
ALICE	Event	Data	Model	

P.Hristov	
08/07/2018	

1	

RUN1	&	RUN2	EDM		
What	can	we	learn	from	the	past?	

2	

The ESD

AliESDEvent

AliESDVertex

Estimated with
SPD

AliESDVertex

Estimated with
ESD tracks

AliMultiplicity

SPD tracklets

ESDTrack

Detailed
information in
central barrel

AliESDMuonTrac
k

Tracks in Muon
arm

AliESDTZERO

TZERO
information

ESDV0

V0 vertices

ESDCascade

Cascade vertices

ESDKink

Kinks

AliESDVZERO

VZERO
infornation

ESDPmdTrack

Tracks in PMD

ESDTrdTracks

Triggered tracks
in TRD

ESDCaloClusters

PHOS/EMCAL
clusters

ESDFMD

FMD multiplicity
Ideally: user@host> root.exe
 ………………………
root[0] gSystem->Load(“libTree”)
root[1] gSystem->Load(“libVMC”)
root[2] gSystem->Load(“libSTEERBase”)
root[3] gSystem->Load(“libESD”)
root[4] .x AnyAnalysisMacro.C

AliCentrality

Cetrality for AA

AliEventPlane

Event plane for
AA

3	AliRoot	tutorial	

AliESDEvent and AliESDtrack classes

 Accumulation and
exchange of
tracking
information among
the barrel
detectors
 Contained in the
ESD and used for
physics analysis

Class AliESDtrack : public
AliExternalTrackParam

•  final params
•  reconstruction status flags
•  length, time, combined PID
•  vertex constrained params
•  impact parameters & cov.matrix
•  params at the outer TPC wall
•  params at the inner TPC wall
•  …
•  detector specific info (chi2,

num.of clusters, PID…)

4	AliRoot	tutorial	

Common base classes for ESDs and AODs

AliVEvent

AliAODEvent AliESDEvent

AliVHeader

AliAODHeader AliESDHeader

AliVParticle

AliAODTrack AliExternalTrackParam

AliESDtrack

…

•  standard access
to containers

•  common getters
and setters

•  some differences
in the interface
(to be “cured”!)

5	AliRoot	tutorial	

Current content of the standard AOD

contains an (extendable) TList

 event information

 TClonesArray of tracks

 TClonesArray of vertices

 TClonesArray of jets

 Container for SPD tracklets

AliAODEvent

AliAODVertex

AliAODTrack

AliAODJet

AliAODTracklets

AliAODHeader

6	AliRoot	tutorial	

Standard part

General idea: ESD & AOD

AliAODEvent

TList AliAODHeader

AliAODEvent

AliAODTrack AliAODVertex AliAODCaloCluster AliAODJet

UserInfo

AliAODUser1 AliAODUser2 …

 …

User part

•  Very simple… use a list

7	AliRoot	tutorial	

Extending the AOD

S-AOD GetList()->Add(Obj)
… U1-AOD

…

S-AOD
U1-AOD S-AOD

U1’-AOD
GetList()->Add(Obj)
…

U1-AOD
…

S-AOD
GetList()->Add(Obj)
… U1-AOD

…

S-AOD

U2-AOD
…

U1’-AOD

U2-AOD

•  The idea is that every user can extend the AODs with
“non-standard” objects

Flexible and Extendable
•  users can just use the
standard AOD (S-AOD) or
start from it to obtain
more detailed results
•  this new information
(U-AOD) can be stored
alongside the S-AOD in
the TList (= in the same
AOD)

8	AliRoot	tutorial	

Reading back

AliAODEvent

TList AliAODHeader

AliAODEvent

AliAODTrack AliAODVertex AliAODCluster AliAODJet

UserInfo

AliAODUser1 AliAODUser2 … AliAODJet

 …

fHeader
fTracks
fVertices
fClusters
fJets

void AliAODEvent::GetStdContent() const
{
 // set pointers for standard content

 fHeader = (AliAODHeader*)fAODObjects->At(0);
 fTracks = (TClonesArray*)fAODObjects->At(1);
 fVertices = (TClonesArray*)fAODObjects->At(2);
 fClusters = (TClonesArray*)fAODObjects->At(3);
 fJets = (TClonesArray*)fAODObjects->At(4);
}

AliAODTrack* AliAODEvent::GetTrack(Int_t i) const
{ return (AliAODTrack*) fTracks->At(i); }

