls on:
- $\Delta\sigma_B < 0.6$ fb ($2 \cdot 10^{-3}$)
- $\left(\frac{\Delta\epsilon}{\epsilon} \oplus \frac{\Delta L}{L} \right) < 2 \cdot 10^{-4}$
- $\Delta\sigma_{theory} < 0.8$ fb ($2 \cdot 10^{-4}$)
- $\Delta E_{CM} < 0.2$ MeV ($2 \cdot 10^{-6}$)
M_W and Γ_W at WW threshold

Optimal combination:

$E_1 = 157.1$ GeV, $E_2 = 162.3$ GeV, $f = 0.4$

$\Delta M_W = 0.4$ MeV and $\Delta \Gamma_W = 1.2$ MeV

With resonant depolarisation, $E_b = 0.4406486(\nu + 0.5)$ GeV

$E_1 = 157.3$ GeV, $E_2 = 162.6$ GeV, $f = 0.4$

$\Delta M_W = 0.45$ MeV and $\Delta \Gamma_W = 1.3$ MeV
Effect of the energy spread (σ_E):

$$\delta \sigma_W \sim \frac{1}{2} \frac{d^2 \sigma_W}{dE^2} \sigma_E^2$$

$$\frac{\sigma_E}{E} = a$$

σ_E measured/monitored with $e^+e^- \rightarrow \mu^+\mu^-$ events.

At FCCee the energy spread will be measured with a relative precision of better than 0.2% →**Negligible** contribution on ΔM_W and $\Delta \Gamma_W$.
Direct reconstruction of M_W and Γ_W

Hadronic decay channel

Study at 162.6 GeV, 240 GeV and 365 GeV

- PYTHIA simulation
- Reconstruction with Heppy (CLD detector, Durham algorithm)

W mass estimators:

- **Raw mass**
- **4C jets momenta rescaling**
- **Kinematic fit** with energy-momentum conservation (4C) and W masses equality (5C)
Direct reconstruction of M_W and Γ_W Hadronic decay channel

Statistical uncertainty estimated with a **binned maximum likelihood fit** on the reconstructed M_W distributions, using **templates** with different nominal W mass(width) values.

- @162.6 GeV
 $\Delta \Gamma_W(4C) = 1.11$ MeV
- @240 GeV
 $\Delta \Gamma_W(5C) = 0.48$ MeV
- @365 GeV
 $\Delta \Gamma_W(5C) = 1$ MeV

Full FCCee luminosity
Direct reconstruction of M_W and Γ_W
Semi-leptonic decay channel

Study at 162.6 GeV, 240 GeV and 365 GeV

Only the muon decay

\[\nu \mu qq \rightarrow WW \]

5C kinematic fit
4C kinematic fit
Raw Mass

\[@162.6 \text{ GeV} \quad \Delta \Gamma_W(1C) = 0.35 \text{ MeV} \]
\[@240 \text{ GeV} \quad \Delta \Gamma_W(2C) = 0.68 \text{ MeV} \]
\[@365 \text{ GeV} \quad \Delta \Gamma_W(2C) = 1.56 \text{ MeV} \]

\[\Delta M_{W, \text{stat}} / 12 \text{ ab}^{-1} @ 162.6 \text{ GeV} \]
\[\Delta M_{W, \text{stat}} / 5 \text{ ab}^{-1} @ 240 \text{ GeV} \]
\[\Delta M_{W, \text{stat}} / 1.7 \text{ ab}^{-1} @ 365 \text{ GeV} \]

Full FCCee luminosity
Systematic uncertainties

Main sources of systematic uncertainties at LEP2:

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic Uncertainty in MeV on m_W</th>
<th>Systematic Uncertainty in MeV on Γ_W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$q\bar{q}\nu\bar{\nu}$</td>
<td>$q\bar{q}q\bar{q}$</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Detector effects</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>LEP energy</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Colour reconnection</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td>Bose-Einstein Correlations</td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Total systematic</td>
<td>21</td>
<td>44</td>
</tr>
<tr>
<td>Statistical</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Statistical in absence of systematics</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>59</td>
</tr>
</tbody>
</table>

