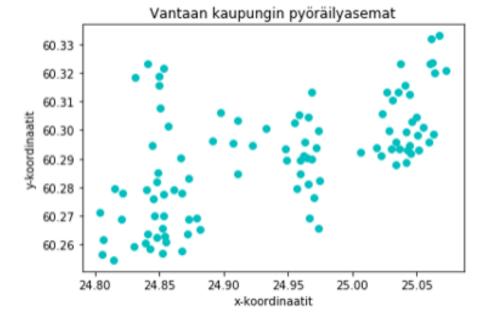
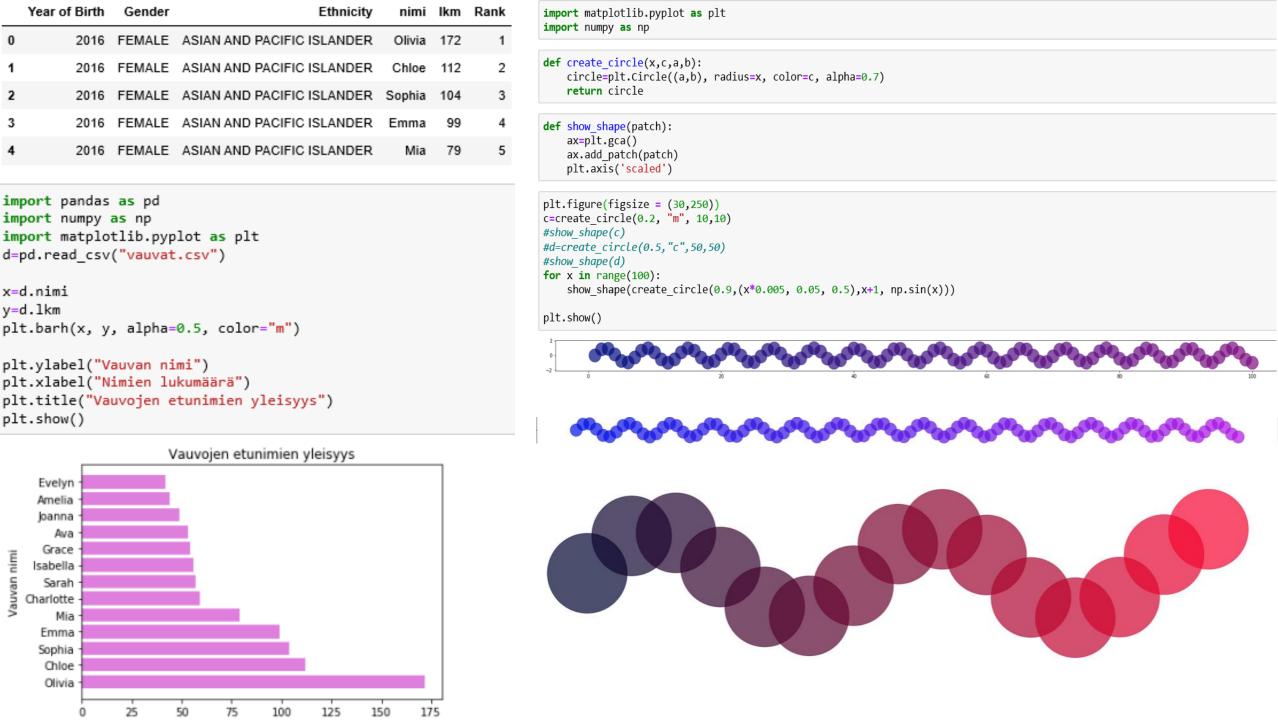


What was our job?

