.S. DEPARTMENT OF Office of

Fermilab ERGY Science

art outlook

Kyle J. Knoepfel
Mini-workshop: Event processing software systems
8 July 2018

arf's approach

« artis intended to be used for analysis jobs and large-scale production jobs.

Much of our approach is forward-looking. We aim to (e.g.):
— run art on HPC machines

— deliver cutting-edge software tools (e.g. TensorFlow)
— enable experiments to benefit from modern language features (art supports C++17)

We have users that prefer to develop on macOS systems
— We support open-source Clang builds on macOS and Linux

We actively contribute to the code bases of art-using experiments/projects:
— As of May 2018, the SciSoft team supports and develops code for LArSoft

2L Fermilab

2 77118 K. J. Knoepfel | Event-processing software systems

arf's approach

« We support the offline (and some online) processing for 11 projects/experiments.

Our development efforts are guided by:

— Current and future needs of art-using experiments (represented by stakeholders).

— Current and future software and hardware technology, in and outside of HEP.

— Feedback from individual users, and our own estimation of what features would make art
simpler to use.

Experiment support:

— Design guidance and code reviews at the request of experiments

— Small-scale profiling efforts at the request of experiments

Dedicated stakeholder meeting each week:

— Discussion of upcoming changes and issues with stakeholders

— Sharing among experiments
* e.g. heist (from g-2) wraps gallery for ease of use with Python; usable by all art users

2L Fermilab

3 77118 K. J. Knoepfel | Event-processing software systems

Who uses art?

ArgoNeuT| grtdaq | | (\ LArIAT
g Ez project » experiment
CEUTRING EXPERIENT
= AN~
Previous and %.mz next
potential users
3£ Fermilab

4 7/7/18 K. J. Knoepfel | Event-processing software systems

art concepts

 Hierarchical data processing (run > subrun > event)

- Experiments decide how to define the processing levels (e.g. event)

 All processing elements are plugins, loaded at run-time via user configuration
— Input source
— Data-processing modules
— Output modules
— Other utilities that facilitate data-processing

 artprovides various input sources and output modules, but all processing elements
can be user-defined

« Workflows are assembled by a configuration file loaded at run-time
— Adjustments to workflows do not require recompilation of C++ source code

2L Fermilab

5 77118 K. J. Knoepfel | Event-processing software systems

Highlighted features

Concurrent processing of events within a subrun (as of June 2018)
— Processing model is inspired by CMSSW’s

Data-product management is thread-, type-, and const-safe
Configuration description and validation suite

Implicit data-product aggregation for non-event products
Secondary input (backing) files

Module time- and memory-tracking facilities

Graph of data dependencies between modules

77118 K. J. Knoepfel | Event-processing software systems

2L Fermilab

Configuration description and validation

« Common problem: how do | configure my program? What if | make a mistake?

2L Fermilab

7 77118 K. J. Knoepfel | Event-processing software systems

Configuration description and validation

« Common problem: how do | configure my program? What if | make a mistake?

» Users can provide C++ documentation/validation structures:

8

class art::Prescaler : public SharedFilter {
public:
struct Config {
Atom<size_t> prescaleFactor{
Name("prescaleFactor"),
Comment("This module filters one of every n events, where n\n"
"is the 'prescaleFactor'.")};
Atom<size_t> prescaleOffset{
Name("prescaleOffset"),
Comment("An offset is allowed--i.e. the sequence of events\n"
"does not have to start with the first event."),
ik

using Parameters = Table<Config>;
explicit Prescaler(Parameters const&, ProcessingFrame const&);

Prescaler::Prescaler(Parameters const& config, ProcessingFrame const&)
: SharedFilter{config}
, n_{config().prescaleFactor()}
, offset_{config().prescaleOffset()}

async<InkEvent>();

