Statistics and Propagation Modeling of Atmospheric Lightning

William Brooks, David Barnett, John Mankowski, James Dickens, Andreas Neuber

Center for Pulse Power and Power Electronics (P³E)
Department of Electrical and Computer Engineering
Texas Tech University
Box 43102, Lubbock, TX 79409-3102, USA

W. A. Harrison, David Hattz

Mission Engineering Development Group
CNS Pantex, FM2373 and HWY 60
Amarillo, TX 79120

2019 IEEE Pulsed Power and Plasma Science Conference
June 23rd—28th, Orlando, Florida
Motivation

• Lightning Protection is Imperfect
 – Buildings are at risk of being struck

• Investigation of these risks
 – Characterize risks
 – Establish bounds on potentially problematic lightning

• Related Work
 – Investigate protection and mitigation of problematic lightning

Kevin Ambrose (Weatherbook.com)
Propagation Models

• **First Principles**
 - Piolet Streamer
 • Meek ‘59
 - Bipolar Piolet with Space Leader
 • Rakotonandrasana et al. ‘08

• **Stochastic Models**
 - Random Walk Model
 • Hutzler and Hutzler-Barre ’78
 - Electrostatic Components
 • Niemeyer in ‘87
 - Charge Modelling and Branching
 • Shi et al. 2014

Gas Diffusion Models

- A stepped leader random walk model

\[e = \frac{E}{U(R)} = \eta_0 \frac{E_0}{|E_0|} + \frac{1}{v^2} \left(\frac{r'}{l} \right)^2 \frac{r'}{|r'|} \]

Figure 1. (a) The local coordinate system adapted to the Laplacian background field \(E_0 \). \(E_0 \) defines the axis of a polar coordinate system \((l, \theta, \phi) \). The tangential plane \(T \) of the field line defines the reference for the azimuth \(\phi \). (b) A leader propagation step \(l \) is decomposed into an advancement \(l \) along the field direction \(E_0 \) and a random deviation \(\Delta r \) on a surface \(S \) perpendicular to \(E_0 \).

Figure 4. (a) A simplified calculation of the local field distribution at the leader tip: full circle, equivalent charged sphere representing the leader tip space charge; dotted circle, streamer propagation limit. (b) The normalised voltage drop \(\Delta u \) along the streamer trajectory as a function of the angle \(\theta \).
Attachment

- Intensified electric field at lighting rod is induced
- This gives rise to an upward leader
- When the two are intercepted the stroke begins

The Lightning Stroke- II by C. F. Wagner and A. R. Hileman.
Rolling Sphere Model

Resulting Stochastic Model

- **Monte Carlo Random Walk**
 - Propagation starts to fixed height ~200 m
 - (Uniform) Random starting position (X,Y)
 - Generate Series of Random 3D Steps
 - Uniform Polar Angle (X,Y Plane)
 - Gaussian Angle from Z
 - Propagate until within striking distance
 - Strike to nearest object
 - (Record Even & Repeat)
Model Capabilities

• Monte Carlo methods of arriving at empirical probability of lightning protection failures.
 – Tolerant of cm-sized features in 100’m contexts.

• Inherently Parallelizable:
 – 100 000 runs in minutes on circa-2015 consumer desktop computers.

• Support for arbitrary CAD geometries
 – Geometry is specified by external stereolithography (STL) files.
Arriving at Total Probabilities

\[P_{\text{PDF total}}(SD) = P(S|SD) \cdot PDF(SD) \]

Brooks et al. Investigation of Lighting Attachment Risks to Small Structures Associated with Electrogeometric Model (EGM) [unpublished manuscript]. Lubbock: Texas Tech University; 2019
Consequences of Probability Distribution

Global Current \(P = 0.0048 \)

Brooks et al. Investigation of Lighting Attachment Risks to Small Structures Associated with Electrogeometric Model (EGM) [unpublished manuscript]. Lubbock: Texas Tech University; 2019
Expectation (E)

