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Observational problems of the SM

At least 3 observations cannot be accounted for in the SM

Neutrinos are 
massive and 

mix

The Universe has a 
dark matter 
component

The Universe has a 
negligible amount of 

antimatter

Normal Ordering (��2 = 0.97) Inverted Ordering (best fit) Any Ordering
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�0.0010 0.0188 ! 0.0251 0.0188 ! 0.0251

✓13/
� 8.50+0.20

�0.21 7.85 ! 9.10 8.51+0.20
�0.21 7.87 ! 9.11 7.87 ! 9.11

�CP/
� 306+39

�70 0 ! 360 254+63
�62 0 ! 360 0 ! 360

�m2
21

10�5 eV2 7.50+0.19
�0.17 7.02 ! 8.09 7.50+0.19

�0.17 7.02 ! 8.09 7.02 ! 8.09

�m2
3`

10�3 eV2 +2.457+0.047
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Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014
conference. The results are presented for the “Free Fluxes + RSBL” in which reactor fluxes have
been left free in the fit and short baseline reactor data (RSBL) with L . 100 m are included. The
numbers in the 1st (2nd) column are obtained assuming NO (IO), i.e., relative to the respective
local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note
that �m2

3` ⌘ �m2
31 > 0 for NO and �m2

3` ⌘ �m2
32 < 0 for IO.

leptonic mixing matrix to be:

|U | =

0

B@
0.801 ! 0.845 0.514 ! 0.580 0.137 ! 0.158

0.225 ! 0.517 0.441 ! 0.699 0.614 ! 0.793

0.246 ! 0.529 0.464 ! 0.713 0.590 ! 0.776

1

CA . (3.1)

By construction the derived limits in Eq. (3.1) are obtained under the assumption of the

matrix U being unitary. In other words, the ranges in the di↵erent entries of the matrix are

correlated due to the constraints imposed by unitarity, as well as the fact that, in general,

the result of a given experiment restricts a combination of several entries of the matrix. As

a consequence choosing a specific value for one element further restricts the range of the

others.

The present status of the determination of leptonic CP violation is illustrated in Fig. 3

where we show the dependence of the ��2 of the global analysis on the Jarlskog invariant

which gives a convention-independent measure of CP violation [51], defined as usual by:
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X

�=e,µ,⌧

X
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JCP ✏↵�� ✏ijk ⌘ Jmax
CP sin �CP . (3.2)

Using the parametrization in Eq. (1.1) we get

Jmax
CP = cos ✓12 sin ✓12 cos ✓23 sin ✓23 cos

2 ✓13 sin ✓13 . (3.3)
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Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].
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A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, arXiv:0707.4058 [hep-ph]
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tions. The discrepancy is at the [2.3, 5.3] � level, depending on the adopted analysis [228],
and constitutes the so-called Lithium problem. It is not clear if the discrepancy is due
to systematic errors in the observed abundances, to uncertainties in the nuclear inputs,
to underestimated processes that may reduce the Lithium abundance during the stellar
evolution or to new physics at work.

3.5.2 Cosmic Microwave Background

The study of the CMB anisotropies provides a precise measurement of the baryon to
photon ratio at the decoupling epoch via the determination of the parameter ⌦b, which
is related to the BAU via the relation [229]

⌘�B =
⇢c

hmi n0
�

⌦b, (3.86)

where n0
� is the present photon number density and hmi is the mean mass per baryon,

which is slightly lower than the proton one due to the Helium binding energy. We already
discussed the effects of ⌦b on the CMB angular power spectrum in Section 3.3.4. The
analysis performed by the Planck collaboration gives the value [178]

⌘�B = (6.10 ± 0.04) ⇥ 10
�10, (3.87)

which is in remarkable agreement with the value derived from BBN, eq.(3.85). Notice
that this observation is a probe of the BAU at an epoch when the temperature was T ⇠
eV, and is thus complementary to the BBN one that probes the BAU at T ⇠ MeV.

We notice here that the CMB angular power spectrum also depends on the parameter
Yp, that sets the number of free electrons between helium and hydrogen recombination,
that in turns determine the mean free path of photons due to Thomson scattering.
Thus the parameters (⌦b, H, Yp) are directly probed by CMB observation: since they
are correlated in BBN, it is possible to test the BBN scenario from CMB [229].

3.6 BAU and the Standard Model

Having established the presence of a small but finite BAU at the BBN epoch makes
it necessary to determine the mechanism at its origin. The first question to answer
is whether the SM can account for this asymmetry. Qualitatively, it complies with
Sakharov’s conditions. The C and CP symmetries and the baryon number are violated
by weak interactions. The violation of the C symmetry relies on the chiral structure of
the SU(2)L gauge group, with the weak current given by the sum of a vector component
(odd under C) and an axial one (even under C) [13]. The CP violation is related to
the presence of a physical phase in the Lagrangian, the �CKM phase in the Cabibbo-
Kobayashi-Maskawa quark mixing matrix [56]. Baryon number is conserved in the SM
at the perturbative level, however non-perturbative effects violate the sum of the baryon
plus lepton numbers B + L, while conserving B � L [230–232]. Indeed, the ground state
of an SU(N) gauge theory is not unique, but is composed by an infinite series of vacua,

60

M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, arXiv:1409.5439 [hep-ph]

P.A.R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astro-ph.CO]
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The natural (simple) way

Complete the SM field pattern with right-handed neutrinos

Figure from S. Alekhin et al., arXiv:1504.04855 [hep-ph]
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Neutrino masses and leptogenesis

Type-I seesaw mechanism: SM + gauge singlet fermions NI

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].
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After electroweak phase transition < Φ > = v ≃ 174 GeV

The Lagrangian provides the ingredients for leptogenesis too

Sakharov
conditions 

• Complex Yukawa couplings Y as a source of CP

• B from sphaleron transitions until TEW ≃ 140 GeV

• sterile neutrinos deviations from thermal equilibrium
{
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…and dark matter?

(Sterile) neutrinos are natural DM candidates too

• Weakly interacting
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• Massive

• Possibly metastable on cosmological scales

PHYSICAL REVIEW 0 VOLUME 25, NUMBER 3 1 FEBRUARY 1982

Radiative decays of massive neutrinos

Palash B. Pal and Lincoln Wolfenstein
Carnegie-Mellon University, Pittsburgh, Pennsyluania I52I3

(Received 4 June 1981; revised manuscript received 15 September 1981)

General formulas are given for the decay rate v2~v~+y in the SU(2))&U(1) model for
neutrinos with a small mass. The emphasis is on distinguishing between the cases of
Dirac and Majorana neutrinos. Possible enhancements of the rate due to methods of elud-
ing the Glashow-Iliopoulos-Maiani suppression and due to charged Higgs bosons are con-
sidered.

