

ESR1 – Background

- Bachelor thesis in particle physics at UniCA
- Master thesis in low temperature particle physics at UniHD:
 - approached superconductivity
- One year of PhD to keep working at master thesis research
- **Applied for ESR1 position** in EASITrain MSCA ITN, for the study of cryogenic properties of superconducting thin films on copper substrate at CERN

ESR1

- CERN Fellow contract start date: 01.02.2018
- Host institute: CERN TE-CRG-CI → Cryolab
- **EASITrain/PhD supervisors**: Johan Bremer, Torsten Koettig, Prof. Jens Knobloch
- PhD University: UniSiegen, Helmholtz-Zentrum Berlin
- PhD Title: Study on cryogenic properties of SC thin films on substrate
- Past secondment:
 - 08.10.2018 19.10.2018 INFN-LNL
 Dr. Cristian Pira, Vanessa Garcia ESR10
- Planned secondments:
 - 09.2019 10.2019 CEMECON

d0r0th Today my dear colleague and friend @vanegar29

Role in the Project & Objectives

Cryogenic properties of Nb₃Sn and NbN superconductors on substrate

- Qualify the methods used by CERN and INFN-LNL for films deposition
 - T_c test stand
- Develop a model to predict the influence of thermal properties of the film on its substrate on the performance of the superconducting film itself
- Analyse the results with ESR14 (USIEGEN) and ESR10 (INFN-LNL)

Research - Introduction

Thin films for SRF R&D program at CERN

From bulk Nb to Nb/Cu: well established since LEP era

- Cu is a cheaper bulk material than Nb
- Cu has higher thermal conductivity at low temperatures than Nb
- Q-slope not fully understood

Nb₃Sn/Cu:

- \rightarrow Higher T_c = less cryopower: 9.3 K (Nb) vs 18.3 K (Nb₃Sn)
- Lower surface resistance = less dissipated power: 45 n Ω (Nb) vs 0.4 n Ω (Nb₃Sn) @ 4.2 K and 500 MHz
- → Synthetize the crystalline phase
- → Achieve theoretical T_c on Cu substrate
- → Manage material stress and treatment affecting microstructural features i.e. RF performance
- → Investigate intermediate layer (Nb, Ta, Al₂O₃...)
- !! Toward real cavity coatings to push the limits of particle colliders

Research - Introduction

Thin films for SRF R&D program at CERN

From bulk Nb to Nb/Cu: well established since LEP era

- Cu is a cheaper bulk material than Nb
- Cu has higher thermal conductivity at low temperatures th
- Q-slope not fully understood

Nb₃Sn/Cu:

- \rightarrow Higher T_c = less cryopower: 9.3 K (Nb) vs 18.3 K (Nb₃Sn)
- \triangleright Lower surface resistance = less dissipated power: 45 n Ω (N
- → Synthetize the crystalline phase
- → Achieve theoretical T_c on Cu substrate
- → Manage material stress and treatment affecting microstructural features i.e. RF performance
- → Investigate intermediate layer (Nb, Ta, Al₂O₃...)
- !! Toward real cavity coatings to push the limits of particle colliders

Research – T_c test stand

Contactless, inductive measurement of the critical temperature of SC thin films deposited on a Cu substrate

Measurement principle:

- He vapour environment
- Sample (film on Cu) in between active drive coil and passive pickup coil
- Temperature sensors placed at top and bottom of sample
- AC current signal fed into drive coil = AC B-field
- Below T_c: film becomes superconducting and screens B, voltage induced in pickup coil has amplitude A'
- Above T_c: B "does not see" the sample and induces AC voltage in pickup coil of amplitude A >> A'
- Voltage amplitude "jump" in pickup coil is the sign for state transition!
- Film temperature monitored in parallel during transition allows extraction of $T_{\rm c}$
- Electrical heaters help adjusting the temperature of the He vapour flow and hence the temperature of the sample
- Materials: Cu, bulk Nb (test phase), Nb₃Sn, V₃Si, ... (operation phase)

Research – T_c test stand

Contactless, inductive measurement of the critical temperature of SC thin films deposited on a Cu substrate