\(\sqrt{s} \) [GeV]

<table>
<thead>
<tr>
<th>(\delta M_{FSI}) [MeV]</th>
<th>162.6 standard</th>
<th>240 standard</th>
<th>365 standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKI</td>
<td>14.6</td>
<td>24.1</td>
<td>32.2</td>
</tr>
<tr>
<td>SKII</td>
<td>8</td>
<td>12.5</td>
<td>15.1</td>
</tr>
<tr>
<td>BEC</td>
<td>3.3</td>
<td>5.9</td>
<td>10.2</td>
</tr>
</tbody>
</table>

\(\Delta M_{W,stat} \) is degraded with the cone by a few percents at threshold and 10-15% above.

FSI simulated with Pythia (SKI/SKII).

\(\delta M_{W,FSI} \) reduced using a cone (0.4 rad) on jets.

![Graph showing CLD detector WW → qqqq with and without FSI](image)

- **Mean (162.6 GeV):** 82.38 ± 9.568
- **Mean (240 GeV):** 80.85 ± 10.26

W study at FCC-ee

June 25, 2019
Other opportunities with W physics at FCC-ee
Probing the TGCs

Marina Béguin

W study at FCC-ee

June 25, 2019 13 / 15

LEP: TGCs constrained at few % level

\[\mathcal{L}_{SM} \xrightarrow{BSM} \mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i \quad i = 1, 6 \]

Focus on CP-even dimension 6 operators

\[\mathcal{L}_{TGC} = f(\delta g_{1,z}, \delta \kappa_z, \delta \kappa_\gamma, \lambda_Z, \lambda_\gamma) \]

Gauge inv. \(\rightarrow \delta \kappa_z = \delta g_{1,z} - \tan^2(\theta_W) \delta \kappa_\gamma \)

\[\lambda_\gamma = \lambda_Z \]

In the semi-leptonic channel

\[d\sigma_{WW} = f(\theta_W, \theta_1^*, \Phi_1^*, \theta_2^*, \Phi_2^*) \]
\[\frac{B_q}{1 - B_q} = 3 \left(1 + \frac{\alpha_s(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2 \]

\[\Delta B r_q / B r_q = 10^{-4} \]

\[\rightarrow \Delta \alpha_s \sim 9 \pi / 2 \Delta B r_q \sim 2 \cdot 10^{-4} \]

assuming CKM unitarity.

\[\text{With } B_q \text{ and } \alpha_s \text{ precisely measured} \]

CKM unitarity tested at \(10^{-4}\).

Flavour tagging

\[\rightarrow W \text{ coupling to } b \& c \text{ quarks} \]

\(V_{cs}, V_{cb}\)

\(B r_\tau > B r_e, B r_\mu(2.8\sigma)\)

LEP : test at 2\% level (lept. universality)

FCCee test at \(4 \cdot 10^{-4}\)

\(q/l\) universality at 0.6\%

\[\text{Requires excellent control of jet reconstruction and lepton identification i.e. cross-contamination and correlation between channels (} \tau \rightarrow e, \mu) \]
Conclusion

The amount of W-pairs at different centre-of-mass energies presents a huge potential for the W physics measurements.

- Measurement of M_W and Γ_W simultaneously at the W-pair production threshold with high precision ($\Delta M_W = 0.45$ MeV).
- Direct M_W and Γ_W measurements at threshold and above. Best statistical uncertainty expected at higher energies ($\Delta M_W = 0.28$ MeV at 240 GeV and $\Delta M_W = 0.46$ MeV at 365 GeV in the hadronic decay channel).
- Other W physics measurements: improvements of the gauge couplings sensitivity, W decay couplings at 10^{-4} level ($\alpha_s(M_W^2)$ and CKM matrix).
BACK-UP
Color Reconnection (CR) : interaction between partons of the two Ws

\[e^+ e^- \rightarrow WW \rightarrow q_1 \bar{q}_2 q_3 \bar{q}_4 \]

Because WW separation in phase-space is smaller than the typical distance scale of hadronisation: \((q_1 \bar{q}_4)\) and \((q_3 \bar{q}_2)\)

Models in Pythia for \(e^+e^-\) collisions are based on string hadronisation.