If neutrinos are massive and if the mass eigen-
states are not degenerate, then it is possible to have
a radiative decay of the form v2~v&+y. The pos-
sibility that massive relic neutrinos from the big
bang might be detected as a result of this radiation
has been discussed recently. ' In addition, such
decays have been discussed in a variety of astro-
physical contexts. Formulas for the rate of these
decays have been given explicitly by Petcov and
by Goldman and Stephenson and can be derived
from the general results of Marciano and Sanda
and of Lee and Shrock. All these results are
given for the case of Dirac neutrinos whereas most
present theoretical ideas about neutrino mass yield
Majorana neutrinos. In this paper we discuss the
general case involving either Majorana or Dirac
neutrinos. Since the predicted rates within the
standard model are small, we consider some possi-
bilities of enhancing the rate.
In order to understand the differences between

the Majorana and Dirac cases, it is necessary first
to review the calculation for the Dirac case, which
we carry out in the Feynman —'t Hooft gauge. We
assume the standard SU(2) )& U(1) model with the
leptons in left-handed doublets and right-handed
singlets plus a single Higgs doublet. The relevant
diagrams are shown in Fig. 1. Because of the
Glashow-Iliopoulos-Maiani (GIM) cancellation the
transition moment vanishes in the limit that all
charged lepton masses are taken equal to zero. As
a result, the diagrams involving the unphysical P+
cannot be ignored even though the coupling of P+
is proportional to a lepton mass. This coupling
may be written

2(GF/V 2)'/ g v,—U, (ml, R m, L)l, p++H. c. ,—
a,a (1)

vaL g UaavaL (2)

For simplicity, we assume CI' invariance and
choose U« to be real. The helicity projection

V2 a V2 W

V2 Vl V2

y+

VI

/
/
/

V2 Vl

FIG. 1. Diagrams in the 't Hooft —Feynman gauge
contributing to the process v2~vi+y for Dirac neutri-
nos v2 and v~.

where mI, (=m„m„, etc.) is the charged-lepton
mass, m is the neutrino mass, GF is the Fermi
constant, and U« is the unitary matrix relating the
neutrino mass eigenstates v L (a= 1,2 . ) to the
weak eigenstates v,L, (a =e,p . )
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following discussion we fix for definiteness the dimensions of ml and Mh to be (3⇥3) and
(n⇥n), respectively, that is we assume that the only light states are the ones determined
by neutrino oscillation data, keeping however in mind that the results can be easily
adapted if k further light states are present, replacing 3 with 3 + k. The matrix ⌅ can
be parametrised as the exponential of an anti-hermitian matrix [285]

⌅ = exp
✓

0 ⇥

�⇥
†

0

◆
=

✓
1 � 1

2
⇥⇥

†
⇥

�⇥
†

1 � 1

2
⇥

†
⇥

◆
+ O(⇥

3
), (4.4)

where ⇥ is a (3⇥n) matrix. The submatrices in the block rotated mass matrix (4.3) can
be diagonalised by two unitary rotations, m̂⌫ = UT mlU, M̂s = V T MhV , where U, V are
unitary matrices and the hat denotes a diagonal matrix. Thus the unitary rotation U in
eq. (2.105) can be expressed as

U = ⌅

✓
U 0

0 V

◆
=

✓ �
1 � 1

2
⇥⇥

†� U ⇥V
�⇥

†U
�
1 � 1

2
⇥

†
⇥

�
V

◆
+ O(⇥

3
). (4.5)

By defining the neutrino mass basis {�i} as in eq. (2.106), the weak charged cur-
rent (2.122) reads

LW = � gp
2
e↵ /W

�U↵i �i

L↵
+ h.c., (4.6)

while the neutral current between neutrinos (2.96) reads

L⌫⌫

Z = � g

2 cos ✓W

�i

L
U†

i↵
/Z U↵j�

j

L
, (4.7)

where we used the convention /a = aµ�µ. There are thus two important phenomenological
consequences. The first one is that a charged lepton of flavour ↵ is coupled to all the
fermions �i, with a strength proportional to the mixing element U↵i, giving rise to non
universal weak interactions. The second one is that two fermions �i, �j are coupled
between them with a coupling proportional to the combination

Cij ⌘
X

↵=e,µ,⌧

U⇤
↵i U↵j . (4.8)

Notice that since the sum is performed only on the first 3 rows of the mixing matrix,
the coefficients Cij are in general different from zero also for i 6= j, giving rise to non
diagonal interactions.

By denoting with �i, i = 1, 2, 3, the three mass eigenstates of the active neutrinos,
as defined in Section 3.1.5, the (3 ⇥ 3) upper-left block of U corresponds to the PMNS
matrix

NPMNS =

✓
1 � 1

2
⇥⇥

†
◆

U + O(⇥
3
). (4.9)

We denote the (3 ⇥ 3) leptonic mixing matrix by NPMNS to account for the fact that it
is in general non-unitary, the deviation from unitarity being parametrised by the matrix
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Leptogenesis realisations

3rd Sakharov condition: 
deviation from thermal equilibrium

At which temperature(s) do 
sterile neutrinos enter/deviate 

from thermal equilibrium?

 7



BAU I: Thermal leptogenesis
Sterile neutrinos in thermal equilibrium if 

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].

L = LSM + iNI /@NI �

✓
Y↵I`↵e�NI +

MIJ

2
N c

INJ + h.c.

◆
(1)

m⌫ ' �
v2

2
Y ⇤ 1

M
Y †

(2)

|Y | & 10�7
(3)
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�M!0

mi = 0, ) mi / µ,m

lim
�M!0

mi 6= 0, ) mi / n, d (4)

! (5)

d =
v
p
2
Y ⇤

! (6)

⌫R(0,0) (7)

�EW '
G2

Fm
5
I sin

2 ✓I
192⇡3

, (8)

⌦mh2 = 0.1426± 0.0020 (9)

⌦bh
2 = 0.02226± 0.00023 (10)

⌦ch
2 = 0.1186± 0.0020 (11)

BRµe < 5.7⇥ 10�13
(12)

BR⌧e < 3.3⇥ 10�8
(13)

BR⌧µ < 4.4⇥ 10�8
(14)

1

Thermal leptogenesis: sterile neutrinos in equilibrium at large 
temperatures

Generation of a lepton asymmetry due to the Majorana character of the particles

M > 108 GeV to reproduce observed BAU
(relaxed to M > TeV for degenerate masses)

Difficult to test
in laboratory

Y

x=m/T

Yeq

decoupling

x

out of equilibrium
decay before TEW

M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45

S. Davidson, E. Nardi and Y. Nir, arXiv:0802.2962 [hep-ph]
A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, hep-ph/0605281

A. Pilaftsis and T. E. J. Underwood, hep-ph/0309342  8



BAU II: ARS mechanism

Sterile neutrinos out of equilibrium at large temperatures

deviation from 
equilibrium
before TEW

Y

x=m/T

Yeq

TEW

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255

From the seesaw 
relation

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].
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BR⌧µ < 4.4⇥ 10�8
(14)

1

M ~ GeV to reproduce ν masses Testable
 9



ARS leptogenesis
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How does the 
mechanism 

work?

A. Abada, S. Antusch, E. K. Akhmedov, G. Arcadi, T. Asaka, S. Blanchet, L. Canetti, E. 
Cazzato, V. Domcke, M. Drewes, S. Eijima, O. Fischer, T. Frossard, B. Garbrecht, D. 

Gueter, T. Hambye, P. Hernández, H. Ishida, M. Kekic, J. Klaric, J. López-Pavón, M.L., J. 
Racker, N. Rius, V. A. Rubakov, J. Salvado, M. Shaposhnikov, A. Y. Smirnov, D. Teresi…

Lepton number conserving
(neutrino generation and oscillations)

Lepton number violating
(thermal Higgs decay)

ULB-TH/17-07

Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism

Thomas Hambye⇤ and Daniele Teresi†

Service de Physique Théorique - Université Libre de Bruxelles,
Boulevard du Triomphe, CP225, 1050 Brussels, Belgium

We compute in the density-matrix formalism the baryon asymmetry generated by the decay of
the Higgs doublet into a right-handed (RH) neutrino and a Standard Model lepton. The emphasis
is put on the baryon asymmetry produced by the total lepton-number violating decay. From the
derivation of the corresponding evolution equations, and from their integration, we find that this
contribution is fully relevant for large parts of the parameter space. This confirms the results found
recently in the CP-violating decay formalism with thermal corrections and shows in particular that
the lepton-number violating processes are important not only for high-scale leptogenesis but also
when the RH-neutrino masses are in the GeV range. For large values of the Yukawa couplings, we
also find that the strong washout is generically much milder for this total lepton-number violating
part than for the usual RH-neutrino oscillation flavour part.