- Test CERN's the new material for students
- Practise data analysis: for example, how to draw histograms and calculate invariant mass
- Produce own data by doing experiments (pendulum movement)
- Learn how to use Jupyter notebook and Python 3.0
- Increase our knowledge from programming and data concerning particle detectors


```
In [1]: import matplotlib.pyplot as plt
In [2]: def create circle(x,c,a,b):
             circle=plt.Circle((a,b), radius=x, color=c, alpha=0.5)
            return circle
In [3]: def show shape(patch):
             ax=plt.gca()
            ax.add patch(patch)
            plt.axis('scaled')
In [6]:
        c=create circle(1,"m",3,4)
        show shape(c)
        d=create_circle(2,"c",5,6)
        show shape(d)
        for x in range(6):
             show_shape(create_circle(x+1,(x*0.1, 0.2, 0.5),x,x+2))
        plt.show()
         12
         10
```


2


```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

d=pd.read_csv("asemat.csv")

d.head()

plt.plot(d.x , d.y, "o", color="c")
plt.title("Vantaan kaupungin pyöräilyasemat")
plt.xlabel("x-koordinaatit")
plt.ylabel("y-koordinaatit")
plt.show()
```


Year of Birth

import pandas as pd

import numpy as np

1

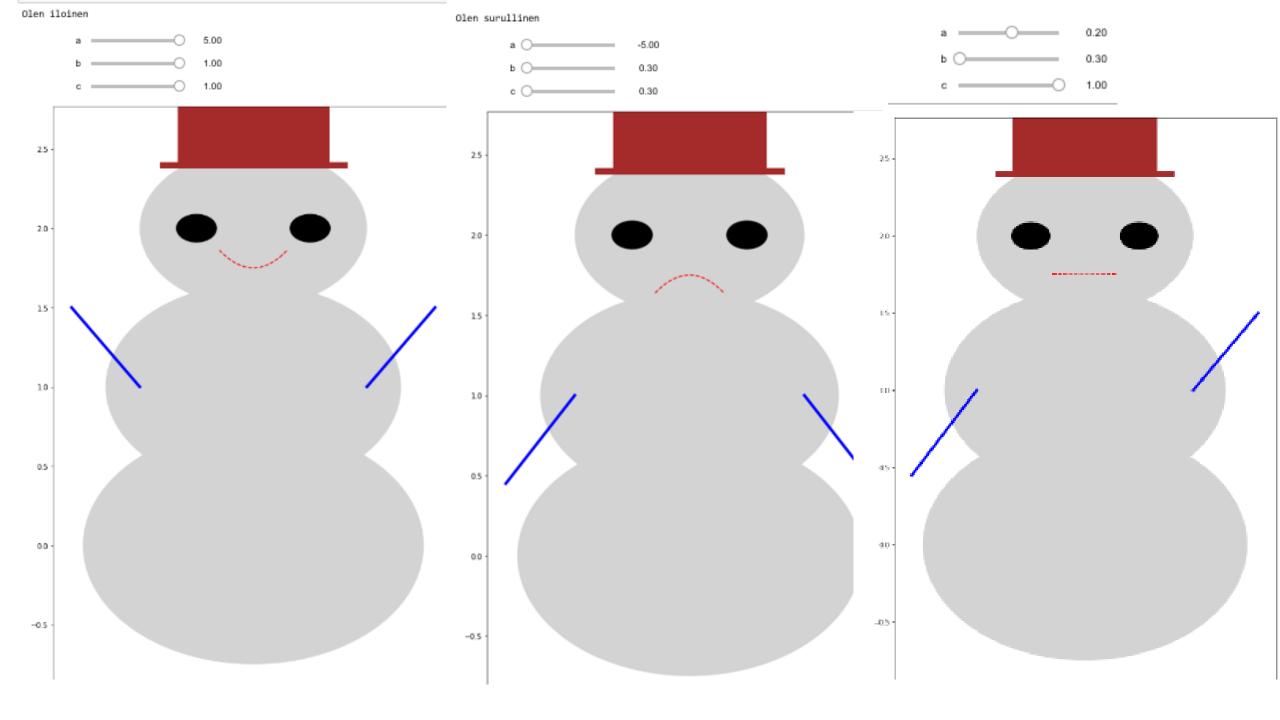
2

3

4

x=d.nimi

y=d.1km

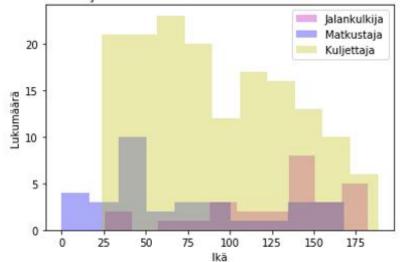

plt.show()