• …and	the	same	user	also	can	access	the	“non-standard”	objects	from	the	
previous	slide	 9	AliRoot	tutorial	

Run1	&	Run2	EDM:	Summary	
•  Fully	based	on	ROOT	
•  Event-oriented	data	

model:	trees	of	ESD	&	
AOD/delta	AOD,	but	also	
kinematics,	ESD	friends,	
track	references,	tags	
–  Several	ROOT	files	
–  Access	to	the	different	
data	via	handlers	

•  Deep	inheritance	chains	
•  Containers	of	containers	

of	objects	

•  Performance	@	O2	
prototype	facility,	GSI		
–  Shared	file	system	(Lustre)	
+	xrootd	client	plugin	
(0.6PB)	

–  Job	scheduler:	Slurm,	max.	
1000	job	slots	

–  Possibility	for	local	or	GRID	
jobs	

•  For	one	process	
–  Simple	copy:	~1.2	GB/s	
–  Unzipping:	~100	MB/s	
–  PT	analysis:	~20	MB/s	

10	F.	Sozzi	@	O2,	K.	Schwarz	@	CHEP2018	

Run1	&	Run2:	What	did	we	learn?	
•  ESD	and	AOD	=>	the	functionality	diverges	despite	of	the	

common	base	classes	
•  We	have	IO	bottleneck	because	of	

–  Slow	storage	–	not	EDM	issue	
–  Decompression	–	partially	related	to	EDM	
–  Deserialization	–	purely	EDM	issue	

•  Flexibility	without	discipline:	AOD	easily	becomes	“trash	
bit”	where	everybody	tries	to	store	specific	objects	

•  Complex	ESD/AOD	structure	with	nested	objects,	
containers	of	containers,	pointers,	etc.	causes	
deserialization	overhead	
–  ROOT	cannot	completely	recover	the	losses	
–  The	flexibility	comes	with	performance	price	

11	

RUN3	EDM	
What	do	we	plan?	

12	

O2	Analysis	Framework	and	Facilities	

▶  x100	more	collisions	(from	0.5-1	kHz	to	50	kHz	Pb-Pb)	
▶  Continuous	readout	=>	raw	data	in	compressed	time	
frames	(23	ms,	1000	MB	Pb-Pb	collisions,	~2GB)	
▶  Only	AOD	for	analysis	(transient	ESD)	

Run3:	Important	differences	

13	

Reconstruction	
Calibration	

Analysis	

Reconstruction	
Calibration	
Archiving	
Analysis	

Simulation	

T0/T1	
	
CTF	->	ESD	->	AOD	
	

AF	
	
AOD	->	HISTO,	TREE	
	

O2	
	

RAW	->	CTF	->	ESD		
->	AOD	

	

	

1	

T2/HPC	
	
MC	->	CTF	->	ESD		

->	AOD	
	

1..n	

1..n	 1..3	

CTF	

AOD	
AOD	

AOD	

P.Buncic	@	O2	

Run3	–	important	differences	wrt	
Run1/2	

•  No	“events”	in	general	–	continuous	readout	
without	trigger	

•  The	collision	is	defined	by	its	primary	vertex	
–  It	is	an	association	(index)	of	primary	tracks	
–  The	secondary	objects:	vertexes,	kinks,	tracks,	etc.	are	
associated	with	the	primary	vertex,	but	can	be	re-
associated	

•  Many	collisions	in	the	same	time	frame	
•  Some	collisions	are	triggered	(they	are	“events”	
in	Run1/2	sense)	

14	

•  TPC	produces	the	bulk	of	data,	so	a	format	that	minimizes	memory	consumption	is	needed.	
–  We	should	avoid	data	duplication,	but	some	copy	steps	seem	to	be	necessary.	

Output	

Draft	of	data	types	for	TPC	clustering	/	tracking	/	compression	in	O2	

TPCClustersHardware:	
Data	as	it	comes	from	the	
hardware	cluster	finder.	

TPCClustersNative:	
Clusters	in	TPC-native	pad,	row,	
time	format.	
Usable	but	as	small	as	possible.	

TPCClustersGRID:	
Transient	format	used	during	
TPC	tracking	for	fast	cluster	
search.	

Tracks:	
Track	
parameters	
and	
covariance.	