I. INTRODUCTION

In the framework of the type-I seesaw model of neu-
trino masses with right-handed (RH) neutrinos below
the electroweak scale, there exists a well-known mech-
anism to account for the baryon asymmetry of the Uni-
verse, through oscillations of right-handed neutrinos [1–
13]. This Akhmedov-Rubakov-Smironv (ARS) scenario
is based on the generation of particle-antiparticle asym-
metries for the various lepton flavours. These asymme-
tries cancel each other in the total Standard-Model (SM)
lepton-number asymmetry but, thanks to washout ef-
fects, which do not a↵ect the di↵erent flavours in the
same way, a net lepton asymmetry remains. In this
framework, since the relevant processes do not involve a
RH neutrino Majorana mass insertion, a lepton number
can be assigned to the two helicities of the RH neutri-
nos. Thus, in the ARS scenario, the total lepton number
L, i.e. the sum of the SM and the RH-neutrino ones,
is conserved, but not both components separately, due
to flavour e↵ects. The SM lepton-number asymmetry
component which is produced in this way before the
sphalerons decouple is reprocessed in part into a baryon
asymmetry, unlike the other component. The evolution
of the lepton asymmetries as a function of the tempera-
ture of the thermal bath can be calculated in the density-
matrix formalism, which properly takes into account the
coherences between various RH neutrinos and their asso-
ciated oscillations.

In the di↵erent CP-violating decay formalism usually
used for leptogenesis, it has been shown recently [14] that
the total lepton-number violating decay of the Higgs dou-
blet into a RH neutrino and a SM lepton, i.e. the de-
cays which do involve a Majorana mass insertion, could
also account for the baryon asymmetry. This is possible
thanks to thermal e↵ects which induce a non-zero ab-
sorptive part for the self-energy of the RH neutrino in

⇤
thambye@ulb.ac.be

†
daniele.teresi@ulb.ac.be

the final state of this decay, see Fig. 1 (as this absorp-
tive part vanishes at zero temperature). In Ref. [14] this
thermal cut of the self-energy has been computed in the
Kadano↵-Baym formalism. The production takes advan-
tage of the fact that, for RH neutrino masses below the
sphaleron cut, the Yukawa interactions do not thermal-
ize the RH neutrinos so easily as for higher masses. This
results in a large departure from equilibrium for the RH-
neutrino number densities in the final state, boosting the
asymmetry production.

This total (SM + RH neutrino) lepton number violat-
ing scenario is in many respects di↵erent from the ARS
total lepton-number conserving scenario. One di↵erence
is that it gives a non-vanishing asymmetry already for
one lepton flavour. Another is that, as a result of the
fact that it involves a Majorana mass insertion, it gives
rates for the relevant processes that are proportional to
m2

N
/T 2, relatively to the total lepton-number conserv-

ing ARS piece. As a result, the asymmetry is typically
produced at lower temperatures than in the ARS case,
basically not long before the sphaleron decoupling. Also,
since this mechanism does not require an asymmetric
washout for the di↵erent flavours, its contribution in the
weak-washout regime is proportional to 4 powers of the
Yukawa couplings, rather than to 6 for the ARS one.

The purpose of this paper is twofold. The first goal
is to determine how this L-violating contribution can
develop itself in the framework of the density-matrix
formalism, rather than in the usual leptogenesis CP-
violating decay formalism considered in [14], and to com-

H

L

L

N

N

H

FIG. 1. Thermal cut in the H ! NL decay, which gives rise
to its purely-thermal L-violating CP-violation.
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relevant at late times

Figure 1: Feynman diagram for self energy of sterile neutrinos.

3 Kinetic Equations

Now we are at the position to derive the kinetic equations for ρN,N̄ and ρL,L̄. First of all, let

us consider the time evolution of ρN . Our construction is based on Ref. [15] (as in [4, 7]) and

starts with

dρN(kN)

dt
= −i

[

HN(kN), ρN(kN)
]

−
1

2

{

Γd
N(kN), ρN(kN)

}

+
1

2

{

Γp
N(kN), 1− ρN (kN)

}

, (3)

where 1 denotes the unit matrix with appropriate dimensions.#1 HN is the effective Hamilto-

nian, HN = H0
N +VN , where the free part is [H0

N(kN)]IJ = ENI
δIJ with ENI

=
√

k2
N +M2

I and

VN is the effective potential induced by the medium effects. Γd
N and Γp

N are the destruction

and production rates of NI . From now on we shall apply the approximation of the Boltzmann

statistics and replace the third term of Eq. (3) as 1
2{Γ

p
N , 1− ρN} → Γp

N .

The first term of Eq. (3) describes the coherent evolution of ρN and the oscillation of sterile

neutrinos occurs due to the off-diagonal elements of VN , which is essential for baryogenesis

under consideration. It is found from the self energy for sterile neutrinos at finite temperatures

in Fig. 1 that the effective potential for the mode k = kN is given by [19]

[

VN(kN)
]

IJ
=

NDT 2

16 kN

[

F †F
]

IJ
, (4)

where we disregard the correction to VN from the asymmetries in active leptons.#2

In the estimation of VN (as well as Γd,p
N below) all masses including MI are neglected since

they are irrelevant for temperatures of interest. (Note, however, that we keep MI in H0
N because

they are crucial for the oscillation of sterile neutrinos.) Further, we first calculate them in the

basis where neutrino Yukawa matrix is diagonal, and then find the expression in the original

basis shown in Eq. (1).

Let us then estimate the destruction and production rates of NI with momentum kN . In

the considering temperatures the dominant contributions come from the scattering processes

(A) NI + QL ↔ Lα + tR, (B) NI + t̄R ↔ Lα + Q̄L, and (C) NI + L̄α ↔ tR + Q̄L [4], shown in

#1 We have neglected the non-linear effects of ρN since the interaction rates between sterile neutrinos are
sufficiently small. Otherwise, see Ref. [17, 18].
#2 We have numerically confirmed that the change of the final baryon asymmetry by this effect is negligibly

small.
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Figure 2: Feynman diagrams for scattering processes of production and destruction rates.

Fig. 2. Here QL and tR denote left-handed quark doublet of third generation and right-handed

top quark. We then divide the rates into three parts:

Γd,p
N (kN) = Γd,p (A)

N (kN) + Γd,p (B)
N (kN) + Γd,p (C)

N (kN) . (5)

The destruction rates of each process are found to be

[

Γd (A)
N (kN)

]

IJ
=
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Γd (B)
N (kN)
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= γd

N(kN)
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. (6)

Here we have introduced
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N(kN) =

NCNDh2
t

64π3

T 2

kN
, (7)

where NC = 3 is a color factor and ht ≃ 1 is the top Yukawa coupling constant, and
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)

F
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, (8)

where we have used Eq. (2) in the last equality. On the other hand, the production rates are
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. (10)
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The destruction rates of each process are found to be

[

Γd (A)
N (kN)

]

IJ
=

[

Γd (B)
N (kN)

]

IJ
= γd

N(kN)
[

F †F
]

IJ
,

[

Γd (C)
N (kN)

]

IJ
= γd

N(kN)
[

F †F
]

IJ
+
[

δΓd
N(kN)

]

IJ
. (6)

Here we have introduced

γd
N(kN) =

NCNDh2
t

64π3

T 2

kN
, (7)

where NC = 3 is a color factor and ht ≃ 1 is the top Yukawa coupling constant, and

