PPPS 2019

Contribution ID: 612

Type: Either

Investigation of Atmospheric Pressure Plasma Jet in Double Coaxial Dielectric Barrier Tubes Conjugated with Microsecond Voltage Pulse

Thursday 27 June 2019 10:30 (15 minutes)

Atmospheric pressure plasma jet (APPJ) is gaining growing interest in a number of bio-applications. Among various APPJ sources, a dielectric barrier discharge (DBD) reactor has been considered as the most straight-forward plasma system to generate APPJ, because one or more dielectric layers isolating metal electrodes can avoid abnormal increase of current during plasma generation. Several DBD configurations have been success-ful in generating APPJ, e.g., one-ring electrode, one-ring electrode conjugated with a centered pin electrode, and two-coaxial-ring electrodes. In this study, the plasma jet was generated by a particular DBD reactor configuration that comprised two coaxial dielectric tubes with different diameters and two-ring electrodes were immersed in electrical insulating oil. With the two coaxial dielectric tubes, laminar flows of plasma jet (He/Ar) and shielding gas (N2/Air) can be created. The primary plasma discharge occurred with plasma gas inside the discharge zone, whereas there was no or weak plasma discharge of shielding gas due to high-voltage break-down. The effects of shielding gas on the plasma jet parameters (plume length, temperature), optical emission spectrum, and gas emission will be examined under various applied voltages (microsecond voltage pulse).

Primary authors: Dr NGUYEN, Duc Ba (Department of Chemical and Biological Engineering, Jeju National University); Dr HOSSAIN, Md. Mokter (Jeju National University); Mr NGUYEN, Van Toan (Jeju National University); Prof. MOK, Young Sun (Jeju National University)

Co-authors: Dr TRINH, Quang Hung (Duy Tan University); Prof. LEE, Won Gyu (Kangwon National University)

Presenter: Dr NGUYEN, Duc Ba (Department of Chemical and Biological Engineering, Jeju National University)

Session Classification: 6.1 Nonequilibrium Plasma Applications II

Track Classification: 6.1 Nonequilibrium Plasma Applications