Evelyn Amelia Joanna Ava Grace Isabella Sarah Charlotte Mia Emma Sophia Chloe Olivia

25

50

Gender



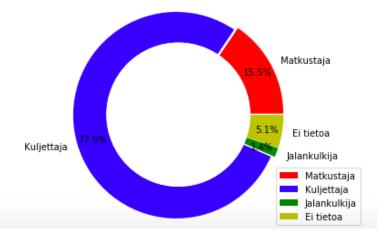
HUONO VERSIO!!

```
In [223]: JK=Kuollut+Jalankulkija
KU=Kuollut+Kuljettaja
MA=Matkustaja+Kuollut

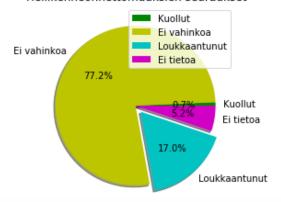
In [224]: plt.hist(JK.Ikä, alpha=0.33, label=("Jalankulkija"), color="m")
    plt.hist(MA.Ikä, alpha=0.33, label=("Matkustaja"), color="b")
    plt.hist(KU.Ikä, alpha=0.33, label=("Kuljettaja"), color="y")
    plt.legend()
    plt.title("Kuolemaan johtaneiden tieliikenneonnettomuuksien lukusuhteet")
    plt.xlabel("Ikä")
    plt.ylabel("Lukumäärä")
    plt.show()
```

Kuolemaan johtaneiden tieliikenneonnettomuuksien lukusuhteet

Kuolemaan johtaneiden onnettomuuksien lukusuhteet


HYVÄ VERSIO!

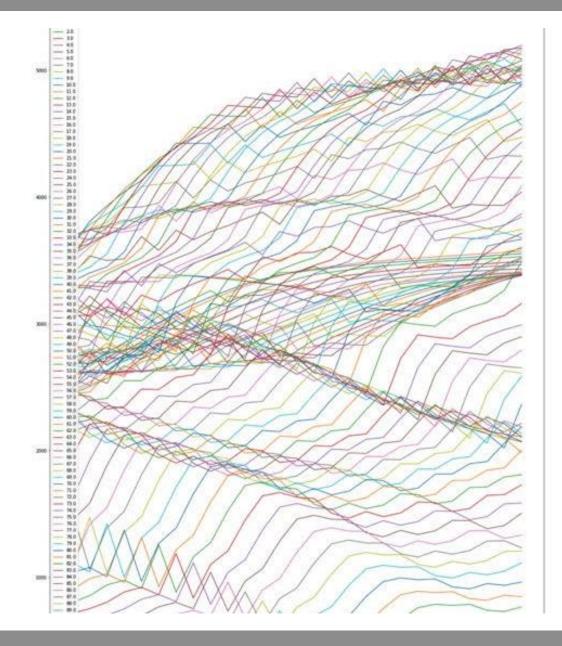
Kuolemaan johtaneiden tieliikenneonnettomuuksien lukusuhteet


```
In [215]: Kuljettaja=data0[(data0["Kulj matk"]=="KU")]
          Matkustaja=data0[(data0["Kulj matk"]=="MA")]
          Jalankulkija=data0[(data0["Kulj matk"]=="JK")]
          Ei dataa=data0[(data0["Kulj matk"]=="XX")]
In [216]: labels=['Matkustaja','Kuljettaja', 'Jalankulkija', 'Ei tietoa']
          sizes=[len(Matkustaja)/len(data0), len(Kuljettaja)/len(data0), len(Jalankulkija)/len(data0), len(Ei dataa)/len(data0)]
          colors=['r', 'b', 'g', 'y']
          explode = (0.02, 0.02, 0.02, 0.02)
          plt.pie(sizes, labels=labels, explode=explode, colors=colors,autopct="%1.1f%%", pctdistance=0.85)
          plt.title("Tieliikenneonnettomuuden osallinen")
          plt.axis('equal')
          centre_circle = plt.Circle((0,0),0.70,fc='white')
          fig = plt.gcf()
          fig.gca().add artist(centre circle)
          plt.tight layout()
          plt.legend()
          plt.show()
```