[

δΓd
N(kN)

]

IJ
= γd

N(kN)

∫ ∞

0

dkLkL
NDT 2

[

F †
(

ρTL̄(kL)−NDρ
eq(kL)1

)

F
]

IJ

= γd
N(kN)

[

F †(A−1 − 1)F
]

IJ
, (8)

where we have used Eq. (2) in the last equality. On the other hand, the production rates are

[

Γp (A)
N (kN)

]

IJ
=

[

Γp (B)
N (kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

[

F †F
]

IJ
+
[

δΓp
N(kN)

]

IJ
,

[

Γp (C)
N (kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

[

F †F
]

IJ
, (9)

where

[

δΓp
N(kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

{

∫ kN

0

dkL
NDkN

1− ρeq(kL)

ρeq(kL)

[

F †
(

ρL(kL)−NDρ
eq(kL)1

)

F
]

IJ

+

∫ ∞

kN

dkL
NDkN

1− ρeq(kN)

ρeq(kN)

[

F †
(

ρL(kL)−NDρ
eq(kL)1

)

F
]

IJ

}

= γd
N(kN) ρ

eq(kN)
[

F †(A− 1)F
]

IJ
. (10)

6

T. Hambye and D. Teresi, arXiv:1606.00017 [hep-ph], arXiv:1705.00016 [hep-ph]

Two kinds of CP processes 
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Asymmetry generation example
x =

T

TEW
(1)

References
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TEW = 140 GeV sterile neutrinos density matrix

x =
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T 2
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✓
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R :

µ↵ : (4)
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Neutrinos as Dark Matter?
Dark energy

Dark matter
Ordinary matter

P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO]
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�0.016 (7)
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1

Sterile neutrinos could be viable DM candidates: they are produced by 
oscillations of active ones as long as an active-sterile mixing is present
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2
nT
LCM⌫nL + h.c. (2)

nT
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�
⌫L, N,N 0�

(3)

(4)
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Constraints: abundance
DW: as long as an active-sterile mixing is present, a population of sterile ν is 

produced by oscillations in the primordial plasma

Recent evaluation gives
neutrinos according [8]:

⌦sh
2 = 1.1 · 107

X

↵

C↵(ms) |U↵s|
2

⇣ ms

keV

⌘2

, ↵ = e, µ, ⌧ (6)

where C↵ are active-flavor dependend coefficients which can be numerically computed
by solving the Boltzmann equation for the DM relic density, while |U↵s| is an effective
active-sterile mixing matrix which reduces to |U↵s| ' ✓↵s.

We have then computed the DM relic density using eq. (6), adopting the results
of [8] for the coefficients C↵

2, for a set of ISS(2,3) satisfying oscillation and laboratory
constrains from active neutrino physics and imposed fWDM = ⌦s/⌦Planck

DM
< 1 thus

obtaining constraints for the pair (ms, ✓s).
The configurations with DM relic density not exceeding the experimental de-

termination have been confronted with the limits coming from structure formation.
There are, in reality, several strategy to determing the impact of WDM on structure
formation, leading to differnt constraints.

The most solid bounds comes from the analysis of the phase-space distribution
of astrophyiscal objects. Indeed the free-streaming scale of WDM is of the order of
the typical size of galaxies; as a consequece the formation of DM halos, as well as the
one of the galaxies associated to them is deeply influenced by the DM distribution
function. According this idea it is possible to obtain rather robust limits on the DM
mass by requiring the maximun of the dark matter distribution function inferred by
the observations, the so called coarse grained phase space density, does not exceed
the one of the so called fine-grained phase density, theoretically determined and
depending on the specific DM candidate. Using this method an absolute lower limit
on the DM mass of around 0.3 KeV, dubbed Tremaine-Gunn (TG) bound [9], by
comparing the DM distribution from the observation of Dwarf Spheroidal Galaxies
(Dphs), with the fine-grained distribution of a Fermi-gas. A most focused study on
sterile neutrinos produced by DW mechanism has been presented in [10] obtaining
a lower mass bound of the order of 2 KeV. This limit can be evaded assuming that
the WDM candidate is a subdominat component while the DM halos are mostly
determined by an unknown cold dark matter component. The reformulation of the
limits in this kind of scenarios requires a dedicated study (an example can be found
in [11]). In this work we will conservatively regard as viable, the points with mass

2
For DM masses of the order of 1-10 keV DM production is peaked at temperatures of the order

of 150 MeV, which correspond to the tempertature at which QCD phase transition occurs in the

primordial plasma. As a consequence the numerical computation of the C↵ coefficients is affected

by uncertainties related to the determination of the rates of hadronic scatterings and to the QCD

equation of state.

5
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1

S. Dodelson and L. M. Widrow, hep-ph/9303287

T. Asaka, M. Laine and M. Shaposhnikov, hep-ph/0612182

(K. Abazajian, G. M. Fuller and M. Patel, 023501 [astro-ph/0101524] for m < 0.1 keV)  13



Constraints: phase-space density
For fermionic DM, Pauli exclusion principle impose a maximum on its distribution 

function (degenerate Fermi gas). Imposing that inferred phase-space density does not 
excess this bound, it is possible to extract a lower bound on the DM mass

S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407

from dSphs
observations

10

V. RESULTS

Our main results are compiled into the Table II (columns 6–9). The column 6 of Table II contains the bound
on mdeg (given by Eq. (1)) based on the Pauli exclusion principle. It is independent of the details of the evolution
of the system, is not affected by the presence of baryons (see below) and holds for any fermionic DM. The column
7 contains the mass bounds for the relativistically decoupled DM particles (primordial distribution (4)), obtained
by combining Eqs.(17)–(19). Combining Eqs. (17), (18) and (23) one obtains the result for the case of DM with
primordial velocity distribution (20), quoted in the column 8. Both bounds in columns 7 and 8 conservatively
assume maximally coarse-grained distribution function (see Section III). In instead of the maximal coarse-graining,
one assumes the isothermal distribution in the final state (c.f. Fig. 1), one arrives to the original Tremaine-Gunn
bound, shown in the 9th column. It is obtained by comparing the expressions (21) with (24).9 We denote the
corresponding mass bound by mnrp,tg.

We quote all the mass bounds with the corresponding uncertainties, coming from those of in determination of σ and
rh (see Section IV). However, for any given object there can be unique reasons, violating the standard assumptions
and therefore increasing the uncertainties. Therefore, although the strongest bounds in Table II come from the Canes
Venatici II (CVnII) dSph, we decided to take a value which independently follows from several objects as a single
number, characterizing our results (for a given type of DM). To this end we choose the value, obtained for Leo IV.10

Thus, the mass bounds, quoted below are excluded from three dSphs: Leo IV, CVnII and Coma Berenices (Com)11

To summarize, we obtain the following lower bounds

mdeg > 0.41 keV , (32)

mfd > 0.48 keV , (33)

mnrp > 1.77 keV , (34)

and

mnrp,tg > 2.79 keV . (35)

We can compare lower bounds (34)–(35) with the upper ones, coming from astrophysical (X-ray) constraints on the
possible flux from sterile neutrino DM decay [126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136]. Taking central
value (34) and comparing it with the X-ray constraints, one sees that there exists a narrow window of parameters
for which 100% of DM can be made from the NRP sterile neutrino (c.f. Fig.2). Less conservative bound (35), based
on [22] (marked by the dark orange double-dotted vertical line on the Fig. 2) almost completely closes this window.
Notice, that these bounds are comparable with the lower mass limit mnrp > 5.6 keV, coming from the Ly-α forest
analysis of [74].

