The dynamics of streamers in PIC-DSMC simulations of 3D pin-to-plane wedge geometries are formally quantified for several azimuthally swept wedges in terms of electron velocity and density as temporal functions of spatial direction and coordinates r, ϕ, z. Particles are tracked with picosecond temporal resolution out to 1.4 nanoseconds, spatially binned, and averaged over six independent simulations each sourced with a random plasma seed. An air model\(^1\) comprised of Townsend breakdown and streamer mechanisms via tracking excited state neutrals that can either undergo quenching or spontaneous photon emission collisions\(^2\) is employed. A 100 µm radius 1 eV plasma with a 10^{18} m^{-3} particle density placed at the tip of a 100 µm hemispherical pin electrode (at 6 kV) in a 600 Torr air filled gap, 1.5 mm above a planar grounded cathode, seeds the domain. Prior 2D studies have shown that the reduced electric field, E/n, can significantly impact streamer evolution\(^3\). We extend the analysis to 3D wedge geometries (to limit computational costs) with wedge angle azimuthally swept in 15° increments from 15° to 45° to examine the wedge angle’s effect on streamer branching, propagation, and velocity. Initial results suggest that solution convergence in terms of the parameters described above may be achievable.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Primary authors: JINDAL, Ashish (Sandia National Laboratories); MOORE, Chris (Sandia National Labs); FIERRO, Andrew (Sandia National Laboratories); HOPKINS, Matthew (Sandia National Laboratories)

Presenter: JINDAL, Ashish (Sandia National Laboratories)

Session Classification: Posters Fundamental Research and Basic Processes and Power Electronics

Track Classification: 1.1 Basic Phenomena;