TrackClustersXYZ:	
First	cluster	and	
number	of	clusters	in	
ClusterXYZ	array	
assigned	to	track.	

TrackMC:	
MC	labels	for	
track	

TPCClustersXYZ:	
XYZ	position	of	TPC	
clusters	assigned	to	
tracks.	

TPCClustersCompressed1:	
Transient	format	of	clusters	
after	entropy	reduction	step	
before	entropy	encoding.	

TPCClustersCompressed2:	
Entropy-encoded	final	binary	
blob	of	compressed	TPC	clusters	
(and	tracks).	

Input	

FLP	 EPN	

TrackdEdx:	
etc…	

TPCClustersMC:	
MC	information	of	
clusters.	

D.	Rohr	@	O2	 15	

•  TPC	produces	the	bulk	of	data,	so	a	format	that	minimizes	memory	consumption	is	needed.	
–  We	should	avoid	data	duplication,	but	some	copy	steps	seem	to	be	necessary.	

Output	

Draft	of	data	types	for	TPC	clustering	/	tracking	/	compression	in	O2	

TPCClustersHardware:	
Data	as	it	comes	from	the	
hardware	cluster	finder.	

TPCClustersNative:	
Clusters	in	TPC-native	pad,	row,	
time	format.	
Usable	but	as	small	as	possible.	

TPCClustersGRID:	
Transient	format	used	during	
TPC	tracking	for	fast	cluster	
search.	

Tracks:	
Track	
parameters	
and	
covariance.	

TrackClustersXYZ:	
First	cluster	and	
number	of	clusters	in	
ClusterXYZ	array	
assigned	to	track.	

TrackMC:	
MC	labels	for	
track	

TPCClustersXYZ:	
XYZ	position	of	TPC	
clusters	assigned	to	
tracks.	

TPCClustersCompressed1:	
Transient	format	of	clusters	
after	entropy	reduction	step	
before	entropy	encoding.	

TPCClustersCompressed2:	
Entropy-encoded	final	binary	
blob	of	compressed	TPC	clusters	
(and	tracks).	

Input	

FLP	 EPN	

TrackdEdx:	
etc…	

TPCClustersMC:	
MC	information	of	
clusters.	

The	only	constraint	formats	are	the	
hardware	clusters	as	input,	and	the	final	
compressed	clusters	as	output.	All	other	
data	is	transient	and	can	be	changed	
easily.	

D.	Rohr	@	O2	 16	

•  TPC	produces	the	bulk	of	data,	so	a	format	that	minimizes	memory	consumption	is	needed.	
–  We	should	avoid	data	duplication,	but	some	copy	steps	seem	to	be	necessary.	

Output	

Draft	of	data	types	for	TPC	clustering	/	tracking	/	compression	in	O2	

TPCClustersHardware:	
Data	as	it	comes	from	the	
hardware	cluster	finder.	

TPCClustersNative:	
Clusters	in	TPC-native	pad,	row,	
time	format.	
Usable	but	as	small	as	possible.	

TPCClustersGRID:	
Transient	format	used	during	
TPC	tracking	for	fast	cluster	
search.	

Tracks:	
Track	
parameters	
and	
covariance.	

TrackClustersXYZ:	
First	cluster	and	
number	of	clusters	in	
ClusterXYZ	array	
assigned	to	track.	

TrackMC:	
MC	labels	for	
track	

TPCClustersXYZ:	
XYZ	position	of	TPC	
clusters	assigned	to	
tracks.	

TPCClustersCompressed1:	
Transient	format	of	clusters	
after	entropy	reduction	step	
before	entropy	encoding.	

TPCClustersCompressed2:	
Entropy-encoded	final	binary	
blob	of	compressed	TPC	clusters	
(and	tracks).	

Input	

FLP	 EPN	

TrackdEdx:	
etc…	

TPCClustersMC:	
MC	information	of	
clusters.	

Reformatting	data	before	sent	to	EPN.	
•  Jointly	with	computation	of	integrated	

digital	currents	(1	pass).	
•  Reduces	memory	footprint	on	EPN.	
•  Ensures	a	consistent	format	after	

decompressing	a	compressed	time	
frame.	

•  Hardware	clusters	cannot	be	used	in	
reconstruction	directly.	