We also performed the analysis for sterile neutrinos, produced in the presence of lepton asymmetry (resonant
production mechanism, RP) [66, 67, 68]. This mechanism is more efficient than the NRP scenario and allows us to
achieve the required DM abundance for weaker mixings (c.f. Fig. 4 in [68]). This lifts the upper bound on the DM
particle mass in RP scenario to ∼ 50 keV. To estimate the lower mass bound at this scenario, we have analyzed a
number of available spectra (mass range 1 − 20 keV, asymmetries (2 − 700) × 10−6 (see [67, 68] for the definition of
asymmetry). The result are collected on the Fig. 3. One can see that based on F̄ , the Mrp = 1 keV is ruled out for
lepton asymmetries L >∼ 102 and higher masses Mrp ≥ 2 keV are allowed for all available asymmetries. Based on the
original Tremaine-Gunn bound, Mrp = 2 keV is also ruled out for sufficiently high (L >∼ 102) lepton asymmetries.
Thus, resonantly produced sterile neutrinos remain a viable DM candidate (see Fig. 4).

Finally, we would like to notice that our bounds (33)–(35) are valid under the assumption that the influence of the
baryons does not result in the increase of the PSD in the course of structure formation. If this assumption does not
hold, only the bound (32) remains intact.

9 The value of rc is not currently known for several new, faint dSphs, from which we obtain the best limits on DM mass. Therefore, to
calculate the Tremaine-Gunn limit in Table II, we use the conservative estimate rc ≈ rh (see comment after Eq.(25)).

10 Notice, that the numbers for Leo IV essentially coincide with the mass limits from CVnII and Com if all uncertainties in these dSphs
are pushed to minimize the mass bound.

11 It is possible that Coma Berenices is undergoing tidal disruption (like another ultra-faint dSph, Ursa Major II (UMaII), closely resembling
Com) [79]. However, unlike UMaII (or the best known example of tidally disrupted dSph, Sagittarius), there are no known tidal streams
near the position of Coma Berenices and the evidence in favor of tidal disruption are quite moderate [c.f. discussion in 79, §3.6].
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Constraints: stability and indirect detection (ID)
Massive ν can decay 
radiatively producing 

monochromatic 𝛾

PHYSICAL REVIEW 0 VOLUME 25, NUMBER 3 1 FEBRUARY 1982

Radiative decays of massive neutrinos

Palash B. Pal and Lincoln Wolfenstein
Carnegie-Mellon University, Pittsburgh, Pennsyluania I52I3

(Received 4 June 1981; revised manuscript received 15 September 1981)

General formulas are given for the decay rate v2~v~+y in the SU(2))&U(1) model for
neutrinos with a small mass. The emphasis is on distinguishing between the cases of
Dirac and Majorana neutrinos. Possible enhancements of the rate due to methods of elud-
ing the Glashow-Iliopoulos-Maiani suppression and due to charged Higgs bosons are con-
sidered.

If neutrinos are massive and if the mass eigen-
states are not degenerate, then it is possible to have
a radiative decay of the form v2~v&+y. The pos-
sibility that massive relic neutrinos from the big
bang might be detected as a result of this radiation
has been discussed recently. ' In addition, such
decays have been discussed in a variety of astro-
physical contexts. Formulas for the rate of these
decays have been given explicitly by Petcov and
by Goldman and Stephenson and can be derived
from the general results of Marciano and Sanda
and of Lee and Shrock. All these results are
given for the case of Dirac neutrinos whereas most
present theoretical ideas about neutrino mass yield
Majorana neutrinos. In this paper we discuss the
general case involving either Majorana or Dirac
neutrinos. Since the predicted rates within the
standard model are small, we consider some possi-
bilities of enhancing the rate.
In order to understand the differences between

the Majorana and Dirac cases, it is necessary first
to review the calculation for the Dirac case, which
we carry out in the Feynman —'t Hooft gauge. We
assume the standard SU(2) )& U(1) model with the
leptons in left-handed doublets and right-handed
singlets plus a single Higgs doublet. The relevant
diagrams are shown in Fig. 1. Because of the
Glashow-Iliopoulos-Maiani (GIM) cancellation the
transition moment vanishes in the limit that all
charged lepton masses are taken equal to zero. As
a result, the diagrams involving the unphysical P+
cannot be ignored even though the coupling of P+
is proportional to a lepton mass. This coupling
may be written

2(GF/V 2)'/ g v,—U, (ml, R m, L)l, p++H. c. ,—
a,a (1)

vaL g UaavaL (2)

For simplicity, we assume CI' invariance and
choose U« to be real. The helicity projection

V2 a V2 W

V2 Vl V2

y+

VI

/
/
/

V2 Vl

FIG. 1. Diagrams in the 't Hooft —Feynman gauge
contributing to the process v2~vi+y for Dirac neutri-
nos v2 and v~.

where mI, (=m„m„, etc.) is the charged-lepton
mass, m is the neutrino mass, GF is the Fermi
constant, and U« is the unitary matrix relating the
neutrino mass eigenstates v L (a= 1,2 . ) to the
weak eigenstates v,L, (a =e,p . )

766 1982 The American Physical Society

P. B. Pal and L. Wolfenstein, Phys. Rev. D 25 (1982) 766

of the lightest sterile neutrino below 2 KeV, featuring fWDM < 1%, corresponding
approximatively to the current experimental uncertainty in the determination of the
DM relic density.

For masses above 2 KeV a further bound is obtained by the analysis of the Lyman-
↵ forest data. From these it is possible to indirectly infer the spectrum of matter
density fluctuations which are in turn determined by the DM properties. The Lyman-
↵ method is strongly model dependent and the bounds are crucially related to the
WDM production mechanism and to which amount contributes to the total DM
abundance.

For our analysis we have adopted the results presented in [12] where the Lyman-↵
have been considered in the case that sterile neutrino WDM account for the total DM
component as well as the contribute only to a fraction of it while the remaining con-
tribution is originated by a cold DM component. More precisely we have considered
the most stringent 95 percent exclusion limit 3, expressed in terms of (ms, FWDM),
and translated it into an exclusion limit on the parameters of our model, namely
the mass ms of the sterile neutrino and its effective mixing angle ✓s with active
neutrinos 4.

There other possible strategies for constraining WDM. For example a strong lower
limit of the order of 10 KeV on the DM mass can be obtained from the number of
observed satellites of the Milky way [14]. This kind of limit however strictly assume
that the whole dark matter abundance is originated by the WDM candidate and
then cannot straightforwardly embedded in our analysis.

The ISS realizations passing the Lyman-↵ constraint have been finally confronted
with the limits from the X-ray searches, as reported e.g. in [15]. The constraints are
given again in the plane (ms, ✓s) are can be schematically expressed by 5:

fWDM sin2 2✓ . 1.5⇥ 10�4

⇣ ms

1keV

⌘�5

(7)

3
The limit considered actually rely on not up-to-date data sets. A more recent analysis [13] has

obtained a stronger limit in the case of a pure WDM scenario, thus the limits are an underestimate.

