First Steps to the Optimization of Undulator Parameters for 125 GeV Drive Beam

by Manuel Formela

Overview

- Introducing formulas for:
 - Power absorped by the undulator vessel in form of photons P_{vessel}
 - Number of produced e^+ by e^-e^+ pair production in a Ti-6% Al-4%V target
- Undulator scheme used in the RDR
- Reproducing values for already calculated *P*_{vessel} for the RDR set-up
- Calculations of N_{e^+} for various parameter values for K, λ , l_u , N_{hcell}
- Dropping some parameter combinations due to restraints in N_{e^+} and P_{vessel}
- Outlook into possible future

Radiated Synchrotron Energy Spectral Density per Solid Angle per Electron

Formulas taken from:

Kincaid, Brian M. "A short-period helical wiggler as an improved source of synchrotron radiation." *Journal of Applied Physics* 48.7 (1977): 2684-2691.

First approximations:

- relativistic ($\gamma \gg 1$)
- far field ($R \gg \lambda_{\gamma}$)
- pointlike charge $(V_e^- \rightarrow 0)$

$$\frac{dI(\omega)}{d\Omega} = \frac{d^2 W(\omega)}{d\Omega d\omega} = \frac{e^2 \omega^2}{14\pi^3 \epsilon_0 c} \left| \int_{-\infty}^{+\infty} \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega \left(t - \frac{\hat{n}\vec{r}(t)}{c}\right)} dt \right|$$

$$\frac{dI(\omega)}{d\Omega} = \frac{e^2 \omega^2 K^2}{4\pi^3 \epsilon_0 c \omega_u^2 \gamma^2} \sum_{n=1}^{\infty} \left[J_n'^2(x_1) + \left(\frac{\gamma \theta}{K} - \frac{n}{x_1}\right)^2 J_n^2(x_1) \right] \frac{\sin^2 \left[N_u \pi \left(\frac{\omega}{\omega_1} - n\right) \right]}{\left(\frac{\omega}{\omega_1} - n\right)^2}$$

2nd approximations:

- small (radiation) angle ($|\theta| \ll 1 \Rightarrow \cos \theta \approx 1$, $\sin \theta \approx \theta$); this is reasonable, because the radiation cone has according to theory an Opening angle of $\theta \approx 1/\gamma$

Dhatan francisanas

- Many undulator periods ($N_u \gtrsim 100$)
- reasonably small undulator parameter ($K \lesssim 1 \rightarrow K/\gamma \ll 1$)

$$\frac{dI(\omega)}{d\Omega} = \frac{e^2 \omega^2 K^2}{4\pi^3 \epsilon_0 c \omega_u^2 \gamma^2} \sum_{n=1}^{\infty} \left[J_n^{\prime 2}(x_1) + \left(\frac{\gamma \theta}{K} - \frac{n}{x_1}\right)^2 J_n^2(x_1) \right] \frac{\sin^2 \left[N_u \pi \left(\frac{\omega}{\omega_1} - n\right) \right]}{\left(\frac{\omega}{\omega_1} - n\right)^2}$$

Approximation $\sin^2(N\pi y) / y^2 \rightarrow N\pi \delta(y)$:

1.
$$\frac{dW}{d\Omega} = \int_0^\infty \frac{dI(\omega)}{d\Omega} d\omega \approx \frac{N_u e^2 \omega_u K^2 8 \gamma^4}{4\pi\epsilon_0 c (1+K^2+\gamma^2\theta^2)^3} \sum_{n=1}^\infty n^2 \left[J_n'^2(x_n) + \left(\frac{\gamma\theta}{K} - \frac{n}{x_n}\right)^2 J_n^2(x_n) \right]$$
 Radiated energy per solid angle

$$2. \frac{dW}{d\omega} = \int \frac{dI(\omega)}{d\Omega} d\Omega \approx \frac{N_{\rm u} e^2 K^2 r}{\epsilon_0 c} \sum_{n=1}^{\infty} n^2 \left[J_n^{\prime 2}(y_n) + \left(\frac{\alpha_n}{K} - \frac{n}{y_n}\right)^2 J_n^2(y_n) \right] H(\alpha_n^2)$$

Radiated energy spectral density

Numerical integration leads to:

1.
$$P_{vessel} = \dot{N}_{e^{-}} \int \frac{dW}{d\Omega} d\Omega = 2\pi \dot{N}_{e^{-}} \int_{\theta_{1}}^{\pi} \sin \theta \frac{dW}{d\theta} d\theta$$
 Power deposited in the undulator vessel
2. $N_{e^{+}} = \frac{1}{\hbar} \int_{0}^{\infty} \frac{1}{\omega} \frac{dW}{d\omega} (1 - e^{-d\rho\sigma(\omega)}) d\omega$ Positron number produced by all photons
Target thickness Cross section for $e^{-}e^{+}$ -pair production by photon of target material
Target density

04.09.2018

Undulator set up (RDR, BCD)

Taken from:Scott, Duncan J. "An Investigation into the Design of the Helical Undulator
for the International Linear Collider Positron Source"

Parameter

Undulator K

Jndulator Period

Undulator Aperture

Undulator Length

The limit of maximal absorped power is 1 Wm^{-1} (according to Duncan J Scott, who in turn names the source to be private communication with T Bradshaw)

Examined parameter combination for the positron number

 $K = 0.65, 0.9, 1.15, \qquad \lambda_u = 8.5, 10, 11.5 \text{ mm}, \qquad l_u = 1.75, 2 \text{ m}, \qquad N_{hcell} = 18, 20, 22$

K [1]	lambda [mm]	l_u [m]	N_hcell [1]
1.15	8.5	2	22
1.15	8.5	2	20
1.15	8.5	1.75	22
1.15	8.5	2	18
1.15	8.5	1.75	20
1.15	10	2	22
1.15	8.5	1.75	18
1.15	10	2	20
1.15	10	1.75	22
0.9	8.5	2	22
1.15	10	2	18
1.15	10	1.75	20
1.15	11.5	2	22
0.9	8.5	2	20
0.9	8.5	1.75	22
1.15	11.5	2	20
0.9	8.5	2	18
1.15	11.5	1.75	22
0.9	8.5	1.75	20
0.9	10	2	22
1.15	11.5	2	18
1.15	11.5	1.75	20
0.9	8.5	1.75	18
0.9	10	2	20
0.9	10	1.75	22
1.15	11.5	1.75	18
0.9	10	2	18
0.9	10	1.75	20
0.9	11.5	2	22,

Possible future improvements

- Drop a single or multiple approximations $(\gamma \gg 1, |\theta| \ll 1, N_u \gtrsim 100, K \leq 1, R \gg \lambda_{\gamma}, V_e \rightarrow 0, \sin^2(N\pi y) / y^2 \rightarrow N\pi \delta(y)$, etc.)
- Correcting possible flaws in the undulator mask considerations
- For N_{e^+} : Numerical integration over a solid angle, that only covers the target instead of the full $\theta=0-\pi$

$$\frac{dW}{d\omega} = \int \frac{dI(\omega)}{d\Omega} d\Omega \approx \frac{N_{\rm u} e^2 K^2 r}{\epsilon_0 c} \sum_{n=1}^{\infty} n^2 \left[J_n^{\prime 2}(y_n) + \left(\frac{\alpha_n}{K} - \frac{n}{y_n}\right)^2 J_n^2(y_n) \right] H(\alpha_n^2)$$

- Examining more intermediate parameter values between the upper and lower limits
- Adding more criteria for the optimazation besides lower limit for N_{e^+} and upper limit for P_{vessel}

Thank you for your attention