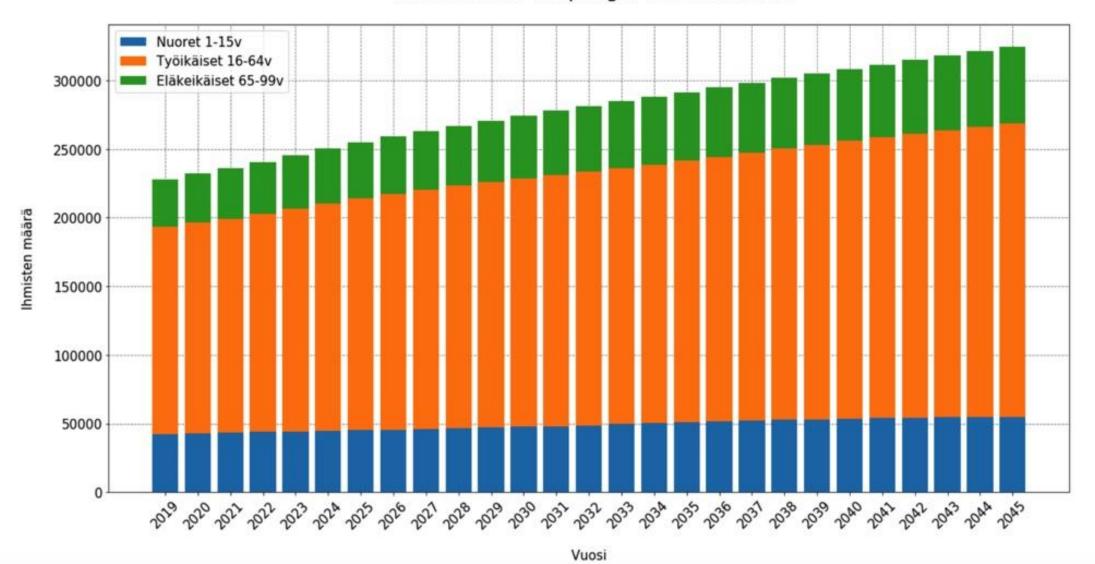
Tieliikenneonnettomuuden osallinen

Tieliikenneonnettomuuksien seuraukset

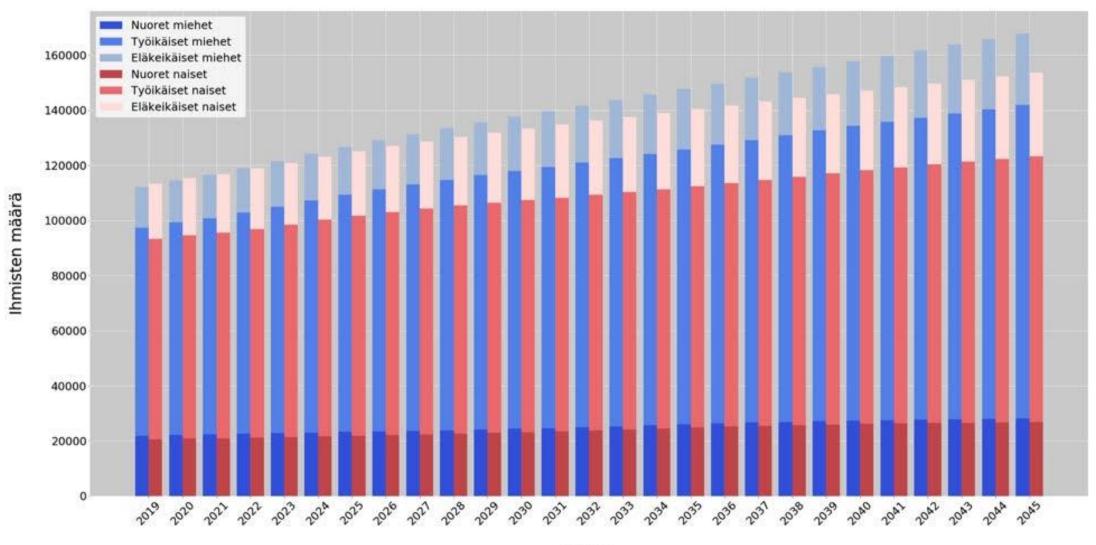
Tieliikenneonnettomuuksien seuraukset

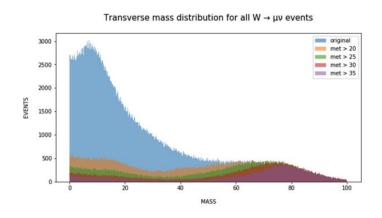


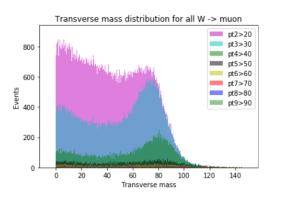
Esimerkki aineistosta


	Sukupuoli	Age	2019	2020	2021	2022	2023	2024	2025	2026	 2036	2037	2038	2039	2040	2041	2042	2043	2044
1	Kaikki	0.0	2576.0	2687.0	2775.0	2850.0	2928.0	3010.0	3084.0	3152.0	 3469.0	3481.0	3490.0	3499.0	3507.0	3516.0	3524.0	3534.0	3544.0
2	Kaikki	1.0	2613.0	2622.0	2720.0	2823.0	2899.0	2981.0	3055.0	3125.0	 3486.0	3497.0	3509.0	3519.0	3528.0	3536.0	3546.0	3554.0	3563.0
3	Kaikki	2.0	2622.0	2618.0	2614.0	2725.0	2828.0	2906.0	2979.0	3049.0	 3442.0	3457.0	3468.0	3480.0	3489.0	3498.0	3505.0	3513.0	3521.0