As will be clear in the following the final picture won’t be affected by this.
4
Notice that the Lyman-↵ method is reliable for DM masses above 5 KeV. For lower values

there are very strong uncertainties and it is not possible to obtain solid bounds. In [12] it is argued

nonetheless that the limit on FWDM should not sensitively change, at lower masses, with respect to

the one obtained for neutrinos of 5 keV mass.
5
Notice that the exclusion limit from X-rays is actually the combination of the outcome of

different experiments and the dependence on the dark matter mass deviates from the one provided

above in some regions. We have taken this effect into account in our analysis

6

Due to the lack of signature (e.g. CHANDRA, XMN)

ID excluded
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Constraints: Lyman-α
The absorption in the spectra of QSOs by the H (Ly-α: 1s → 2p) in IGM can trace 

matter distribution at scales:1-80 h-1 Mpc
Narayanan, Vijay K.; Spergel, David N.; Davé, Romeel; Ma, Chung-Pei, Astrophys. J. 543, 103 (2000)

Ly-α constraints highly 
model dependent

Ly-α
exluded

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, 0812.0010 [astro-ph]

limits for DW
produced sterile 𝞶
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WDM constraints

Sterile ν produced via 
DW cannot account for 

the 100% of the observed 
DM abundance
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⌦DM
> 1 (11)
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phase-space
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DW produced sterile 𝞶 are warm dark matter
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The νMSM
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Type-I Seesaw with a phenomenologically 
motivated mass spectrum

Mass
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asymmetries of the Universe and 
of neutrino masses
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(does not significantly contribute to ν masses)
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νMSM thermal history

x=m/T

Yeq

TEW

Figure 1: The thermal history of the universe in the νMSM.

M3 are given by the eigenvalues of MN . They read

M2,3 = M̄ ± δM (10)

M̄ = M +
1

2M
Re
(

tr
(

m†
DmD

))

(11)

(δM)2 =

(

1

2M

(

Re
(

m†
DmD

)

33
− Re

(

m†
DmD

)

22

)

+∆M

)2

+
1

M2
Re
(

m†
DmD

)2

23
.

(12)

For all parameter choices we are interested in M̄ ≃ M holds in very good approximation. The
masses M2,3 are too big to be sensitive to loop corrections. In contrast, the splitting δM can be
considerably smaller than the size of radiative corrections to M2,3 [44]. The above expressions
have a different shape than those given in [6] because we use a different base in flavor space, see
appendix B.

These above formulae hold for the (zero temperature) masses in the microscopic theory. At
finite temperature the system is described by a thermodynamical ensemble, the properties of
which can usually be described in terms of quasiparticles with temperature dependent dispersion
relations. We approximate these by temperature dependent “thermal masses”.

2.4 Thermal History of the Universe in the νMSM

Apart from the very weakly coupled sterile neutrinos, the matter content of the νMSM is the same
as that of the SM. Therefore the thermal history of the universe during the radiation dominated

8
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L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, arXiv:1208.4607 [hep-ph]
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νMSM baryogenesis solution
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Figure 7: Constraints on the N2,3 masses M2,3 ≃ M and mixing U2 = tr(θ†θ) from baryogenesis in
scenarios I and II; upper panel - normal hierarchy, lower panel - inverted hierarchy. In the region
between the solid blue “BAU” lines, the observed BAU can be generated. The regions below the solid
black “seesaw” line and dashed black “BBN” line are excluded by neutrino oscillation experiments
and BBN, respectively. The areas above the green lines of different shade are excluded by direct
search experiments, as indicated in the plot. The solid lines are exclusion plots for all choices of
νMSM parameters, for the dashed lines the phases were chosen to maximize the BAU, consistent
with the blue lines.

T ∼ T− and their decay at T ∼ Td.
The requirement that these two mechanisms produce enough asymmetry put severe con-

straints on the parameters of the model, described in section 2.6. The value of Reω is fixed to
values near π/2. The mass splitting ∆M is limited to a very narrow range by equation (25).
Therefore we will use the mass splitting in vacuum δM instead of ∆M as a free parameter in
the following. All experimentally known parameters are fixed to the values given in table 1. The
phases δ, α1 and α2 are chosen to maximize the asymmetry. As in section 5 we observe that in
most of the parameter space Imω is the main source of CP-violation. We again find that it is
convenient to split the parameter space into the region 0.5 < eImω < 1.5 and the complement.
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Normal hierarchy
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Figure 7: Constraints on the N2,3 masses M2,3 ≃ M and mixing U2 = tr(θ†θ) from baryogenesis in
scenarios I and II; upper panel - normal hierarchy, lower panel - inverted hierarchy. In the region
between the solid blue “BAU” lines, the observed BAU can be generated. The regions below the solid
black “seesaw” line and dashed black “BBN” line are excluded by neutrino oscillation experiments
and BBN, respectively. The areas above the green lines of different shade are excluded by direct
search experiments, as indicated in the plot. The solid lines are exclusion plots for all choices of
νMSM parameters, for the dashed lines the phases were chosen to maximize the BAU, consistent
with the blue lines.

T ∼ T− and their decay at T ∼ Td.
The requirement that these two mechanisms produce enough asymmetry put severe con-

straints on the parameters of the model, described in section 2.6. The value of Reω is fixed to
values near π/2. The mass splitting ∆M is limited to a very narrow range by equation (25).
Therefore we will use the mass splitting in vacuum δM instead of ∆M as a free parameter in
the following. All experimentally known parameters are fixed to the values given in table 1. The
phases δ, α1 and α2 are chosen to maximize the asymmetry. As in section 5 we observe that in
most of the parameter space Imω is the main source of CP-violation. We again find that it is
convenient to split the parameter space into the region 0.5 < eImω < 1.5 and the complement.
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νMSM dark matter solution
Shi-Fuller mechanism: lepton number-driven 
resonant MSW conversion of active neutrinos  

Thermal spectrum
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produced νs
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The Inverse Seesaw (ISS)

Enlarge the SM field content with: - right handed neutrino fields, 𝝼R

- fermionic sterile singlets, s

In the basis nL≣(𝝼L, 𝝼RC, s)T the ISS neutrino mass terms read:

content) of the Inverse Seesaw model [1, 2, 3], compatible with the low energy
neutrino data. We consider a natural theory to be one that respects both
the different definitions of naturalness given by Weinberg and ’t Hooft:

• once the gauge symmetries and the field content of the theory are speci-
fied, the Lagrangian must be the most general local one consistent with
renormalization, gauge and Lorentz invariance conditions [4];

• the parameters in the Lagrangian must be of the same order of mag-
nitude. A physical parameter ↵ (or a set of physical parameters ↵i) is
allowed to be some order of magnitude smaller than the others only if
the limit ↵i ! 0 increases the symmetries of the Lagrangian2 [5].

We work in the framework of the Standard Model, with an SU(3)C ⌦

SU(2)L⌦U(1)Y gauge group, but we increase the particle field content by one
or more generations of right-handed neutrinos ⌫R and additional fermionic
singlets s; we also assume that the Lagrangian does not contain a mass term
like �m⌫c

Ls + h.c.. In other words, the singlets do not couple with the SM
neutrinos ⌫L: this does not spoil the naturalness of the Lagrangian, because it
is a hypothesis concerning the nature of the s field, then a hypothesis on the
field content of the theory. The last assumption may be justified assuming
some extra-SM symmetry, as in [1], but to be conservative we prefer to work
with a minimal number of assumptions about physics beyond the SM.

bf here organisation of the paper

2 The basic inverse seesaw idea

2.1 Nonzero Majorana mass terms for right-handed neu-

trino fields

In the basis nL ⌘ (⌫L, ⌫c
R, s)

T the Inverse Seesaw neutrino mass terms for one
generation of leptonic fields read [1]:

�Lm⌫ =
1

2
nT
L C M nL + h.c., (3)

2
In the following when we compare the magnitude of complex numbers we actually

refer to the values of their moduli.

