CERN Summer Student Lecture Program 2018

Thierry Gys
Andrea Wulzer

on behalf of the SSLP committee
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.

Not an easy task!
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.

Not an easy task!

For this reason our lecturers are at the same time top researchers in their field and experienced lecturers. Don’t miss the opportunity to learn from them!
Goals

With these lectures we should:

• Give an overview of what we do at CERN and why
• Teach some physics/statistics/computing/engineering/…
• All this, to a varied audience.

Not an easy task!

For this reason our lecturers are at the same time top researchers in their field and experienced lecturers. Don’t miss the opportunity to learn from them!

Aim is not to teach you how to e.g. build an accelerator. We give you basic concepts and ideas, to further stimulate your interest in science.
Programme Overview

A simple scheme ...

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
 - From raw data to physics results
 - Experimental physics at hadron colliders
 - Experimental physics at lepton colliders
 - Physics and medical applications
 - Heavy Ions
 - Nuclear Physics at CERN
 - Flavour Physics
 - Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
 - Introduction to cosmology
 - Astroparticle physics
 - What is string theory?

Statistics/Computing
- Foundations of statistics
 - Separate openlab programme
Programme Overview

| Accelerator | Particle Accelerators and beam dynamics
| | Accelerator technology challenges
| | Future high-energy collider projects |
| Detectors | Detectors
| | Electronics, DAQ and triggers |
| Experiment | Particle World
| | From raw data to physics results
| | Experimental physics at hadron colliders
| | Experimental physics at lepton colliders
| | Physics and medical applications
| | Heavy Ions
| | Nuclear Physics at CERN
| | Flavour Physics
| | Antimatter in the lab |
| Theory | Theoretical concepts in particle physics
| | The Standard Model
| | Beyond the Standard Model
| | Making predictions at hadron colliders
| | Introduction to cosmology
| | Astroparticle physics
| | What is string theory? |
| Statistics/Computing | Foundations of statistics
| | Separate openlab programme |
Programme Overview

A simple scheme ...

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

A simple scheme ...

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
A simple scheme ...

... however ...

Programme Overview

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

A simple scheme ...

... however ...

Accelerator
Particle Accelerators and beam dynamics
Accelerator technology challenges
Future high-energy collider projects

Detectors
Detectors
Electronics, DAQ and triggers

Experiment
Particle World
From raw data to physics results
Experimental physics at hadron colliders
Experimental physics at lepton colliders
Physics and medical applications
Heavy Ions
Nuclear Physics at CERN
Flavour Physics
Antimatter in the lab

Theory
Theoretical concepts in particle physics
The Standard Model
Beyond the Standard Model
Making predictions at hadron colliders
Introduction to cosmology
Astroparticle physics
What is string theory?

Statistics/Computing
Foundations of statistics
Separate openlab programme
A simple scheme ...

... however ...

Programme Overview

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
Programme Overview

A simple scheme ...
... however ...
All subjects are inextricably linked

Accelerator
- Particle Accelerators and beam dynamics
- Accelerator technology challenges
- Future high-energy collider projects

Detectors
- Detectors
- Electronics, DAQ and triggers

Experiment
- Particle World
- From raw data to physics results
- Experimental physics at hadron colliders
- Experimental physics at lepton colliders
- Physics and medical applications
- Heavy Ions
- Nuclear Physics at CERN
- Flavour Physics
- Antimatter in the lab

Theory
- Theoretical concepts in particle physics
- The Standard Model
- Beyond the Standard Model
- Making predictions at hadron colliders
- Introduction to cosmology
- Astroparticle physics
- What is string theory?

Statistics/Computing
- Foundations of statistics
- Separate openlab programme
A simple scheme ...

... however ...

All subjects are **inextricably linked**

CERN is great because it brings them together

Accelerator
- Particle Accelerators and beam dynamics
 - Accelerator technology challenges
 - Future high-energy collider projects

Detectors
- Detectors
 - Electronics, DAQ and triggers

Experiment
- Particle World
 - From raw data to physics results
 - Experimental physics at hadron colliders
 - Experimental physics at lepton colliders
 - Physics and medical applications
 - Heavy Ions
 - Nuclear Physics at CERN
 - Flavour Physics
 - Antimatter in the lab

Theory
- Theoretical concepts in particle physics
 - The Standard Model
 - Beyond the Standard Model
 - Making predictions at hadron colliders
 - Introduction to cosmology
 - Astroparticle physics
 - What is string theory?

Statistics/Computing
- Foundations of statistics
 - Separate openlab programme
Programme Overview

A simple scheme …
… however …
All subjects are **inextricably linked**

CERN is great because it brings them together

Lecture program designed as pedagogical overview of all topics.

You are not expected to understand everything in all courses.

But in all courses there will be something you can learn.

Attend the lectures, even on topics you think you don’t care.