7/8/18 K. J. Knoepfel | Event-processing software systems

2L Fermilab

Configuration description and validation

« Common problem: how do | configure my program? What if | make a mistake?
» Users can provide C++ documentation/validation structures:

class art::Prescaler : public SharedFilter {
public:
struct Config {
Atom<size_t> prescaleFactor{
Name("prescaleFactor™),
Comment("This module filters one of every n events, where n\n"
"is the 'prescaleFactor'.")};
Atom<size_t> prescaleOffset{
Name("prescaleOffset"),
Comment("An offset is allowed--i.e. the sequence of events\n"
"does not have to start with the first event."),
ik

I

using Parameters = Table<Config>;
explicit Prescaler(Parameters const&, ProcessingFrame const&);

Prescaler::Prescaler(Parameters const& config, ProcessingFrame const&)
: SharedFilter{config}
, n_{config().prescaleFactor()}
, offset_{config().prescaleOffset()}

async<InkEvent>();

module_type : Prescaler (or "art/Framework/Modules/Prescaler™)
provider: art
type : filter
source : /home/knoepfel/art/art/Framework/Modules/Prescaler
library : /home/knoepfel/scratch/builds/debug/art/1ib/1libart

Allowed configuration

Any parameters prefaced with '#' are optional.
<module_label>: {

module_type: Prescaler

errorOnFailureToPut: true # default

This module filters one of every n events, where n
is the 'prescaleFactor'.

prescaleFactor: <unsigned long>

An offset is allowed--i.e. the sequence of events
does not have to start with the first event.

prescaleOffset: @ # default

9 77118 K. J. Knoepfel | Event-processing software systems

2L Fermilab

Configuration description and validation

« Common problem: how do | configure my program? What if | make a mistake?
» Users can provide C++ documentation/validation structures:

module_type : Prescaler (or "art/Framework/Modules/Prescaler™)

provider: art

type : filter
sounca— /hama/knoepfel/art/art/Framework/Modules/Prescaled]
/knoepfel/scratch/builds/debug/art/1lib/1libary

on

'l The following modules have been misconfigured: !!

{
Module label: prescaleEvents
Prescaler

module_type : Prescaler

Any parameters prefaced with '#' are optional.
Unsupported parameters: e filters one of every n events, where n

[eToPut: true # default
rescaleFactor'.

+ prescaleoffset [./test.fcl:6] .
or: <unsigned long>

is allowed--i.e. the sequence of events
Fhave to start with the first event.

prescaleOffset: @ # default

3

2L Fermilab

10 77118 K. J. Knoepfel | Event-processing software systems

Implicit data-product aggregation

« Users can configure output modules to rollover to a
new output file when a condition is met (max. number

* (Sub)run products can be spread across multiple files

* Whenever the files are concatenated together, art can
combine the products according to an aggregation

11

of events, file size, time open, etc.).

behavior (e.g.):

— Count of protons-on-target are summed
— Map of particle species are combined via insert
— Any user-defined aggregation function

717118

K. J. Knoepfel | Event-processing software systems

Input source
nEvents: 200

\

Protons run product created

a.root b.root
Protons[100] Protons[100]

2L Fermilab

Implicit data-product aggregation

« Users can configure output modules to rollover to a @
new output file when a condition is met (max. number pEvents: =00
of events, file size, time open, etc.).

* (Sub)run products can be spread across multiple files

* Whenever the files are concatenated together, art can
combine the products according to an aggregation
behavior (e.g.):

\

Protons run product created

a.root b.root

— Count of protons-on-target are summed Protons[100] Protons[100]

— Map of particle species are combined via insert
— Any user-defined aggregation function

« artinfrastructure necessary for this make some multi-threading issues easier:
— Distinction between a (e.g.) full run vs. a run fragment
— Set of events corresponding to a given product (to avoid double counting)
2% Fermilab

12 77118 K. J. Knoepfel | Event-processing software systems

Secondary input files

 art has a backing-store system, where a hierarchy of input files can be traversed to
find the requested product.

[le.root]

[Id.root]
[Ic.root]
[b.root]

auto const p = event.getValidHandle<string>(tag);

2L Fermilab

13 77118 K. J. Knoepfel | Event-processing software systems

Secondary input files

 art has a backing-store system, where a hierarchy of input files can be traversed to
find the requested product. [= oot]

[Id.root]
[Ic.root]
[b.root]

auto const p = event.getValidHandle<string>(tag);

e | do not know if this feature will survive.