4	Kaikki	3.0	2593.0	2624.0	2610.0	2616.0	2726.0	2831.0	2902.0	2971.0	 3399.0	3415.0	3429.0	3440.0	3451.0	3459.0	3468.0	3474.0	3483.0
5	Kaikki	4.0	2779.0	2603.0	2625.0	2619.0	2626.0	2738.0	2836.0	2903.0	 3368.0	3385.0	3400.0	3414.0	3424.0	3435.0	3443.0	3451.0	3457.0
6	Kaikki	5.0	2722.0	2784.0	2599.0	2630.0	2624.0	2632.0	2737.0	2832.0	 3329.0	3348.0	3364.0	3379.0	3393.0	3402.0	3413.0	3420.0	3428.0
7	Kaikki	6.0	2666.0	2727.0	2782.0	2604.0	2634.0	2629.0	2632.0	2735.0	 3280.0	3313.0	3331.0	3347.0	3361.0	3375.0	3384.0	3394.0	3401.0
8	Kaikki	7.0	2719.0	2681.0	2737.0	2797.0	2619.0	2651.0	2642.0	2643.0	 3246.0	3282.0	3314.0	3333.0	3349.0	3363.0	3376.0	3385.0	3395.0
9	Kaikki	8.0	2780.0	2727.0	2683.0	2744.0	2804.0	2628.0	2655.0	2645.0	 3197.0	3238.0	3274.0	3306.0	3324.0	3339.0	3353.0	3366.0	3375.0

