DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Large cryogenic process cycle modeling Helmholtz-energy-explicit models for fluid mixtures

Jakub Tkaczuk

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Skłodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Program under Grant Agreement no. 764879

Objectives

- Model the thermal properties of mixtures
 - helium-neon
 - neon-argon
 - helium-argon
- Validate the mixture model with existing Brayton / J-T cycle
- Study the process cycles with large cryogenic installations

• H

Evolution of EoS

• Van der Waals:
$$p = \frac{RT}{(v-b)} - \frac{a}{v^2}$$

• Virial expansion:
$$\frac{pv}{RT} = Z = 1 + B(T)\rho + C(T)\rho^2 + D(T)\rho^3 + \cdots$$

• Peng-Robinson:
$$p = \frac{RT}{v-b} - \frac{a}{v^2 + 2bv - b^2}$$

• Helmholtz energy:
$$\alpha(\delta, \tau, \bar{x}) = \alpha^0(\rho, T, \bar{x}) + \alpha^r(\delta, \tau, \bar{x})$$
Potential that measures the useful work obtainable from a closed thermodynamic cycle
isotherms of helium/neon mixture (50/50 molar)

Advantages

- Continuous over liquid/vapor boundary
- It is a function of measurable properties
- Purely analytical derivatives

Helmholtz energy formulation

J. TKACZUK, June 27, 2019

Helmholtz energy formulation

Relation of thermodynamic properties to Helmholtz energy

Property	Relation to Helmholtz free energy
Pressure	$\frac{p(\delta,\tau,\bar{x})}{\rho RT} = 1 + \delta \alpha_{\delta}^{r}$
Compression factor	$Z(\delta,\tau,\bar{x}) = 1 + \delta \alpha_{\delta}^r$
Entropy	$\frac{s(\delta,\tau,\bar{x})}{R} = \tau \left(\alpha_{\tau}^{o} + \alpha_{\tau}^{r}\right) - \alpha^{o} - \alpha^{r}$
Internal energy	$\frac{u(\delta,\tau,\bar{x})}{RT} = \tau \left(\alpha_{\tau}^{o} + \alpha_{\tau}^{r} \right)$
Enthalpy	$\frac{h(\delta,\tau,\bar{x})}{RT} = 1 + \tau \left(\alpha_{\tau}^{o} + \alpha_{\tau}^{r}\right) + \delta \alpha_{\delta}^{r}$
Isochoric heat capacity	$\frac{c_v(\delta,\tau,\bar{x})}{R} = -\tau^2 \left(\alpha^o_{\tau\tau} + \alpha^r_{\tau\tau} \right)$
Isobaric heat capacity	$\frac{c_p(\delta,\tau,\bar{x})}{R} = -\tau^2 \left(\alpha^o_{\tau\tau} + \alpha^r_{\tau\tau} \right) + \frac{(1+\delta\alpha^r_{\delta} - \delta\tau\alpha^r_{\delta\tau})^2}{1+2\delta\alpha^r_{\delta} + \delta^2\alpha^r_{\delta\tau}}$
Gibbs free energy	$\frac{g(\delta,\tau,\bar{x})}{RT} = 1 + \alpha^o + \alpha^r + \delta\alpha^r_\delta$
Speed of sound	$\frac{w^2(\delta,\tau,\bar{x})M}{RT} = 1 + 2\delta\alpha^r_{\delta} + \delta^2\alpha^r_{\delta\delta} - \frac{(1+\delta\alpha^r_{\delta} - \delta\tau\alpha^r_{\delta\tau})^2}{\tau^2(\alpha^o_{\tau\tau} + \alpha^r_{\tau\tau})}$
J - T coefficient	$\mu_{JT} R \rho = \frac{-(\delta \alpha_{\delta}^r + \delta^2 \alpha_{\delta\delta}^r + \delta \tau \alpha_{\delta\tau})}{(1 + \delta \alpha_{\delta}^r - \delta \tau \alpha_{\delta\tau}^r)^2 - \tau^2 (\alpha_{\tau\tau}^o + \alpha_{\tau\tau}^r)(1 + 2\delta \alpha_{\delta}^r + \delta^2 \alpha_{\delta\delta}^r)}$

EASITrain

10

0

400

600

800

density (kg/m3)

200

1800 2000

1000 1200 1400 1600

Algorithms

Algorithms employed so far:

- Sum of squares: $SSQ = \sum_{i=0}^{n} c(w_i X_i \overline{X})^p$ with constrains and points weights
- Complex marching algorithm no success so far
- The first algorithm is more successful (so far)

Institutes and universities developing the EoS:

- NIST Boulder, U.S.
- Ruhr-Universitat Bochum, Germany
- Kyushu Sangy University, Japan
- Others? NTNU, KIT, ...?

On the way to the HEoS mixture model

(My) methodology

- Obtain good VLE model
 - Assess the credibility of all datasets / each diverging experimental point
 - Fit the reducing parameters and the excess function

$$\alpha^{\mathrm{r}}(\delta,\tau,\bar{x}) = \sum_{i=1}^{N} x_i \, \alpha_{\mathrm{o}i}^{\mathrm{r}}(\delta,\tau) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_i x_j F_{ij} \, \alpha_{ij}^{\mathrm{r}}(\delta,\tau)$$
$$\alpha_{ij}^{\mathrm{r}}(\delta,\tau) = \sum_{k=1}^{K_{\mathrm{Pol},ij}} n_{ij,k} \, \delta^{d_{ij,k}} \, \tau^{t_{ij,k}} + \sum_{k=K_{\mathrm{Pol},ij}+1}^{K_{\mathrm{Pol},ij}+K_{\mathrm{Exp},ij}} n_{ij,k} \, \delta^{d_{ij,k}} \, \tau^{t_{ij,k}} \, e^{-\eta_{ij,k} \left(\delta - \varepsilon_{ij,k}\right)^2 - \beta_{ij,k} \left(\delta - \gamma_{ij,k}\right)}$$

- Constrain the fugacity coefficients at the phase envelope
- Fit the densities
- Fit the speed of sound (if available)
- Constrain the derivatives

Phase envelope

J. TKACZUK, June 27, 2019

x,y

х, у

Statistical Associating Fluid Theory (SAFT)

J. TKACZUK, June 27, 2019

Quantum effects

Thermal de Broglie wavelength:
$$\lambda_{th} = \sqrt{\frac{h^2}{2\pi m k_B T}}$$

 $d_{eff} \gg \lambda_{th} \Rightarrow$ Maxwell-Boltzmann statistics

 $d_{eff} \sim \lambda_{th} \Rightarrow$ quantum gas (Bose-Einstein, Fermi-Dirac statistics)

	Tc [K]	m [u]	T [K]	$\lambda_{th}[A]$	$d_{eff}[A]$
Не	5.2	4.002	5	3.90	0.31
H2	33.1	2.016	22	2.62	•••
Ne	44.4	20.180	30	0.71	0.38
N2	126.2	28.013	80	0.37	•••
Ar	150.7	39.948	90	0.29	0.71

Derivatives

Empirical fit results

- Finalize the empirical fit for three mixtures (He-Ne, He-Ar, Ne-Ar) and publish the models
- Finalize the general SAFT model for mixtures and release a python library
- Confirm the obtained results / extend the experimental data set