- SK1 : string = cylindrical bag. Colour reconnection probability proportional to the integrated overlap between cylinders.
- SK2 : string = vortex line. Colour reconnection if the cores are crossing.
W mass distributions - Hadronic channel

Marina Béguin
W study at FCC-ee
June 25, 2019
W mass distributions - Semi leptonic channel

40 50 60 70 80 90 100 110 120 (hadronic mass) \[GeV\]

Mean 81.52
Std Dev 3.868

Mean 81.9
Std Dev 4.03

162.6 GeV

Mean 82.55
Std Dev 6.001

Mean 82.15
Std Dev 10.73

Mean 84.62
Std Dev 13.27

240 GeV

Mean 82.55
Std Dev 6.009

Mean 81.15
Std Dev 10.73

Mean 84.62
Std Dev 13.27

365 GeV

Mean 82.94
Std Dev 9.855

Mean 82.28
Std Dev 10.06

Mean 80.58
Std Dev 13.23

Mean 85.39
Std Dev 18.8

4C kinematic fit

5C kinematic fit

Raw Mass

\[\nu \mu qq \rightarrow WW\]

4C kinematic fit

5C kinematic fit

Raw Mass
W mass and width statistical uncertainties

Table: Hadronic decay

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV/c2]</th>
<th>σ_{M_W} [MeV/c2]</th>
<th>σ_{Γ_W} [MeV/c2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>162.6 240 365</td>
<td>162.6 240 365</td>
</tr>
<tr>
<td>Luminosity (ab^{-1})</td>
<td>12 5 1.7</td>
<td>12 5 1.7</td>
</tr>
<tr>
<td>Raw Mass</td>
<td>1.66 0.49 0.97</td>
<td>1.44 1.10 1.71</td>
</tr>
<tr>
<td>4C rescaling</td>
<td>1.72 0.36 0.73</td>
<td>1.53 0.77 1.48</td>
</tr>
<tr>
<td>4C fit</td>
<td>1.14 0.28 0.51</td>
<td>1.1 0.58 0.95</td>
</tr>
<tr>
<td>5C fit</td>
<td>0.22 0.45</td>
<td>0.47 1.02</td>
</tr>
</tbody>
</table>

With threshold method $\sigma_{M_W} = 0.23$ GeV

Table: Semi-leptonic decay

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV/c2]</th>
<th>σ_{M_W} [MeV/c2]</th>
<th>σ_{Γ_W} [MeV/c2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>162.6 240 365</td>
<td>162.6 240 365</td>
</tr>
<tr>
<td>Luminosity (ab^{-1})</td>
<td>12 5 1.7</td>
<td>12 5 1.7</td>
</tr>
<tr>
<td>Raw Mass</td>
<td>0.42 0.49 1.19</td>
<td>0.39 0.87 1.94</td>
</tr>
<tr>
<td>1C fit</td>
<td>0.26 0.33 0.78</td>
<td>0.35 0.59 1.36</td>
</tr>
<tr>
<td>2C fit</td>
<td>0.31 0.75</td>
<td>0.68 1.56</td>
</tr>
</tbody>
</table>
The loss of particle information degrades the resolution by 2.9% at 162.6 GeV, 6.7% at 240 GeV and 16.9% at 365 GeV.
Cone effect on $\Delta M_{W,\text{stat}}$

Full FCCee luminosity

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV]</th>
<th>162.6</th>
<th>240</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta M_{W,\text{stat}}$ [MeV]</td>
<td>standard</td>
<td>cone</td>
<td>standard</td>
</tr>
<tr>
<td>woFSI</td>
<td>1.14</td>
<td>1.18</td>
<td>0.215</td>
</tr>
<tr>
<td>SKI</td>
<td>1.18</td>
<td>1.21</td>
<td>0.225</td>
</tr>
<tr>
<td>SKII</td>
<td>1.17</td>
<td>1.19</td>
<td>0.218</td>
</tr>
<tr>
<td>BEC</td>
<td>1.17</td>
<td>1.18</td>
<td>0.224</td>
</tr>
</tbody>
</table>

$\Delta M_{W,\text{stat}}$ is degraded with the cone by few percent at threshold and 10-15% above.
f with 0.05 steps; E_1 and E_2 with 10 MeV

Data taking configuration that minimise arbitrary combination of the expected mass and width statistical uncertainties $F(\Delta M, \Delta \Gamma)$.