D.	Rohr	@	O2	 17	

•  TPC	produces	the	bulk	of	data,	so	a	format	that	minimizes	memory	consumption	is	needed.	
–  We	should	avoid	data	duplication,	but	some	copy	steps	seem	to	be	necessary.	

Output	

Draft	of	data	types	for	TPC	clustering	/	tracking	/	compression	in	O2	

TPCClustersHardware:	
Data	as	it	comes	from	the	
hardware	cluster	finder.	

TPCClustersNative:	
Clusters	in	TPC-native	pad,	row,	
time	format.	
Usable	but	as	small	as	possible.	

TPCClustersGRID:	
Transient	format	used	during	
TPC	tracking	for	fast	cluster	
search.	

Tracks:	
Track	
parameters	
and	
covariance.	

TrackClustersXYZ:	
First	cluster	and	
number	of	clusters	in	
ClusterXYZ	array	
assigned	to	track.	

TrackMC:	
MC	labels	for	
track	

TPCClustersXYZ:	
XYZ	position	of	TPC	
clusters	assigned	to	
tracks.	

TPCClustersCompressed1:	
Transient	format	of	clusters	
after	entropy	reduction	step	
before	entropy	encoding.	

TPCClustersCompressed2:	
Entropy-encoded	final	binary	
blob	of	compressed	TPC	clusters	
(and	tracks).	

Input	

FLP	 EPN	

TrackdEdx:	
etc…	

TPCClustersMC:	
MC	information	of	
clusters.	

The	compression	requires	tracking,	
produces	an	entropy-reduces	set	of	
clusters	(TPCClustersCompressed1),	which	
are	then	packed	in	a	binary	blob	
(TPCClustersCompressed2)	by	Huffman	/	
Arithmetic	/	ANS	encoding.	
Decoding	back	to	TPCClustersNative	is	
exact	(modulo	removal	of	low-Pt	clusters).	

D.	Rohr	@	O2	 18	

•  TPC	produces	the	bulk	of	data,	so	a	format	that	minimizes	memory	consumption	is	needed.	
–  We	should	avoid	data	duplication,	but	some	copy	steps	seem	to	be	necessary.	

Output	

Draft	of	data	types	for	TPC	clustering	/	tracking	/	compression	in	O2	

TPCClustersHardware:	
Data	as	it	comes	from	the	
hardware	cluster	finder.	

TPCClustersNative:	
Clusters	in	TPC-native	pad,	row,	
time	format.	
Usable	but	as	small	as	possible.	

TPCClustersGRID:	
Transient	format	used	during	
TPC	tracking	for	fast	cluster	
search.	

Tracks:	
Track	
parameters	
and	
covariance.	

TrackClustersXYZ:	
First	cluster	and	
number	of	clusters	in	
ClusterXYZ	array	
assigned	to	track.	

TrackMC:	
MC	labels	for	
track	

TPCClustersXYZ:	
XYZ	position	of	TPC	
clusters	assigned	to	
tracks.	

TPCClustersCompressed1:	
Transient	format	of	clusters	
after	entropy	reduction	step	
before	entropy	encoding.	

TPCClustersCompressed2:	
Entropy-encoded	final	binary	
blob	of	compressed	TPC	clusters	
(and	tracks).	

Input	

FLP	 EPN	

TrackdEdx:	
etc…	

TPCClustersMC:	
MC	information	of	
clusters.	

Many	data	formats	used	transiently	during	
the	tracking.	These	will	never	be	stored	to	
disk.	

D.	Rohr	@	O2	 19	

Changes	in	the	software	concept	

•  From	sequential	ROOT-based	processing	and	
format	to	message	based	multiprocessing	(see	
the	ALFA	talk	@	CHEP2018)	

•  The	message	serialization	is	very	important	
– Multiple	languages	are	allowed	
– Heterogeneous	architectures	(different	OS,	CPU,	
GPU,	FPGA,…)	

•  We	are	investigating	different	options	also	for	
analysis	

20	

Analysis	data	format:	requirements	
New data format should reduce as much as possible the cost of
deserialization: some generality will be lost for the sake of improved
speed

