Luminosity Measurement

FCC Week 2019 Brussels, 23-28 June 2019

Mogens Dam Niels Bohr Institute Copenhagen, Denmark

Luminosity Measurement

- ◆ Standard lumi process is small angle elastic e⁺e⁻ (Bhabha) scattering
 - □ Dominated by *t*-channel photon exchange
 - Very strongly forward peaked

$$\sigma_{\rm Bhabha} = \frac{1040 \,\mathrm{nb} \,\mathrm{GeV}^2}{s} \left(\frac{1}{\theta_{\rm min}^2} - \frac{1}{\theta_{\rm max}^2} \right)$$

- Measured with set of two calorimeters; one at each side of the IP
 - Crossing beams: Center monitors on outgoing beam lines

Two counting rates:

- SideA = NarrowA + WideB
- SideB = NarrowB + WideA
- Minimize dependence on beam parameters and misalignment:
 - Average over two counting rates: SideA + SideB
- □ Important systematics from acceptance definition: *minimum scattering angle*

$$\frac{\delta \sigma^{\rm acc}}{\sigma^{\rm acc}} \simeq \frac{2\delta \theta_{\rm min}}{\theta_{\rm min}} = 2 \left(\frac{\delta R_{\rm min}}{R_{\rm min}} \oplus \frac{\delta z}{z} \right)$$

Alternative Lumi Processes

- ◆ Possible alternative lumi process: Large angle photon-pair production
 - □ Only "one" graph at lowest order

- ❖ Current precision at NLO at the 10⁻³ level [C.M.C Calame, FCC-ee workshop, Pisa, Feb. 2015]
- □ Pure QED process with few radiative corrections between initial legs and propagator
- □ Cross section is *much smaller* than small angle Bhabha scattering, but adequate everywhere but at Z-pole running. Provides interesting x-check at Z-pole.
- □ Main experimental background: Large angle Bhabha scattering ($e^+e^- \rightarrow e^+e^-$)
 - \star > O(10) larger than signal. Have to control Bhabha contamination to ~10⁻⁶
- \Box Example: $\theta_{min} = 20^{\circ} (\cos\theta < 0.94)$:

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	Large angle e⁺e⁻ → e⁺e⁻
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	e⁺e⁻ → ZH	0.2 pb	5.6 pb	134 pb
350 GeV	e⁺e⁻ → tt	o.5 pb	2.6 pb	60 pb

Alternative Lumi Processes

- ◆ Possible alternative lumi process: Large angle photon-pair production
 - □ Only "one" graph at lowest order

- ❖ Current precision at NLO at the 10⁻³ level [C.M.C Calame, FCC)ee workshop, Pisa, Feb. 2015]
- □ Pure QED process with few radiative corrections between initial legs and propagator
- benin vestigate Cross section is much sn everywhere but at Z-p
- d. Large angle Bhabha scattering ($e^+e^- \rightarrow e^+e^-$)
 - ❖ > O(10) larger than signal. Have to control Bhabha contamination to ~10⁻⁶
- \Box Example: $\theta_{min} = 20^{\circ} (\cos\theta < 0.94)$:

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	Large angle e⁺e⁻ → e⁺e⁻
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	2.9 nb
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	301 pb
240 GeV	e⁺e⁻ → ZH	0.2 pb	5.6 pb	134 pb
350 GeV	e⁺e⁻ → tt	o.5 pb	2.6 pb	60 pb

Normalisation to 10⁻⁴

- ◆ The goal at FCC-ee is an absolute normalization to 10⁻⁴
- After much effort, precision on absolute luminosity at LEP was dominated by theory
 - □ Example **OPAL** most precise measurement at LEP:

Theory: 5.4×10^{-4} Experiment: 3.4×10^{-4}

□ Since then, theory precision has improved to 3.8×10^{-4} [Ja

[Jadach et al, 1812.01004]

- ◆ Ambitious FCC-ee goal: Total uncertainty to precision of 10-4
 - □ Will require major effort within **theory**
 - Four graphs already at lowest order