- **Probabilities**
 - $\text{PDF}_{\text{strike}}(Ip) \rightarrow \text{PDF}_{\text{strike}}(SD)$
 - $P_{\text{Flash Rate}}(SD) = (\text{Flash Rate})\text{PDF}_{\text{strike}}(SD)$
 - $[\text{Flash Rate}] = [\frac{\text{Flashes}}{(\text{Area} \cdot \text{Time})}]$
 - $P_{\text{total}} = \int P_{\text{strike}}(SD')P(S = SD')$

- **Expectations**
 - $E_{rate} = \int P_{\text{Flash Rate}}(SD')P(S = SD')$
 - $= (\text{Flash Rate})\int \text{PDF}_{\text{strike}}(SD')P(S = SD')$
 - $= P_{\text{total}}(Total \text{ Flash Rate})$
Collection Area

• NFPA-780
 – Rectangular Building:
 • $LW + 6H(L + W) + 9\pi H^2$
 – Estimate of Building’s Presence for use with flash density

• E.g. Unprotected Home
 – About 2700 ft^2 (251 m^2)
 – Taken as $(52 \times 52 \times 15) ft^3$
 or $(15.85 \times 15.85 \times 4.575) m^3$
 – Flash density $5/(km^2 \cdot yr)$
Count of Vaisala NLDN lightning strikes within 0.1 degree grid cells within the United States. Political boundaries based on 2017 United States Census Bureau TIGER data.
Reference Geometry

- **Parametric Sweep**
 - Building Height
 - Footprint Area
 - Inset Protection
 - Aspect Ratio

Metric for comparing graphs:

\[P_{RMS} = \sqrt{\frac{1}{N} \sum x_i^2} \]

\[E_{RMS} = \sqrt{\frac{(x_i - p_i)^2}{n}} \]

\[\sigma_s = \sqrt{\frac{(x_i - p_i)^2}{n - 1}} \]

\[E_{RMS, \ norm} = \frac{E_{RMS}}{P_{RMS}} \]

\[\sigma_s, \ norm = \frac{\sigma_s}{P_{RMS}} \]

Brooks et al. Investigation of Lighting Attachment Risks to Small Structures Associated with Electrogeometric Model (EGM) [unpublished manuscript]. Lubbock: Texas Tech University; 2019
Building Height

Height was Varied as $X \text{ [m]}$
Catenary Wire Height Varied as $X + 2.4$

Reference
(100 x 50) m
Building Height: 13.1 m
Catenary Height: 15.5 m
Short buildings show weak dependence on height:
• Taller buildings are at increased risk of being struck.
• For less the buildings measured effect is very slight.
Variation of Footprint Area

Risk generally increased with increasing footprint area.
- Larger buildings are at increased risk of being struck.
- The effect is much more pronounced for small structures.
Building idealized to capture **only** edge effects.
Unprotected protrusions are at significant risk.

- P is much smaller than previous values as protection is idealized.
- Inset protection of 0.15 m or less incurs limited additional risk.

2. Brooks et al. Investigation of Lighting Attachment Risks to Small Structures Associated with Electrogeometric Model (EGM) [unpublished manuscript]. Lubbock: Texas Tech University; 2019
Building Volume held constant in effort to avoid collection volume effects, if any.

Aspect taken as: Length / Width
Variation of Aspect Ratio

Extreme aspect ratio buildings were much better protected.
- This is believed to be a consequence of competition with ground.
- The reference has an aspect of 0.5 and shows good agreement with the aspect 2 case.

2. Brooks et al. Investigation of Lighting Attachment Risks to Small Structures Associated with Electrogeometric Model (EGM) [unpublished manuscript]. Lubbock: Texas Tech University; 2019
Conclusions

• A stochastic model of stepped leader propagation in downward negative lightning with inclusion of final jump process was developed.
 – Large volumes of simulated lightning strikes to complex geometries can be evaluated quickly.

• Large structures were found to produce worst case error.
 – The simulated structure was found to be vulnerable to less than 0.5% of lighting strikes.
 – Rates were found to be weakly sensitive to height.
 – Aspect ratio was found to have pronounced impact.
 – Protection inset was found to be substantial.