Here $F(\Delta M, \Delta \Gamma) = \Delta M_W + \Delta \Gamma_W$
acceptance

how do we control acceptance at the 10^{-4} level (0.01%)?
⇒ aim for the highest possible acceptance and efficiency WP

- **lepton tracking** reco efficiency (was controlled at the 10^{-3} level at LEP2)
- **lepton identification** performances
 - @LEP2 10^{-3} level: (T&P with Z): effects on total $\Delta \sigma$ mitigated down to the 2-3 10^{-4} level thanks to $\tau \rightarrow e, \mu$ channel migrations recoveries
 - would need lepton-id at 10^{-4} level for max BR precision
- jet reconstruction and **energy calibration**
 - @LEP2 1-2% level ⇒ 0.1% on $\Delta \varepsilon$:
 - FCCee would need calibration at 0.1% level (10x better) with control data; best possible jet energy resolution helps
- **missing momentum** scale/resolution: similar to jet energy for qq\(\nu\)
- **lepton isolation**
 - @LEP2 control at the $\Delta \varepsilon \sim 2 \ 10^{-3}$ level: need to do 10x better
- jet **modeling** (signal & bkg)
 - was important syst on $\sigma_{WW}@LEP2$ (at the 2 10^{-3} level)

impact of theoretical uncertainties will hopefully not be limiting but work is needed to reach the target 0.2 10^{-3} precision level
background control

2-fermion : \(\tau\tau\), qq
4-fermion : \(\gamma\gamma \rightarrow \tau\tau, ll\nu\nu\), Zee, Wev

some 4f bkg is identical to the signal final state \(\rightarrow\) CC03-4f interferences

<table>
<thead>
<tr>
<th>decay</th>
<th>efficiency</th>
<th>purity</th>
<th>bkg</th>
<th>[LEP1996]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l\nu l\nu)</td>
<td>70-80%</td>
<td>80-90%</td>
<td>50 fb</td>
<td>(\tau\tau, \gamma\gamma \rightarrow \tau\tau, Z\gamma^* \rightarrow \nu\nu l\nu)</td>
</tr>
<tr>
<td>evqq</td>
<td>85%</td>
<td>(\sim)90%</td>
<td>30 fb</td>
<td>(qq, Zee, Z\gamma^*) -10 fb (\text{Wev})</td>
</tr>
<tr>
<td>(\mu\nu qq)</td>
<td>90%</td>
<td>(\sim)95%</td>
<td>10 fb</td>
<td>(Z\gamma^*, qq)</td>
</tr>
<tr>
<td>(\tau\nu qq)</td>
<td>50%</td>
<td>80-85%</td>
<td>50 fb</td>
<td>(qq, Z\gamma^*)</td>
</tr>
<tr>
<td>qqqq</td>
<td>90%</td>
<td>(\sim)90%</td>
<td>(\sim)200 fb</td>
<td>(qq (qqqq, qqgg))</td>
</tr>
</tbody>
</table>

measure directly the backgrounds with very different S/B levels at different \(E_{\text{CM}}\) points

measure forward electrons (\(\theta \geq 0.1\) rad) for Zee Wev : determine forward pole \(d\sigma/d\theta\) and WW interference effects

acceptance down to \(\theta = 0.1\) \([\cos\theta = 0.995]\) would also cover forward jets

limiting correlated syts can cancel out taking data at more \(E_{\text{CM}}\) points where

\[
\left(\frac{d\sigma}{d\Gamma_w}\right)^{-1} \quad \left(\frac{d\sigma}{dm_w}\right)^{-1} \quad \left(\frac{d\sigma}{d\Gamma_w}\right)^{-1} \quad \sigma \quad \left(\frac{d\sigma}{d\Gamma_w}\right)^{-1} \quad \sigma
\]
differential factors are equal