Measurement principle:

- He vapour environment
- Sample (film on Cu) in between active drive coil and passive pickup coil
- Temperature sensors placed at top and bottom of sample
- AC current signal fed into drive coil = AC B-field
- Below T_c: film becomes superconducting and screens B, voltage induced in pickup coil has amplitude A'
- Above T_c: B "does not see" the sample and induces AC voltage in pickup coil of amplitude A >> A'
- Voltage amplitude "jump" in pickup coil is the sign for state transition!
- Film temperature monitored in parallel during transition allows extraction of T_c
- Electrical heaters help adjusting the temperature of the He vapour flow and hence the temperature of the sample
- Materials: Cu, bulk Nb (test phase), Nb₃Sn, V₃Si, ... (operation phase)

T_c test stand – Results so far

Not on the pictures:

Cabling

Geometry and parts size

T sensors, heaters, coils

T sensors calibration

He vapour flow

Cu substrate

T_c test stand – Results so far

Bulk Nb sample

Below Tc: 10 mV/div

Above Tc: **500 mV**/div

T_c test stand – Results so far

T_c test stand – Next steps

- Expected transition for bulk Nb (9.3 \pm 0.1 K) observed: apply test to thin film samples
- Measured samples from VSC group as reference are ready
- Further investigations to predict film/Cu behavior: B-field vs T
- Start systematic tests: queue is already long!
- Study of **further thermodynamic properties** of films/Cu with bigger samples inside QPR
 - Toward the understanding of film/Cu thermal behavior in RF field

Trainings

- ✓ 06.03.2018 06.03.2018 Consulting Group training (Sharepoint) at CERN
- ✓ 07.03.2018 07.03.2018 Indico Organizing Scientific Conferences at CERN
- √ 08.03.2018 09.03.2018 EASITrain Safety trainings at CERN:
 - General Safety
 - Cryogenic Safety Fundamentals
 - Fire Extinguisher and risk analysis
 - Ionising Radiation Safety
 - General Electrical Risks
 - Radiofrequency Safety
 - Magnetic Fields Safety
- ✓ 19.03.2018 22.03.2018 EASITrain Project Management lectures at CERN
- ✓ 23.05.2018 02.08.2018 French Integration course for beginners at CERN
- ✓ 06.07.2018 06.07.2018 Cryogenic Safety Helium Transfer at CERN
- √ 10.09.2018 11.09.2018 Project Management part 2 at WUW Vienna
- √ 12.09.2018 Media Training at Terra Mater Factual Studios Vienna

Conferences & Workshops

- √ 05.03.2018 23.03.2018 EASITrain Lectures

 Spring 2018 at CERN
- ✓ 09.04.2018 13.04.2018 FCC Week 2018 in Amsterdam
- ✓ 31.05.2018 01.06.2018 #3 CERN SRF Workshop at CERN
- √ 30.08.2018 14.09.2018 EASISchool 1 / ESAS

 Summer School Workshops in Vienna
- √ 08.10.2018 10.10.2018 8th International Workshop
 on Thin Films and New Ideas for Pushing the Limits of
 RF Superconductivity at INFN-LNL
- ✓ 08.11.2018 09.11.2018 TTC/ARIES Topical Workshop on Flux Trapping and Magnetic Shielding

Outreach Dissemination Networking

Outreach

- ✓ LN₂ show at Cryolab
- ✓ Instagram
- ✓ Planned: seminar + practical demonstration at high school in hometown

Dissemination

- ✓ Talk at FCC 2018
- ✓ Planned: SRF 2019, more...
- ✓ Private tours of lab to CERN colleagues from different fields

Networking

- ✓ ThinFilms Workshop 2018
- ✓ TTC/ARIES Topical Workshop at CERN 2018

Impact

Science and society

- Future circular colliders
- Smaller scale accelerators (e.g. for medical applications), and many more...

Personal life and career

- Network of industries and academic institutions linked via the ESRs
- Networking and gain of know-how
- Expertise on a wider range than the traditional academic formation
- "What have you enjoyed the most during this experience?"

Thank you!