— Some uncomfortable multi-threading problems to handle.
— Fermilab’s file-delivery system for large-scale production is not filename-based.

2L Fermilab

14 77118 K. J. Knoepfel | Event-processing software systems

Time- and memory-tracking utilities

« art provides simple utilities for profiling user code
— TimeTracker
— MemoryTracker
* These are run-time enabled services used to isolate problematic modules

— They do not replace full-fledged profiling tools, but they are often sufficient to point users in
the right direction without the overhead of profiling tools.

» Qutput can be printed to terminal or stored in SQLite database
— We have scripts/utilities to interpret output

TimeTracker printout (sec) Min Avg Max Median RMS nEvts
Full event 0.000662971 0.000767011 ©.00983449 0.000708468 0.000314318 1000
source:EmptyEvent(read) 0.000307314 0.000360045 0.00705727 0.00033096 0.000216672 1000
tp:prescaleEvents:Prescaler 1.4132e-05 1.64184e-05 6.7205e-05 1.5068e-05 2.99402e-06 1000
[art]:TriggerResults:TriggerResultInserter 0.000154377 ©0.000176913 ©0.00158631 0.000165199 4.91682e-05 1000

2L Fermilab

15 77118 K. J. Knoepfel | Event-processing software systems

Data-dependency graph

« artassembles the graph of
data dependencies
between modules.

« Data-dependency errors
are caught at job start-up
time, just after module
constructors have been
called.

* We do not yet use the
graph to optimize event
processing.

— We intend to do so.

2L Fermilab

16 77118 K. J. Knoepfel | Event-processing software systems

Near-term/imminent plans (2018-2019)

« Help experiments upgrade to art 3 to realize multi-threading benefits.

« Move toward non-event level parallelism.

« Continue to prune library dependencies from core framework infrastructure:
— ROOT will soon be unnecessary for core framework usage
— Various Boost dependencies can be removed when C++17 is adopted

» Continue research with HDF5 file format:
— HDF is the primary data-storage formats on HPC machines
— Work done in collaboration with the HDF group over the last couple years

— HDF5 analysis-format alternative for ROOT TTree (Handing over to NOvVA functioning
software they want to use now — July 9)
» 42 TB data read/decompressed in under 20 seconds on Cori (1200 KNL nodes) in Python.

2L Fermilab

17 77118 K. J. Knoepfel | Event-processing software systems

Middle-term R&D (2020-2022)

» Working toward the ability to use HDF as an alternative 1/0O system in art

« Extend art concepts to better support intra-module parallelism
— Experiments like DUNE may not be able to afford multiple events in flight at the same time
— Concurrently process independent portions of an event

* Is the event the right abstraction?
— We are considering how to support user-defined levels of data aggregation.

» Work done during this time informs long-term R&D

2L Fermilab

18 77118 K. J. Knoepfel | Event-processing software systems

Long-term R&D (2023-)

« Exploring in what ways our event model is compatible for single-node, grid, and
HPC jobs.

« The intent is that the module authors' views of data would not change; the workflow
orchestration, however, may be largely different.
— Think solely in terms of datasets instead of files
— Workflow details are subsumed by the framework

» SciDAC work is directly looking at an implementation for HPC jobs:
— http://computing.fnal.gov/hep-on-hpc/
— Addresses data-store aspect of distributed, hierarchical data

2L Fermilab

19 77118 K. J. Knoepfel | Event-processing software systems

A few more remarks

Many of the arf's concepts have been refined over the last few years

In developing the framework, our modus operandi has been:
No framework code is so precious that it must be saved; nothing is untouchable.
Our users' code is precious, and we should break as little of it as possible.

* Much of the code internal to the framework has been replaced, without imposing
many breaking changes on users.

« Perhaps surprisingly, though, many users are willing to move to different ways of
thinking.

» Let’s not be afraid of user perceptions.

2L Fermilab

20 77118 K. J. Knoepfel | Event-processing software systems