4

t’Hooft naturalness criterium: terms violating L are “small”, i.e.
|𝝁|<< |n|,|d|

Neutrino masses in the limit |𝝁|<< |d|<< |n|:

One could link the smallness of 𝜇 with the one of mν (mechanism viable with large Yukawas), 
thus interesting phenomenology

Presence of sterile states (𝞶 anomalies or DM candidates)

{ (1)

1

R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34 (1986) 1642
M. C. Gonzalez-Garcia and J. W. F. Valle, Phys. Lett. B 216 (1989) 360

F. Deppisch and J. W. F. Valle, hep-ph/0406040

+1+1 -1

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].
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ISS mass scales

For each ISS realisation:
- #𝝼L + (#s - #𝝼R) light states

- #𝝼R pseudo-Dirac couples{ (1)

1

Mass

#𝝼L active neutrinos

3.1 General feature of the ISS models: 2 or 3 different neutrino

mass scales

Here we discuss interesting features common to all ISS models that has been analysed in
this work.

As a function of the number of generation for each kind of field, the model in the
mass basis always exhibits #⌫L + (#s � #⌫R) light states, (light in the sense that they
are massless when the pertubation �M vanishes), plus almost heavy states with masses of
order O(ni,j)+O(di,j) that forms #⌫R pseudo-Dirac couples with mass differences of order
O(µi,j), O(mi,j); these states become Dirac particles in the limit �M = 0.

In fact, the low-energy physics of these models is determined by two quantities: the scale
of the Lepton Number Violating (LNV) parameters µ and the ratio k between the scale of
the Dirac mass terms d and the one of the n mass matrix. This can be understood from
the one generation toy model (#⌫L = #⌫R = #s = 1), where the active neutrino mass, eq.
(17), is m⌫ = |µ|k/(1 + k), with k = |d|/|n|. The ratio k is directly proportional to the
non-unitarity of the leptonic mixing matrix, as shows the expression (18) (in the toy model
the leptonic matrix reduces to the first entry of the active neutrino mass eigenvector), and
from the constraints on the non-unitarity of the PMNS matrix, k cannot be too large (in our
analysis we found solutions in agreement with experimental data only if O(d)/O(n) . 10�1).
These features are shared also by the realistic extensions of the toy model analyzed, with
the caveat that in these cases d, n, µ are matrices, and these considerations apply on the
order of magnitude of their entries.

The mass spectrum of the ISS models is thus characterised by 2 or 3 different mass
scales:

• the one of the light active neutrinos ⇠ O(µ)O(k);

• the heavy scale corresponding to the heavy states, roughly O(d) +O(n) ⇡ O(n);

• in the case where #s > #⌫R, there is an intermediate scale of order O(µ) for #s�#⌫R
corresponding to sterile light states.

3.2 Removing unphysical parameters

After the electroweak symmetry breaking (EWSB), the leptonic part of the Lagrangian
writes in the basis in which gauge interactions are diagonal, as:

Lleptonic = Lkinetic + Lmass + LCC + LNC + Lem, (31)

where,
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*only if #s > #𝝼R*

(#s - #𝝼R) light sterile states

3.1 General feature of the ISS models: 2 or 3 different neutrino

mass scales

Here we discuss interesting features common to all ISS models that has been analysed in
this work.

As a function of the number of generation for each kind of field, the model in the
mass basis always exhibits #⌫L + (#s � #⌫R) light states, (light in the sense that they
are massless when the pertubation �M vanishes), plus almost heavy states with masses of
order O(ni,j)+O(di,j) that forms #⌫R pseudo-Dirac couples with mass differences of order
O(µi,j), O(mi,j); these states become Dirac particles in the limit �M = 0.

In fact, the low-energy physics of these models is determined by two quantities: the scale
of the Lepton Number Violating (LNV) parameters µ and the ratio k between the scale of
the Dirac mass terms d and the one of the n mass matrix. This can be understood from
the one generation toy model (#⌫L = #⌫R = #s = 1), where the active neutrino mass, eq.
(17), is m⌫ = |µ|k/(1 + k), with k = |d|/|n|. The ratio k is directly proportional to the
non-unitarity of the leptonic mixing matrix, as shows the expression (18) (in the toy model
the leptonic matrix reduces to the first entry of the active neutrino mass eigenvector), and
from the constraints on the non-unitarity of the PMNS matrix, k cannot be too large (in our
analysis we found solutions in agreement with experimental data only if O(d)/O(n) . 10�1).
These features are shared also by the realistic extensions of the toy model analyzed, with
the caveat that in these cases d, n, µ are matrices, and these considerations apply on the
order of magnitude of their entries.

The mass spectrum of the ISS models is thus characterised by 2 or 3 different mass
scales:

• the one of the light active neutrinos ⇠ O(µ)O(k);

• the heavy scale corresponding to the heavy states, roughly O(d) +O(n) ⇡ O(n);

• in the case where #s > #⌫R, there is an intermediate scale of order O(µ) for #s�#⌫R
corresponding to sterile light states.

3.2 Removing unphysical parameters

After the electroweak symmetry breaking (EWSB), the leptonic part of the Lagrangian
writes in the basis in which gauge interactions are diagonal, as:

Lleptonic = Lkinetic + Lmass + LCC + LNC + Lem, (31)

where,
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2 #𝝼R heavy states
(pseudo-Dirac pairs)

3.1 General feature of the ISS models: 2 or 3 different neutrino

mass scales

Here we discuss interesting features common to all ISS models that has been analysed in
this work.

As a function of the number of generation for each kind of field, the model in the
mass basis always exhibits #⌫L + (#s � #⌫R) light states, (light in the sense that they
are massless when the pertubation �M vanishes), plus almost heavy states with masses of
order O(ni,j)+O(di,j) that forms #⌫R pseudo-Dirac couples with mass differences of order
O(µi,j), O(mi,j); these states become Dirac particles in the limit �M = 0.

In fact, the low-energy physics of these models is determined by two quantities: the scale
of the Lepton Number Violating (LNV) parameters µ and the ratio k between the scale of
the Dirac mass terms d and the one of the n mass matrix. This can be understood from
the one generation toy model (#⌫L = #⌫R = #s = 1), where the active neutrino mass, eq.
(17), is m⌫ = |µ|k/(1 + k), with k = |d|/|n|. The ratio k is directly proportional to the
non-unitarity of the leptonic mixing matrix, as shows the expression (18) (in the toy model
the leptonic matrix reduces to the first entry of the active neutrino mass eigenvector), and
from the constraints on the non-unitarity of the PMNS matrix, k cannot be too large (in our
analysis we found solutions in agreement with experimental data only if O(d)/O(n) . 10�1).
These features are shared also by the realistic extensions of the toy model analyzed, with
the caveat that in these cases d, n, µ are matrices, and these considerations apply on the
order of magnitude of their entries.

The mass spectrum of the ISS models is thus characterised by 2 or 3 different mass
scales:

• the one of the light active neutrinos ⇠ O(µ)O(k);

• the heavy scale corresponding to the heavy states, roughly O(d) +O(n) ⇡ O(n);

• in the case where #s > #⌫R, there is an intermediate scale of order O(µ) for #s�#⌫R
corresponding to sterile light states.

