
art outlook

Kyle J. Knoepfel
Mini-workshop: Event processing software systems
8 July 2018

• art is intended to be used for analysis jobs and large-scale production jobs.

• Much of our approach is forward-looking. We aim to (e.g.):
– run art on HPC machines
– deliver cutting-edge software tools (e.g. TensorFlow)
– enable experiments to benefit from modern language features (art supports C++17)

• We have users that prefer to develop on macOS systems
– We support open-source Clang builds on macOS and Linux

• We actively contribute to the code bases of art-using experiments/projects:
– As of May 2018, the SciSoft team supports and develops code for LArSoft

art’s approach

7/7/18 K. J. Knoepfel | Event-processing software systems2

• We support the offline (and some online) processing for 11 projects/experiments.
• Our development efforts are guided by:
– Current and future needs of art-using experiments (represented by stakeholders).
– Current and future software and hardware technology, in and outside of HEP.
– Feedback from individual users, and our own estimation of what features would make art

simpler to use.
• Experiment support:
– Design guidance and code reviews at the request of experiments
– Small-scale profiling efforts at the request of experiments

• Dedicated stakeholder meeting each week:
– Discussion of upcoming changes and issues with stakeholders
– Sharing among experiments

• e.g. heist (from g-2) wraps gallery for ease of use with Python; usable by all art users

art’s approach

7/7/18 K. J. Knoepfel | Event-processing software systems3

7/7/18 K. J. Knoepfel | Event-processing software systems4

Who uses art?

artdaq
project

LArIAT
experiment

Previous and
potential users

• Hierarchical data processing (𝑟𝑢𝑛 ⊃ 𝑠𝑢𝑏𝑟𝑢𝑛 ⊃ 𝑒𝑣𝑒𝑛𝑡)
• Experiments decide how to define the processing levels (e.g. event)
• All processing elements are plugins, loaded at run-time via user configuration
– Input source
– Data-processing modules
– Output modules
– Other utilities that facilitate data-processing

• art provides various input sources and output modules, but all processing elements
can be user-defined

• Workflows are assembled by a configuration file loaded at run-time
– Adjustments to workflows do not require recompilation of C++ source code

art concepts

7/7/18 K. J. Knoepfel | Event-processing software systems5

• Concurrent processing of events within a subrun (as of June 2018)
– Processing model is inspired by CMSSW’s

• Data-product management is thread-, type-, and const-safe
• Configuration description and validation suite
• Implicit data-product aggregation for non-event products
• Secondary input (backing) files
• Module time- and memory-tracking facilities
• Graph of data dependencies between modules

Highlighted features

7/7/18 K. J. Knoepfel | Event-processing software systems6

• Common problem: how do I configure my program? What if I make a mistake?

Configuration description and validation

7/7/18 K. J. Knoepfel | Event-processing software systems7

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

7/8/18 K. J. Knoepfel | Event-processing software systems8

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

7/7/18 K. J. Knoepfel | Event-processing software systems9

• Common problem: how do I configure my program? What if I make a mistake?
• Users can provide C++ documentation/validation structures:

Configuration description and validation

7/7/18 K. J. Knoepfel | Event-processing software systems10

• Users can configure output modules to rollover to a
new output file when a condition is met (max. number
of events, file size, time open, etc.).

• (Sub)run products can be spread across multiple files
• Whenever the files are concatenated together, art can

combine the products according to an aggregation
behavior (e.g.):
– Count of protons-on-target are summed
– Map of particle species are combined via insert
– Any user-defined aggregation function

Implicit data-product aggregation

7/7/18 K. J. Knoepfel | Event-processing software systems11

Input source
nEvents: 200

a.root
Protons[100]

Protons run product created

b.root
Protons[100]

• Users can configure output modules to rollover to a
new output file when a condition is met (max. number
of events, file size, time open, etc.).

• (Sub)run products can be spread across multiple files
• Whenever the files are concatenated together, art can

combine the products according to an aggregation
behavior (e.g.):
– Count of protons-on-target are summed
– Map of particle species are combined via insert
– Any user-defined aggregation function

Implicit data-product aggregation

7/7/18 K. J. Knoepfel | Event-processing software systems12

• art infrastructure necessary for this make some multi-threading issues easier:
– Distinction between a (e.g.) full run vs. a run fragment
– Set of events corresponding to a given product (to avoid double counting)

Input source
nEvents: 200

a.root
Protons[100]

Protons run product created

b.root
Protons[100]

• art has a backing-store system, where a hierarchy of input files can be traversed to
find the requested product.