- Dependence on Z parameters (increasing with angle)
- Lots of radiative corrections between initial and final legs
- Will require major effort experimentally
 - * Second generation LEP luminosity monitors constructed and monitored to **tolerances better than 5** μm

Relative Normalisation

◆ FCC-ee goal: Via Z line-shape scan, determine Z parameters to precisions:

$$\delta M_Z = 100 \text{ keV}$$
; $\delta \Gamma_Z = 100 \text{ keV}$

□ Plot shows relative change in cross section across Z resonance for parameter variation of this size

- ◆ Z width measurement most demanding: Need **relative** normalisation to about **1** × **10**⁻⁵
 - □ Need statistics of order 10¹⁰
 - □ To optimize sensitivity of off-peak running, aim for cross section ~ σ_Z ; i.e \gtrsim 10 nb

LumiCal Design

- ◆ W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps
 - □ Effective Moliere radius: ~15 mm
- ◆ 25 layers total: 25 X_o
- Cylindrical detector dimensions:
 - □ Radius:

54 < r < 145 mm

- □ Along outgoing beam line: 1074 < z < 1190 mm
- ◆ Sensitive region:
 - □ 55 < r < 115 mm;
- Detectors centered on and perpendicular to outgoing beam line
- ◆ Angular coverage (>1 Moliere radius from edge):
 - □ Wide acceptance: 62-88 mrad
 - □ Narrow acceptance: 64-86 mrad
 - □ Bhabha cross section @ 91.2 GeV: 14 nb
- ◆ Region 115 < r < 145 mm reserved for services:</p>
 - □ Red: Mechanical assembly, **read-out electronics**, cooling, equipment for alignment
 - □ Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)

LumiCal Geometrical Tolerances

• Acceptance depends on **inner and outer radius** of acceptance definition

$$\frac{\Delta A}{A} \approx -\frac{\Delta R_{\rm in}}{1.6\,\mu\text{m}} \times 10^{-4}$$

and

$$\frac{\Delta A}{A} \approx +\frac{\Delta R_{\text{out}}}{3.8 \,\mu\text{m}} \times 10^{-4}$$

- Aim for construction and metrology precision of 1 μm
- Acceptance depends on (half) distance between the two luminometers

$$\frac{\Delta A}{A} \approx + \frac{\Delta Z}{55\,\mu\text{m}} \times 10^{-4}$$

Situation is somewhat more complicated due to the crossing beam situation

- \square Now, it is the sum of distances, $\mathbb{Z}_1 + \mathbb{Z}_2$, which has to be known to 110 µm
- □ Idea to be pursued: Alignment using tracking detector as intermediate:
 - ❖ IP/tracker: dimuon events
 - LumiCal/tracker: laser tracks

Alignment relative to IP position

 With 2 mrad difference between narrow and wide, teh acceptance depends to only second order on displacements of IP relative to LumiCal system for displacements up to

$$\delta r = 0.5 \text{ mm}$$
 transverse and $\delta z = 20 \text{ mm}$ longitudinal

- Should dispacements be larger, need to redefine narrow and wide
- ◆ Within these tolerances, the acceptance depends rather weakly on IP displacements

$$\boxed{\frac{\Delta A}{A} \approx + \left(\frac{\delta r}{0.6\,\mathrm{mm}}\right)^2 \times 10^{-4}} \qquad \mathrm{and} \qquad \boxed{\frac{\Delta A}{A} \approx - \left(\frac{\delta z}{6\,\mathrm{mm}}\right)^2 \times 10^{-4}}$$

- **Conclusion**: Optimal situation is if interaction point is centered wrt LumiCal coordinate system within the following tolerances:
 - □ Few hundred microns in radial direction
 - □ Few mm in longitudinal direction

Geometry considerations

- Most critical parameter is inner radius of acceptance which has to be controlled to a precision of ~1 μm
- ◆ LumiCal is compact: Outer radius of Si sensors is only 155 mm
- This opens the possibility to construct each Si sensor from one crystal only
 - Geometrical precison given by wafer production: Far below 1 μm
- However, we have to be able to mount monitors around beam pipe
 - □ Critical issue: Vertical assembly
- ◆ Possible alternative? (inspired by idea by Anton Bogomyagkov)
 - □ Thread luminosity monitors onto beam pipe from end before complete beam pipe assembly is installed inside detectors?
 - □ Avoid vertical division...?