3.2 Removing unphysical parameters

After the electroweak symmetry breaking (EWSB), the leptonic part of the Lagrangian
writes in the basis in which gauge interactions are diagonal, as:

Lleptonic = Lkinetic + Lmass + LCC + LNC + Lem, (31)

where,
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3 active neutrinos

4 heavy states
(pseudo-Dirac pairs)

Mass

M

m

𝜇

𝝁

𝝁

𝝁

𝝁
4 heavy states

(pseudo-Dirac pairs)

3 active neutrinos

1 light sterile state

Minimal ISS spectra

(2,2) ISS (2,3) ISS

0

 24



ARS leptogenesis in the (2,2) ISS
Mass splitting Yukawas

YΔB > 10-10

YΔB > 10-11

YΔB > 10-12
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Testability

A large fraction of solutions is 
testable in future experiments
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Towards a dark matter solution
Recall the (2,3) ISS mass spectrum

3 active neutrinos

1 light sterile state
(DM candidate)

4 heavy states
(pseudo-Dirac pairs)

Mass

ISS can accommodate tiny 𝞶 masses with large O(1) Yukawas

Heavy states can thermalise in the early Universe

I=1

I=2,...5
M

m

𝜇

𝝁

𝝁
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Dark Matter Production from heavy neutrino decays
Freeze-in: decay of a thermalised species into one which is out of equilibrium

Heavy thermalised states
(I=2,...,5)

Light sterile neutrino
(I=1)

Effective if  Yeff > 10-7 and Yeff sin𝜃 < 10-7 and mh < MI < 1 TeV

Ωh2 ≃ 0.12 compatible with ID bounds

The spectrum of the produced DM is “colder” than the DW one, evading the Ly-α 
bounds

L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, arXiv:0911.1120 [hep-ph]

expressed as: Yeff sin ✓ < 10�7.
The dark matter relic density depends on the decay rate of the pseudo-Dirac neutrinos into

DM as follows:

⌦DMh
2
'

1.07⇥ 1027

g
3/2

⇤

X

I

gI
ms� (NI ! DM + anything)

m
2

I

, (3.15)

where the sum runs over the pseudo-Dirac states and gI represents the number of internal degrees
of freedom of each state. For pseudo-Dirac neutrinos lighter than the Higgs boson, DM production
occurs through three-body processes whose rate is too suppressed to generate a sizeable amount
of DM. On the other hand, the above analytical expression is not strictly applicable for heavier
pseudo-Dirac neutrinos since the mixing angle ✓ depends on the vacuum expectation value (vev)
of the Higgs boson and is thus zero above the EW phase transition temperature. To a good
approximation, the correct DM relic density is determined by multiplying Eq. (3.15) by "

2(mI),
where the function "(mI) is given by:

"(mI) =
2

3⇡

Z 1

0

f(xI)x
3

IK1(xI)dxI , xI =
mI

T
, (3.16)
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where TEW ⇡ 140 GeV is the temperature associated to the EW phase transition. As shown in
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It is then clear that the correct DM relic density can be achieved with a suitable choice of the
parameters. It is worth noticing that this production mechanism is complementary to the DW
one, which is always active provided that there is a nonzero active-sterile mixing.

We have reported in Figure 7 the (observed) value ⌦DMh
2 = 0.12 of the DM abundance,

assuming for simplicity the same mass m5 and effective Yukawa couplings Yeff for the 4 heavy
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It is then clear that the correct DM relic density can be achieved with a suitable choice of the
parameters. It is worth noticing that this production mechanism is complementary to the DW
one, which is always active provided that there is a nonzero active-sterile mixing.
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It is then clear that the correct DM relic density can be achieved with a suitable choice of the
parameters. It is worth noticing that this production mechanism is complementary to the DW
one, which is always active provided that there is a nonzero active-sterile mixing.

We have reported in Figure 7 the (observed) value ⌦DMh
2 = 0.12 of the DM abundance,

assuming for simplicity the same mass m5 and effective Yukawa couplings Yeff for the 4 heavy
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Dark Matter Production in the (2,3) ISS
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Split ISS

Freeze-in DM?

Leptogenesis?

One heavier pseudo-Dirac pair at the origin of DM, 
one lighter other accounting for leptogenesis?

In the Inverse Seesaw mDM ~ μ ~ ΔM
!30



Putting all together?
The ISS can provide a common framework to account for neutrino 

masses and dark matter, or for neutrino masses and BAU.

Common solution for the three problems?

Viable DM 
points provide 
too small BAU

Viable BAU 
points 

overproduce 
DM

!31



Conclusion
Sterile fermions can provide a common 

solution to the SM observational problems:
• neutrino masses 
• dark matter 
• baryogenesis

The νMSM provides a minimal common solution for 
the three problems, but results to be quite fine-tuned

The ISS provides simultaneous solutions for neutrino physics 
and DM or for neutrino physics and BAU, but BAU and DM 

solutions appear in different regions of the parameter space 

!32



Backup



Parameter space for DM in the ISS(2,3) 
Consider a toy model with 1 νL, 1 νR and 2 s

we find

E(x) = diag
�
1, exp(�ir3x3)

�
, r = TL/TEW , (119)

with

T 3
L =

⇡2

108⇣(3)
M0�M2 . (120)

All remaining operators on the right-hand side of Eq. (37) are now of the structure E†(x)F †FE(x).

We can thus perform a second change of basis by the unitary matrix V (x) which diagonalizes

all these remaining operators. After removing the remaining ambiguity in the choice of V (x) by

requiring the second row to be real and positive, V (x) can be calculated explicitly. It is of the form

V (x,↵) =

0

BB@
ei(↵�x3r3)f11 ei(↵�x3r3)f12

f21 f22

1

CCA , (121)

where fij are time-independent combinations of the absolute values of the matrix elements of F †F

and ↵ denoting the phase of (F †F )12. We see that in the total basis transformation by the matrix

E·V , the time (or equivalently temperature) dependence reduces to a global phase and hence cancels

out in the unitary matrix transformation. We may thus replace E(x)V (x,↵) 7! V↵ = V (x = 0,↵).

Finally, exploiting

V † df

dx
V =

d

dx

⇣
V †fV

⌘
+


V †dV

dx
, V †fV

�
, (122)

which holds for any function f(x) and unitary matrix V (x), we arrive at Eq. (43) quoted in the

main text. As mentioned in the main text, this introduces the matrix D, which is defined by

V †V̇ = x2D . (123)

B The parameter space for DM in the ISS(2,3)

In Section 4.2.3, we observed that a small mixing angle between the active sector and the DM

candidate (required to avoid overproducing DM in the DWmechanism), can be achieved by allowing

for a sizable hierarchy within the submatrix n of Eq. (12). In this Appendix we explain this result

analytically by considering a minimal toy model with one active flavor, one right-handed neutrino

and two sterile fermions:

M =

0

BBBBBBBBBB@

0 1
2Y v 0 0

1
2Y v 0 n1⇤ n2⇤

0 n1⇤ ⇠1⇤ 0

0 n2⇤ 0 ⇠2⇤

1

CCCCCCCCCCA

. (124)
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For simplicity we will take all parameters to be real in the following. To leading order in Y and

⇠1,2, this mass matrix is diagonalized as

U
T
MU = diag(0,mDM,mPD �mDM,mPD +mDM) , (125)

with mPD =
p
n2
1 + n2

2 ⇤ and mDM =
n2
1⇠2+n2

2⇠1
n2
1+n2

2
⇤. In this basis, the DM-active mixing is de-

termined by the entry U12, i.e. by the first component of the (correctly normalized) eigenvector

corresponding to the second eigenvalue in Eq. (125):

sin2(2✓DM) = 4U2
12 '
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1n

2
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(n2
1 + n2

2)(n
2
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2 + n2
2⇠1)

2

v2Y 2

⇤2
. (126)

If n1,2 are order one parameters, this yields sin2(2✓DM) = O(v2Y 2/⇤2) = O(10�10
� 10�4) for

Y = O(10�7
� 10�4). If on the other hand n1 � n2 (or vice versa), the mixing angle (which

depends on the product of both entries) is suppressed, whereas the mass eigenvalues (dependent

on the sum of both entries) are governed by the larger entry.
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