Secondary input files

7/7/18 K. J. Knoepfel | Event-processing software systems13

auto const p = event.getValidHandle<string>(tag);

a.root

b.root

d.root

c.root

e.root

• art has a backing-store system, where a hierarchy of input files can be traversed to
find the requested product.

• I do not know if this feature will survive.
– Some uncomfortable multi-threading problems to handle.
– Fermilab’s file-delivery system for large-scale production is not filename-based.

Secondary input files

7/7/18 K. J. Knoepfel | Event-processing software systems14

auto const p = event.getValidHandle<string>(tag);

a.root

b.root

d.root

c.root

e.root

• art provides simple utilities for profiling user code
– TimeTracker
– MemoryTracker

• These are run-time enabled services used to isolate problematic modules
– They do not replace full-fledged profiling tools, but they are often sufficient to point users in

the right direction without the overhead of profiling tools.
• Output can be printed to terminal or stored in SQLite database
– We have scripts/utilities to interpret output

Time- and memory-tracking utilities

7/7/18 K. J. Knoepfel | Event-processing software systems15

• art assembles the graph of
data dependencies
between modules.

• Data-dependency errors
are caught at job start-up
time, just after module
constructors have been
called.

• We do not yet use the
graph to optimize event
processing.
– We intend to do so.

Data-dependency graph

7/7/18 K. J. Knoepfel | Event-processing software systems16

CalHelixFinderDem

CalTimePeakFinder

all_pathDeltaFinder

makePH

CalSeedFitDem

all_path

makeSH

2 CaloClusterFromProtoCluster

g4status

all_path

CalTrkFitDem

all_path

CaloProtoClusterFromCrystalHit

2

all_path

CaloCrystalHitFromHit

CaloRecoDigiFromDigi

all_path

CaloDigiFromShower

CaloShowerStepROFromShowerStep

all_path

all_path

KFFUeP

all_path

CaloShowerStepFromStepPt

g4run

5

all_path

source

makeSD

all_pathmuonTimeMap protonTimeMap

all_path

2

2

FlagBkgHits

all_path

2

2

HelixFinder

TimeClusterFinder

all_path

KFFDeM

KSFDeM

all_path

KSFUeP

all_path

all_path

2

all_path

2

MergePatRecDem

all_path 2

2

all_path

TrackCaloIntersectionDem

all_path

TrackCaloMatchingDem

all_path

fullOutput

generate

all_path

5

all_path

all_path

all_path all_path

Near-term/imminent plans (2018-2019)

7/7/18 K. J. Knoepfel | Event-processing software systems17

• Help experiments upgrade to art 3 to realize multi-threading benefits.

• Move toward non-event level parallelism.

• Continue to prune library dependencies from core framework infrastructure:
– ROOT will soon be unnecessary for core framework usage
– Various Boost dependencies can be removed when C++17 is adopted

• Continue research with HDF5 file format:
– HDF is the primary data-storage formats on HPC machines
– Work done in collaboration with the HDF group over the last couple years
– HDF5 analysis-format alternative for ROOT TTree (Handing over to NOvA functioning

software they want to use now — July 9)
• 42 TB data read/decompressed in under 20 seconds on Cori (1200 KNL nodes) in Python.

• Working toward the ability to use HDF as an alternative I/O system in art

• Extend art concepts to better support intra-module parallelism
– Experiments like DUNE may not be able to afford multiple events in flight at the same time
– Concurrently process independent portions of an event

• Is the event the right abstraction?
– We are considering how to support user-defined levels of data aggregation.

• Work done during this time informs long-term R&D

Middle-term R&D (2020-2022)

7/7/18 K. J. Knoepfel | Event-processing software systems18

• Exploring in what ways our event model is compatible for single-node, grid, and
HPC jobs.

• The intent is that the module authors' views of data would not change; the workflow
orchestration, however, may be largely different.
– Think solely in terms of datasets instead of files
– Workflow details are subsumed by the framework

• SciDAC work is directly looking at an implementation for HPC jobs:
– http://computing.fnal.gov/hep-on-hpc/
– Addresses data-store aspect of distributed, hierarchical data

Long-term R&D (2023-)

7/7/18 K. J. Knoepfel | Event-processing software systems19

• Many of the art’s concepts have been refined over the last few years

• In developing the framework, our modus operandi has been:
No framework code is so precious that it must be saved; nothing is untouchable.
Our users' code is precious, and we should break as little of it as possible.

• Much of the code internal to the framework has been replaced, without imposing
many breaking changes on users.

• Perhaps surprisingly, though, many users are willing to move to different ways of
thinking.

• Let’s not be afraid of user perceptions.

A few more remarks

7/7/18 K. J. Knoepfel | Event-processing software systems20

