
MC event generation and analysis on
HPC

1/4



Event simulation and analysis

I MC event generator + Rivet well established tool chain
I Rivet allows to quickly compare MC prediction with collider data
I This is important for

Validation of physics in MC event generator
Parameter scans of MC generator modelling/physics and
optimisation w.r.t. collider data

I The workflow is mostly linear — MC simulates an event and
Rivet analyses the event to fill histograms.

I Often high statistics accumulation necessary
I Traditionally done with batch-farms

2/4



DIY
I On HPC machines we want to exploit the parallel execution on

many ranks to generate massive amounts of events as quickly as
possible in a single program.

I Within Scidac we use the computing model of DIY.
I DIY takes care of all the MPI operations such that we can focus on

writing flexlibe massively parallel programs.
I The atomic unit of DIY is called a block.
I In our application, each block contains an event generation object

(Pythia8) and an analysis object (Rivet).
I A few foreach calls to functions operating on single blocks are

sufficient.

1 // Set physics parameters
master.foreach([world, physics](Block∗ b, const diy::Master::ProxyWithLink& cp)

3 {set_physics(b, cp, physics); });

5 // This runs the generator and rivet
master.foreach([world](Block∗ b, const diy::Master::ProxyWithLink& cp)

7 {process_block(b, cp); });

9 // Reduction step −−− sum histograms of all blocks
diy::reduce(master, assigner, partners, &reduceData<Block>);

11
// This is where the write out happens

13 master.foreach([world](Block∗ b, const diy::Master::ProxyWithLink& cp)
{ write_out(b, cp); });

3/4



Program sketch

I We run with 1 block per
rank.

I With DIY we can efficiently
run thousands of physics
configurations with millions
of simulated events each.

Phys 1

Phys 1

Phys 1

Phys 2

Phys 2

Phys 2

Histos 1 Histos 2

Phys N

Phys N

Phys N

Histos N

4/4