Beam-background: Synchrotron Radiation

◆ Tungsten shielding of beampipe effectively blocks synchrotron radiaiton

Beam-background: e⁺e⁻ pairs (i)

- ◆ e⁺e⁻ pairs created in beam-beam interactions
 - □ Dominant process at FCC-ee: Incoherent pair production
 - □ Events studied/generated by GuineaPig program
- ◆ Example: Z-pole energy
 - 800 e[±] particles per BX (with E > 5 MeV)
 - □ 500 GeV radiated in total per BX

- Average energy: 636 MeV
- # e[±] per BX per endcap: 404

Polar angle of pair e[±] particles

- Peak at zero along beam line
- Bump around 30 mrad: focussing by other beam

Energy weighted polar angle of pair e[±] particles

- Strongly forward peaked

Beam-background: e⁺e⁻ pairs (ii)

- ◆ Radiated e[±] particles tend to be (very) soft
 - Strong focussing by detector solenoidal field
- Helix extrapolation study (no material effects):
 - # particles hitting LumiCal face: o.3 per BX
 - □ Energy hitting LumiCal face: **60 MeV per BX**
- ◆ Compare to full GEANT4 simulation
 - □ Energy hitting LumiCal: **300 MeV per BX**
 - ❖ Factor 5 above helix study
 - Energy mainly concentrated at inner radius at rear of calorimeter
 - Secondaries scattered from beam pipe split(?)
 - Would be easy to shield by thin layer of W

Beam-background: e⁺e⁻ pairs (iii)

- \bullet Number of radiated particles and their total energy evolve strongly as function of \sqrt{s}
 - □ Also energy per radiated particle increases ➡ Focussing becomes realtively weaker
 - □ At Z-pole energy, very low energy into LumiCal region
 - □ At top-energy, energy into LumiCal region at the GeV level

Beam-gas background

- At LEP, off-momentum particles from inelastic beam-gas scattering was the main background process to the luminosity measurement
- ◆ FCC-ee simulation of beam-gas scattering at Z-pole energy has been performed
 - □ Loss rate inside region of **± 2.1 m around IP** of
 - **2 MHz/beam** ⓐ 10^{-9} mbar of N_2 at 300 K

O. Blanco, F. Collamati

• First study of effect on LumiCals: From beam pipe exit point, simple straight line

extrapolation to face of opposite LumiCal

□ 12% extrapolate to opposite LumiCal face

□ Energy tends to be low and they leave early

Will be effectively stopped by shielding.

 ◆ From this: Estimate of coincidence rate before any energy or angular cuts: < 10⁻⁻ per BX

Negligible compared to Bhabha rate:

6.4 x 10⁻⁴ per BX

Background seems to be negligible

To be checked through full simulation study

Electromagnetic Focussing of Bhabha electrons (i)

 Well-known pinch effect: beam particles are focussed by the strong electromagnetic field of the opposing beam

◆ By the same mechanism, also (forward) scattered particles are focussed

□ First described in 2007 for ILC in JINST 2 Pogoo1

 Important effect at FCC-ee where average focussing angle over the LumiCal acceptance is about 30 μrad.

