Vector-like quark coupling determination at the LHC and future hadron colliders

Luca Panizzi

University of Pisa, Italy

JHEP 1712 (2017) 057, arXiv:1710.02325 [hep-ph], with Daniele Barducci

Vector-like fermions

A fermion is **vector-like** under a gauge group if its left-handed and right-handed chiralities transform in the **same way**

e.g. SM quarks are vector-like under $SU(3)_c$ but are chiral under $SU(2) \times U(1)_Y$

Why "vector-like"?

$$\mathcal{L}_W = g/\sqrt{2} \, j^{\mu\pm} W^{\pm}_{\mu}$$

 $\begin{array}{l} \text{SM Chiral fermions} \\ j_L^\mu = \bar{f}_L \gamma^\mu f_L' \quad j_R^\mu = 0 \\ j^\mu = j_L^\mu + j_R^\mu = \bar{f} \gamma^\mu (1 - \gamma^5) f' \\ \text{V-A structure} \end{array}$

Charged current Lagrangian

Vector-like fermions $j_L^{\mu} = \bar{f}_L \gamma^{\mu} f'_L \qquad j_R^{\mu} = \bar{f}_R \gamma^{\mu} f'_R$ $j^{\mu} = j_L^{\mu} + j_R^{\mu} = \bar{f} \gamma^{\mu} f'$ V structure

Peculiar Properties

 $\mathcal{L}_M = -M\bar{\psi}\psi$ Gauge invariant mass term without the Higgs No need to add both quarks and leptons: axial anomalies are automatically absent

Vector-like quarks

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions: KK excitations of bulk fields
- Composite Higgs models: excited resonances of the bound states which form SM particles
- Little Higgs models: partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- Non-minimal SUSY extensions: increase corrections to Higgs mass without affecting EWPT

Characterising VLQ properties if a discovery is made would be essential for embedding them into some scenarios (and exclude others!)

VLQ chirality

Minimal SM extensions with one VLQ representation interacting through Yukawa terms

	SM	Singlets		Doublets		Triplets		
	$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$	(<i>t</i> ′)	(b')	$\begin{pmatrix} X \\ t' \end{pmatrix}$	$\left(\begin{smallmatrix} t' \\ b' \end{smallmatrix} \right)$	$\binom{b'}{Y}$	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix}$	$\begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$
$SU(2)_L$	2 and 1	1		2			3	
$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3	-1/3	7/6	1/6	-5/6	2/3	-1/3
\mathcal{L}_Y	$-y^i_uar{q}^i_L H^c u^i_R \ -y^i_dar{q}^i_L V^{i,j}_{CKM} H d^j_R$	$egin{array}{c} -\lambda^i_u \ -\lambda^i_d \end{array}$	$ar{q}_L^i H^c t_R' \ ar{q}_L^i H b_R''$	$\begin{vmatrix} -\lambda \\ -\lambda \end{vmatrix}$	${}^i_u\psi_L H^{(i)}_{d}\psi_L H^{(i)}_{$	$u_R^{(c)} u_R^{(c)} d_R^{(c)}$	$-\lambda_i \bar{q}_L^i \tau^a$	$H^{(c)}\psi^a_R$

Mixing in left- and right-handed sectors behaves differently: $\mathcal{L} = (\bar{q}_{SM} \ \bar{Q}_{VLQ})_L V_L^{\dagger} \mathcal{M} V_R (\frac{q_{SM}}{Q_{VLQ}})_R$

Singlets, triplets...Doublets, quadruplets...
$$\frac{\tan \theta_R}{\tan \theta_L} = \frac{m_q^{SM}}{M_{VLQ}}$$
dominantly
left-handed $M_{VLQ} \gg m_q^{SM}$ $\frac{\tan \theta_L}{\tan \theta_R} = \frac{m_q^{SM}}{M_{VLQ}}$ dominantly
right-handed

VLQ couplings always have a dominant chirality, which depends on their representation

Discriminating the chirality of a VLQ

Polarisation of the gauge boson

For a T singlet: $|M|_L^2 = \frac{g^2}{2} \sin^2 \theta_L^u (m_T^2 - m_W^2) \qquad |M|_0^2 = \frac{g^2}{4} \frac{m_T^2}{m_W^2} \sin^2 \theta_L^u (m_T^2 - m_W^2) \qquad |M|_R^2 = 0$

The W boson is always mainly longitudinally polarised for both L and R chiralities ${\cal O}(1)\% \mbox{ transverse component}$

• Same for Z polarisation in the $T \rightarrow tZ$ decay

Higgs does not provide any information as it is a scalar

Luca Panizzi

Vector-like quark coupling determination at the LHC and future hadron colliders

Discriminating the chirality of a VLQ

This information can be exploited to discriminate left from right chiralities!

Luca Panizzi

Recasting experimental data

Pair production of a VLQ with charge 2/3 decaying exclusively to Zt: $pp \rightarrow T\bar{T} \rightarrow ZtZ\bar{t}$

High E_T cut: the Z goes mostly invisible and the lepton comes from top decay

Depending on the uncertainty on the background, a discovery can be made in the HL phase If it cannot be reduced, only exclusion bounds will be possible with this selection

Discrimination at higher luminosities $pp \rightarrow T\bar{T} \rightarrow ZtZ\bar{t}$

Discrimination method on the leading lepton p_T distribution

$$\chi^2 = \sum_{\rm bins} (L-R)^2 / \max(L,R)$$

- We assume that the background can be neglected at discovery and only consider the poisson uncertainties on the signal for each bin
- The discrimination will depend on the number of bins (i.e. d.o.f. for the χ^2)

p_T of leading lepton after the cuts with different binning

Vector-like quark coupling determination at the LHC and future hadron colliders

Discrimination at higher luminosities $pp \to T\bar{T} \to ZtZ\bar{t}$

A larger binning of the distribution allows a discrimination for smaller values of masses and luminosities

Luca Panizzi

Discrimination at higher energies

Discrimination at higher energies

Pair production of a VLQ with charge 5/3 decaying exclusively to Wt: $pp \rightarrow X\bar{X} \rightarrow WtW\bar{t}$

- Considering same-sign di-lepton final state
- For discrimination we must be able to identify the lepton from top decay

Luca Panizzi

Vector-like quark coupling determination at the LHC and future hadron colliders

Discrimination at higher energies $pp \rightarrow X\bar{X} \rightarrow WtW\bar{t}$

33 TeV

100 TeV

Promising perspectives for discrimination of coupling chiralities at high energy hadron collider prototypes!

Update for 27 TeV in progress

Conclusions and perspectives

- HL-LHC and future HE machines will increase the reach for discovering new physics
- It is paramount to be ready to characterise new signals, optimising strategies which depend on the observed final states
- For VLQs interacting with 3rd SM generation, **top polarisation** can be used at HL-LHC and HE-LHC to test the **VLQ dominant chirality**
- Is chirality discrimination possible if VLQs interact with light generations?
- Would single production processes provide a better characterisation potential?
- How would results change if VLQs have a large width?