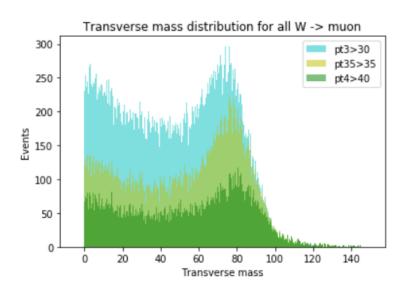
```
fig = plt.figure(figsize=(40, 20), edgecolor='white')
ax = fig.add_subplot(1,1,1)
ax.set axisbelow(True)
ax.set_facecolor('lightgray')
ax.yaxis.grid(color='white')
ax.xaxis.grid(color='white')
for ax, color in zip([ax], ['white', 'white', 'white']):
   plt.setp(ax.spines.values(), color=color)
    plt.setp([ax.get_xticklines(), ax.get_yticklines()], color='black')
width = 0.4
ind = np.arange(len(myx))
bl = plt.bar(ind, nm, width, label='Nuoret miehet', color='royalblue')
b2 = plt.bar(ind, km, width, label='Työikäiset miehet', bottom=nm, color='cornflowerblue'
b3 = plt.bar(ind, vm, width, label='Eläkeikäiset miehet', bottom=nkm, color='lightsteelbl
b4 = plt.bar(ind + width, nn, width, label='Nuoret naiset', color='indianred')
b5 = plt.bar(ind + width, kn, width, label= Työikäiset naiset', bottom=nn, color='lightco
b6 = plt.bar(ind + width, vn, width, label= Eläkeikäiset naiset', bottom=nkn, color= mist
plt.xticks(ind + width / 2, labels, size=25, rotation=45)
plt.yticks(size=25)
plt.title('\n Vantaan kaupungin väestöennuste \n', fontsize=45)
plt.ylabel('\n Ihmisten määrä \n', fontsize=35)
plt.xlabel('\n Vuosi \n', fontsize=35)
plt.legend(fontsize=25)
plt.show()
```

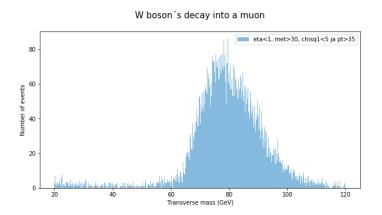

```
#set the size for the graph -- really important
fig = plt.figure(figsize=(20, 10))
ax = fig.add subplot(1,1,1)
ax.set_axisbelow(True)
ax.yaxis.grid(color='gray', linestyle='dashed')
ax.xaxis.grid(color='gray', linestyle='dashed')
#This is not needed
#for i in ages:
# ind = a.index[a.Age == i][0]
     entries = list(a.iloc[ind])[2:]
     plt.plot(myx, entries, label=i+1)
#bring created lists to the graph
pl = plt.bar(myx, nuoret, label='Nuoret 1-15v')
p2 = plt.bar(myx, keski, label='Työikäiset 16-64v', bottom=nuoret)
p3 = plt.bar(myx, vanhat, label='Eläkeikäiset 65-99v', bottom=nk)
#plt.bar(myx, kaikki, label='Kaikki') #not needed in bar graphs
#visual adjustments -> improved visuality = easier to understand
plt.xticks(myx, labels, size = 15, rotation=45)
plt.yticks(size = 15)
plt.title('\n Vantaan koko kaupungin väestöennuste \n', fontsize= 23)
plt.xlabel('\n Vuosi \n', fontsize= 15)
plt.ylabel('\n Ihmisten määrä \n', fontsize= 15)
plt.legend(fontsize = 15)
plt.show()
```