- ◆ This is equivalant to a change of the effective acceptace of LumiCals of -15 x 10⁻⁴
 - □ i.e. 15 times the goal on the luminosity measurement precision
- Need to understand this effect to better than 5% level

Electromagnetic Focussing of Bhabha electrons (ii)

- \Box Particles scattered towards inside of FCC ring (φ = 0) spend more time close to opposing beam: Focussed more
- \Box Particles scattered towards outside of FCC ring ($\varphi = \pi$) are further away from opposing beam: Focussed less
- How could this be exloited:
 - \neg A φ -symmetric focussing leads to a broadening of the acollinearity distribution of Bhabhas by ~10 µrad. Far below experimental resolution (~200 µrad); not likely to be observable
 - □ A φ-dependent focussing leads to a φ-modulated non-zero average acollinearity distribution which may be measurable (~30 μrad effect / ~200 μrad resolution event-by-event)

Electromagnetic Focussing of Bhabha electrons (iii)

- Specific study
 - fill Construct observable which is sensitive to ϕ modulation of acollinearity angle
 - here a counting rate asymmetry
 - □ Vary beam parameters by realistic amounts:
 - * Population; offset x, y; bunch dimensions σ_x , σ_y , σ_z
 - * Find that, luminosity primarily depends on bunch population and σ_z
 - Study shows an approximate linear dependence of luminosity correction on the measured asymmetry parameter
 - \Box However, a similar 25 μrad acollinearity bias will be also produced by a ~10 μm mis-alignment in x of the the IP position wrt the LumiCal system.
 - Need precise alignment information of LumiCal system wrt IP.

G. Voutsinas

Electromagnetic Focussing of Bhabha electrons (iv)

- ◆ p_x-kick
 - \Box Due to beam-beam interactions, the colliding beams will receive a p_x-kick prior to collisions

- □ This will increase the effective crossing angle by ~0.18 mrad (0.6%)
- □ Hence two (linked) sources of change in acollinearity angle in the x-plane
 - p_x -kick: ~0.18 mrad [Also for large angle tracks; measureable in $\mu^+\mu^-$ events]
 - Bhabha focussing: ~0.025 mrad [Only for LumiCal events]
- □ Precise monitoring of the two linked effects promises to provide a detailed understanding of the (modeling) of beam-beam interaction and to control its effect on the lumi measurement

See detailed presentation by E. Perez Thursday morning

Conclusion / Summary / Outlook (i)

- Very precise normalization needed to match the fabulous statistics of FCC-ee.
 Goal:
 - □ Absolute to **10**⁻⁴
 - □ Relative (point-to-point Z line shape scan) to $\mathbf{1} \times \mathbf{10}^{-5}$
- Large angle $e^+e^- \rightarrow \gamma \gamma$ scattering is an interesting process to be studied
- ♦ Small angle $e^+e^- \rightarrow e^+e^-$ scattering is the main "workhorse"
- ◆ Zeroth order LumiCal design exists. Many challenges remain:
 - Geometrical precision of construction and metrology to 1 μm level
 - ❖ Positive: Compact devices Si sensors for each (half-)barrel from one crystal
 - □ Support and alignment to order of 100 micron precision
 - Pursuing idea to support "from the back" independently of machine magnets
 - □ Front-end-electronics
 - ❖ Fast (20 ns) shaping within tolerable power budget
 - ❖ Large dynamic range: sensitivity to *mips* (muons for alignment) and EM showers.
 - □ Cooling keep temperature constant within 1 degree for geometrical precision

- □ Equipment for alignment
- **u**

Conclusion / Summary / Outlook (ii)

- ◆ Beam-backgrounds have been studied through full GEANT4 simulation and/or parametrisations – mostly find that backgrounds are small / negligible
 - Synchrotron radiation negligible after beam-pipe shielding
 - □ e+e- pairs from beam-beam interactions negligible (except at top-energies)
 - □ **Off-momentum particle** background from beam-gas scattering negligible
- ◆ Focussing of Bhabha electrons by magnetic field of opposing beam
 - \square Significant bias (15 × 10⁻⁴) to the luminosity acceptance. Correction needed!
 - □ Beam-beam interaction has many measurable consequences, e.g. p_x-kick
 - Promising: Several handles for detailed study

LumiCal Design

Electromagnetic deflection of Bhabhas

Dashed lines: Original Bhabha direction
Full lines: Direction after EM deflection

