

Mid-Term Review 10th of December 2018, Brussels

Sofiya Savelyeva ESR11, WP4

Institution: Technical University of Dresden Supervisor: Prof. Dr. Christoph Haberstroh

Background & Recruitment

Field: Cryogenics

Education: Bauman Moscow State Technical University

Work experience: Engineer in the cryogenic laboratory of Bauman University, 2014-2017

Hosting country: Germany

Host institute/PhD University: Technische Universität Dresden

EASITrain Supervisor/PhD Supervisor: Prof. Dr. Christoph Haberstroh

Contract start - end date: 01.02.2018 - 31.01.2021

Current employment period: 10 months

EASITrain Project title: "Development and efficiency assessment of a

Nelium refrigeration cycle"

Georg-Schumann-Bau of the TU Dresden

Project subject

Application: part of the FCC cryogenic system (the beam screens and thermal shield cooling and Helium cycle pre-cooling)

Reasons for research:

- unconventionally high cooling capacity required at 40 K temperature level: 680 kW
- development of new promising cryogenic technology: more efficient than the conventional helium cycle thanks to turbo-compressors application (10 % higher Carnot efficiency)
- ➤ industrial application: superconducting cables cooling (40-77 K)

FCC-hh cryogenic layout

(L. Tavian, S. Klöppel)

Project Objectives

Improving the cooling system for beam screens, thermal shields and the Helium cycle pre-cooling, using Nelium Turbo-Brayton cycle – in cooperation with CEA (ESR 4), CERN

Industrial applications of cryogenic mixture cycles below 80 K – in cooperation with Linde AG (München), Linde Kryotechnik (Pfungen) – secondment in 2019

Development of **turbo-compressors** for the light gases — in cooperation with University of Stuttgart (ESR 15)

Current status - Research

Work performed:

- Review of literature and previously done work
- Cycle simulation in PRO II
- Neon market analysis and fluid composition improvement
- Neon production process study possible alternative mixture composition found
- Neon-helium mixture composition influence on the cycle parameters and components (in progress)

Screenshot of the cycle simulation in PRO II

Current status - Research

Part-load operation model – for updated mixture composition and Helium cycle precooling

Compressor model

Cycle model in PRO II

Cycle parameters for components design

Inputs for ESR 15 (compressor design)

Current status - Research

Cool-down operation model in Python – for magnets and secondary cycle (for the Nelium cycle – in progress)

Cool-down operation flow diagram

Programming in <u>Python</u>

Simulation results

Current status - Cooperation

University of Stuttgart (ESR 15)

- ✓ preparation for the compressor **test rig** setup and common experiment from March 2019
- ✓ **inputs** for the main compressor design
- ✓ email correspondence; Skype meetings

Linde AG, Munich/Linde Kryotechnik, Pfungen

- ✓ industrial conventional and turbo Brayton cycles comparison;
- ✓ neon production process study *common paper* is planned for Cryogenics 2019 conference;
- ✓ regular internal Skype meetings (once per month)
- √ secondment

Main compressor pressure ratio and massflow (low-lumi)

Main compressor operation map

M. Podeur (ESR 15)

Industrial conventional and Turbo-Brayton cycles compared

Unit name	LIPA I	Mayekawa	Neo	Kelvin	Air Liquide
Cooling power	4 kW	5 kW	2 kW	10 kW	7-150 kW
Fluid	He	Ne	Ne	Ne	Ne
Power consumptions	41 kW	52 kW	55 kW	170 kW	85-1200 kW

Next steps

- Further cycle design and operational modes improvements
- Hardware specification
- Industrial approach cycle scaling for different mixtures and temperatures below 80 K **secondment at Linde Kryotechnik** in 2019
- Study of turbo-compressor performance in cryogenic cycles with the light gases:
 - > common work on the test rig (~15 kW) with ESR 15 at the University of Stuttgart from March 2019 (sensors installation, getting system running, data analysis)
 - > implementation of the turbo-compressor model to cycle calculations

Training, Conferences & Workshops

Trainings:

✓ EASITrain lectures spring 2018 CERN, Geneva 03.03.-23.03.2018

Workshops on superconducting cables, magnet testing, treatment surface chemistry, cryogenics, manufacturing, project management

✓ EASIschool 2018 Vienna 03.09.-14.09.2018

Course on applied superconductivity, project management course, media training, innovation management

\checkmark	LabView course	TU Dresden	16.0418.04.2018
--------------	----------------	------------	-----------------

✓ German, upper-intermediate TUDIAS, Dresden 04.04.-25.07.2018

✓ German, pre-advanced Goethe Institute, Dresden 18.09.-30.11.2018

Conferences/Workshops:

\checkmark	FCC Week 2018	Amsterdam	09.0413.04.2018
✓	PhD Seminar	Bad Schandau	21.1023.10.2018
✓	DKV Conference	Aachen	21.1123.11.2018

Outreach, Dissemination & Networking

Outreach activities

- ✓ Video Interview, CERN, March 2018
- ✓ International Refrigeration and Compressor Course,
 TU Dresden, 21.05. 25.05.2018
- ✓ Long Night of Science, TU Dresden, 14.06.2018

Presentations:

- ✓ FCC Week 2018, Amsterdam, 12.04.2018
- ✓ PhD seminar, TU Dresden, 21.10.-23.10.2018

Networking activities

- ✓ FCC meetings, meetings with companies, conferences,
 EASITrain meetings incl. social events
- ✓ Project cooperation with other ESRs and industry

FCC Week 2018

Impact

Personal impact of MSCA fellowship:

- ✓ Open the border to the research society of Europe
- ✓ PhD project in cooperation with research institution + industry
- ✓ Technical/non-technical trainings
- ✓ Mobility (secondments, schools, scientific events attendance)
- ✓ Access to facilities closed for public
- ✓ Scientific Network
- ✓ Multicultural environment

Future career plans:

- ✓ Research & Development in industry or
- ✓ Academic career

TUD team

EASITrain team

Thank you for your attention!

Sofiya, Savelyeva ESR11, WP4

Mid-Term Review 10th of December 2018, Brussels