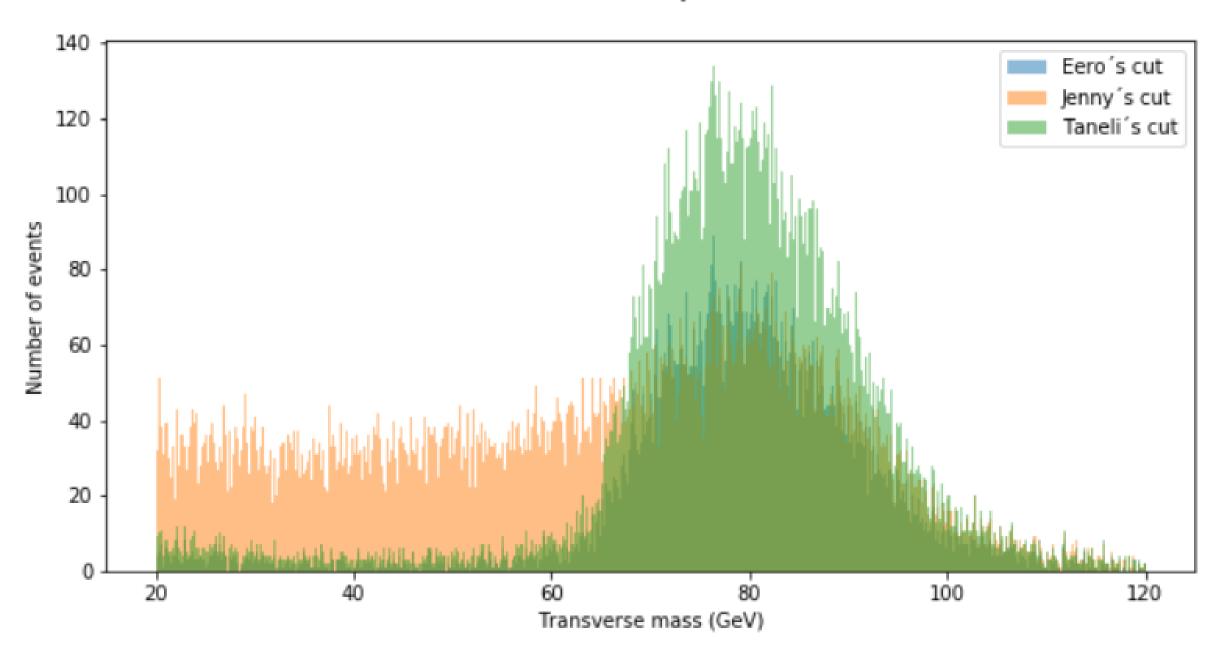



Vantaan koko kaupungin väestöennuste

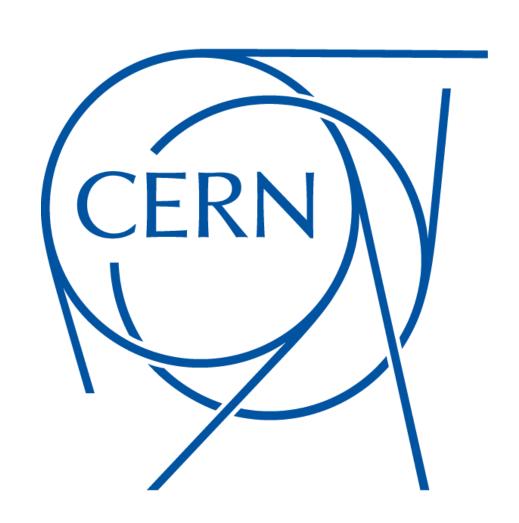
Vantaan kaupungin väestöennuste







Transverse mass distribution for all W $\rightarrow \mu\nu$ events



Thank you for your attention