•
 Simple, flat: numbers only (no classes), use tables, cross-reference via numeric

indices

•
 Columnar: SoA in-memory structure for better growing/shrinking and

vectorization

•
 Extensible: base format is immutable, but easily extensible because

it’s SoA

•
 Chunked: a single timeframe can be divided in smaller units processable in

parallel

•
 Zero size for null objects: filtered-out fields do not use RAM

memory

•
 Recompute, don’t store: do not store everything because recomputing may be

cheaper

•
 No data restructuring: disk → memory → network should use similar

representations
 D.	Berzano	@	CHEP2018	 21	

Apache	Arrow	Development	

Apache Arrow
arrow.apache.org

We have been experimenting with Apache Arrow: in-memory, language
independent columnar data format. Has an on-disk companion too (Apache
Parquet)

Prototype based on Arrow: other solutions being
investigated too

•
 Leverages vectorization and fits our other
requirements

•
 Units: data organized in Tables, made of immutable
Columns. Columns shared among tables (no copy)

•
 Memory management: Columns backed by Buffers,
which
allow for custom Memory
Pools

•
 Meant for interoperability: allows for data exchange
within the Apache ecosystem and outside, widely
supported

•
 Fits the ALICE Run 3 data model based on message
passing

D.	Berzano	@	CHEP2018	 22	

Data Header Data Buffer

● Use over the ne twork message queuing (=buffers)
Headers carry metadata used to uniquely identify the message payload ●

– Data buffer type
Data buffer s ize –

● Da ta e lement have to be flat (se lf-conta ined)
–

–

Any data type, arrays , s tructs , ...
No pointers

Position Header xyz xyz xyz xyz xyz

Covariance Header cov cov cov cov cov

Momentum Header pt pt pt pt pt

Data	Message	Development	

M.	Zimmermann	@	ICHEP2018	 23	

References	in	Data	Message	
● References be tween da ta buffers via the same index

Separa te da ta buffers can have different entry number ●

– Use separate buffer for the reference
Track-Vertex conta ins the index of the vertex re lated to the track –

Position Header xyz xyz xyz xyz xyz

Momentum Header pt pt pt pt pt

Vertex Header Vtx 1 Vtx 2

Track-Vertex Header 1 1 1 2 2

M.	Zimmermann	@ICHEP2018	 24	

More	investigations:	SOAContainer	
(LHCb)	

•  Code	available	in	GitLab	
•  Tutorial	exists	
•  Aims	

–  exploiting	modern	CPUs/GPUs	is	hard	enough	
•  SOAContainer	should	help	you	try	SOA	code	quickly,	with	low	barrier	of	entry	
•  code	should	be	readable,	and	do	what	it	says	writable	by	experts	and	non-experts	alike	
•  produce	reasonable	code	to	start	with	(profile,	optimize	later)	

–  will	not	magically	solve	your	performance	problems	
•  brain	not	outdated	yet:		need	good	idea	and	right	algorithm	
•  may	still	want	to	look	at	assembly	to	judge	if	compiler	needs	help	(simpler	loops,	break	

dependencies,	…)	
•  compilers	may	not	autovectorise	the	way	you	want	them	to	

•  Use	a	skin	to	describe	
–  which	fields	make	up	an	SOA	object	
–  give	the	underlying	tuple	a	nice	interface	gets	all	the	methods	defined	in	the	

fields	
–  can	define	methods	that	access	more	than	one	field	

25	M.	Schiller	@	ALICE	Offline	week	

More	investigations:	Libflatarray	
•  	Who	should	use	it?	
–  Basically	anyone	who	wants	to	store	objects	or	structs	
in	an	array	with	2	or	more	dimensions	and	needs	to	
iterate	through	them.	

•  Features	
–  object-oriented	interface,	but	SoA	memory	layout	
–  good	for	vectorization	(SSE,	AVX,	CUDA)	
–  zero	address	generation	overhead	
–  fast	iterators,	yield	access	to	neighboring	elements	
–  efficient	copy	in/out	

•  Small	development	team	(5	contributors)	

26	D.	Berzano	@	O2	

Conclusions	and	Plans	
•  Variety	of	data	formats	in	the	quasi-online	O2	
processing	

•  ALICE	is	designing	a	new	flat	event	(collision)	data	
model	for	the	Run3	analysis	

•  We	have	gained	a	lot	of	experience	from	Run1/2	
(positive:	organized	analysis	in	trains;	negative:	
design	of	EDM)	

•  Several	options	are	in	different	stages	of	
investigation	

•  The	plan	is	to	have	detailed	comparison	by	the	
end	of	the	year	and	finalize	the	Run3	EDM	design	

27	