Otherwise you will not get the spirit of CERN!
Lectures every morning at 9:15, 10:25, 11:35, here (Main Auditorium)
 • lectures are 45’
 • followed by 10’ questions (stay in the room !)
 • and by 15’ coffee break

Use back door if you are late

Follow lecture actively
 • unfortunately there is WiFi in the room, don’t get distracted !
 • try the exercises the lecturer may propose
 • **ASK QUESTIONS!** lecturers love that, there are no stupid questions!

Lecture slides and recording available online [https://indico.cern.ch/category/345/]
Instructions in backup
Feedback Questionnaire !!

You will be asked to fill one (anonymous) questionnaire for each course.

DO THAT!

Your evaluation is carefully reviewed by the SSLP committee. Help us a lot to improve the program.
Practical Informations

The SSLP committee:

- Eszter Badinova (HR)
- Adriana Bejaoui (HR)
- Jennifer Dembski (HR)
- Despoina Driva (HR)
- Kfir Blum (TH)
- Francesco Cerutti (EN)
- Maria Girone (IT)
- Richard Hawkings (EP)
- Hermann Schmickler (ATS)

The SSLP committee chairs

- Thierry Gys (EP) thierry.gys@cern.ch
- Andrea Wulzer (TH) andrea.wulzer@cern.ch

For administrative and scheduling questions: summer.student.info@cern.ch
More introduction to follow ...
Enjoy CERN, your project, and the lectures !!
CERN openlab is a unique public-private partnership.

We work to drive innovation in ICT.

We collaborate with leading ICT companies (including Intel, Oracle, Siemens, and Huawei).

We also work with other research laboratories (including Fermilab, GSI, INFN, and EMBL-EBI).
Education and training are important aspects of our work.

Over 1800 applicants for this year’s CERN openlab summer-student programme.

41 students selected from 23 different countries.

More info on our website: openlab.cern.

Follow us on Twitter/Facebook: @CERNopenlab.
The lecture programme

All students from all programmes are welcome to attend!

Computing in high-energy physics
Dirk Duellmann
IT Amphitheatre (31-3-004)
13:30-15:30, 3 July

Computing Security
Sebastien Lopienski
IT Amphitheatre (31-3-004)
13:30-15:30, 5 July

Machine Learning (2)
Michael Kagan
Main auditorium (500-1-001)
13:30-15:30, 10 July

From Grids to Clouds
Ian Fisk
IT Amphitheatre (31-3-004)
13:30-15:30, 16 July

DAQ-Filtering Data from 1 PB/s to 600 MB/s
Niko Neufeld
IT Amphitheatre (31-3-004)
13:30-15:30, 4 July

Machine Learning (1)
Michael Kagan
Main auditorium (500-1-001)
13:30-15:30, 9 July

How to give presentations and pitches
Manuela Cirilli
Main auditorium (500-1-001)
16:30-17:30, 11 July

Discovering the Higgs with software/computing
Ken Bloom
IT Amphitheatre (31-3-004)
13:30-15:30, 17 July
The lecture programme

All students from all programmes are welcome to attend!

Web application security workshop (1)
Sebastien Lopienski
513-1-024
13:00-18:15, 18 July

Evolution in Computing Hardware (1)
Sverre Jarp
IT Amphitheatre (31-3-004)
13:30-15:30, 24 July

Evolution in Computing Hardware (2)
Andrzej Nowak
IT Amphitheatre (31-3-004)
13:30-15:30, 26 July

Web app security workshop (2)
Sebastien Lopienski
513-1-024
13:00-18:15, 1 August

Writing code that’s less bad
Axel Naumann
IT Amphitheatre (31-3-004)
13:30-15:30, 31 July

Introduction to code optimizations
Sofia Vallecorsa
IT Amphitheatre (31-3-004)
13:30-15:30, 2 August

indico.cern.ch/category/10155
Lightning talks
• Students work on projects over nine weeks, gaining hands-on experience with latest ICT solutions.
• 5-minute presentations by each student, with prizes for best talks.
• Split into two sessions: 14 August at 13:30 and 16 August at 15:00.
• Both take place in IT amphitheatre (31-3-004).

Webfest
• A weekend-long hackathon: run by students for students.
• Takes place 27-29 July here in main amphitheatre and R1.
• Collaborate on science-related projects using open-web technologies.
• Submit your ideas for projects or join existing ones.
• Full details on the event website: webfest.web.cern.ch.
• Additional (optional) preparatory sessions:
 • Evening session on hackathon essentials by Mayank Sharma on 19 July from 17:00 to 20:00 (513-R-070).
 • AI presentation by Sharada Prasanna Mohanty on 25 July from 13:30 to 15:30 (31-3-004).
Example from past year:

Summer Student Lecture Programme Course

Particle World (1/3)

by Tara Shears (University of Liverpool (GB))

📅 Tuesday 27 Jun 2017, 10:30 → 11:25 Europe/Zurich
📍 500-1-001 - Main Auditorium (CERN)

Slides. Available shortly before the lecture.

Video. Available shortly after the lecture.