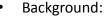


Mid-Term Review 10 December 2018, Brussels

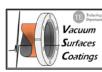
Mattia, ORTINO ESR13, WP2



ESR13, WP2 - Background

2010

- B.Sc in Mechanical Engineering (Cosenza, IT)



- M.Sc in Nuclear Engineering - Physics for Nuclear Systems (Milano, IT)

- 14 + 2 months Technical Student @ CERN (Vacuum, Surfaces and Coatings group), Geneva

UNIVERSITÄT - 6 months Project assistent @ TU Wien (Low Temperatures Physics and Superconductivity group), Vienna (AT)

- Contract start date 01.10.2017
- Host institute: TU Wien, Atominstitut
- EASITrain Supervisor(s) M. Eisterer (TU Wien), S. Hopkins (referring scientist @ CERN)
- PhD Title: "Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"
- PhD University: TU Wien (Vienna, AT)
- Planned secondments:
 - 1. Columbus Superconductors (Genova, It), MgB₂ manufacturing methods, October/November 2019, 2 weeks (possible iteration with other 2 weeks)
 - 2. Noell Bilfinger GMBH, Magnets manufacturing technologies, August/September 2019 or January/February 2020 (to be decided)

EASITrain - European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

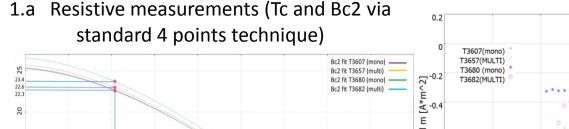
2017

Role in the Project & Objectives

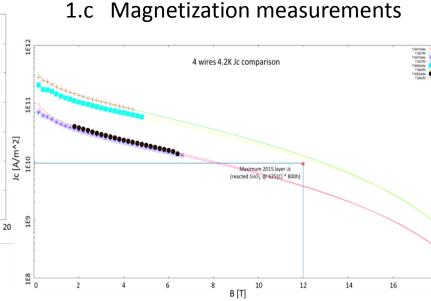
The ESR13 receives the superconducting samples manufactured by the companies inside the network (or inside the FCC-collaboration), with the aim of characterizing and understanding how to improve their performances

• In-depth characterisation of new ternarary and quaternary Nb_3Sn wires pointing to the standards requested by the next 16T CERN-FCC dipole magnet

• Identification of new MgB_2 wires performances for next generation 10T magnets and high current links provided by Columbus Superconductors SpA (collaboration with ESR #7)


Nb₃Sn

1. Four Ternary (with artificial pinning centers) Tube-Type (TT) wires from


have been analyzed trying to correlate the superconducting and microstructural features

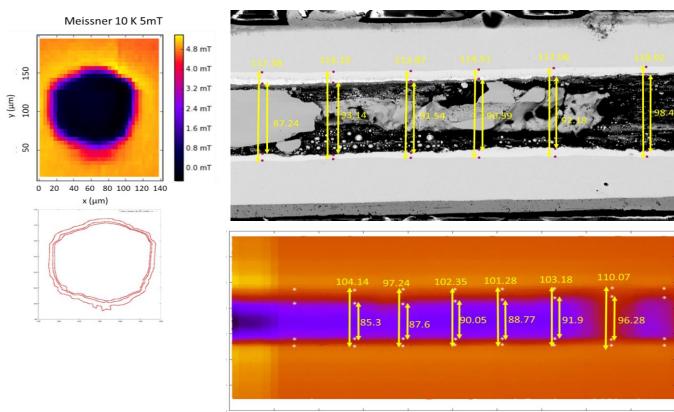
1.b AC-susceptibility measurements

T [K]

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

ESR13, WP2

T [K]



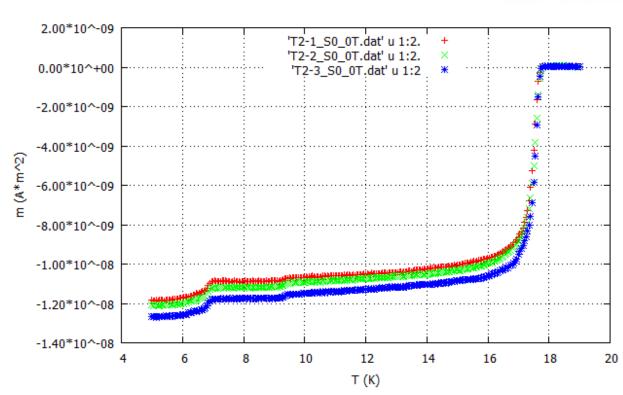
Nb₃Sn

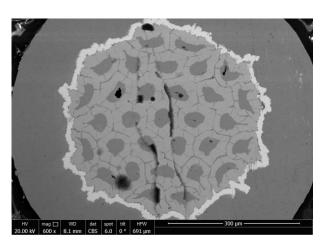
1.d Scanning Hall Probe Microscopy (SHPM) + SEM/TEM comparison

Next steps

- New wires coming: ternary and quaternary samples with the aim of a further non-Cu J_c improvement and a higher Bc₂;
- Potential irradiation campaign to be performed on the old and the new wires, assessing the additional artificial pinning effects;
- Further SHPM investigations (currents evaluation via Biot-Savart inversion) and comparison between the two generations of wires

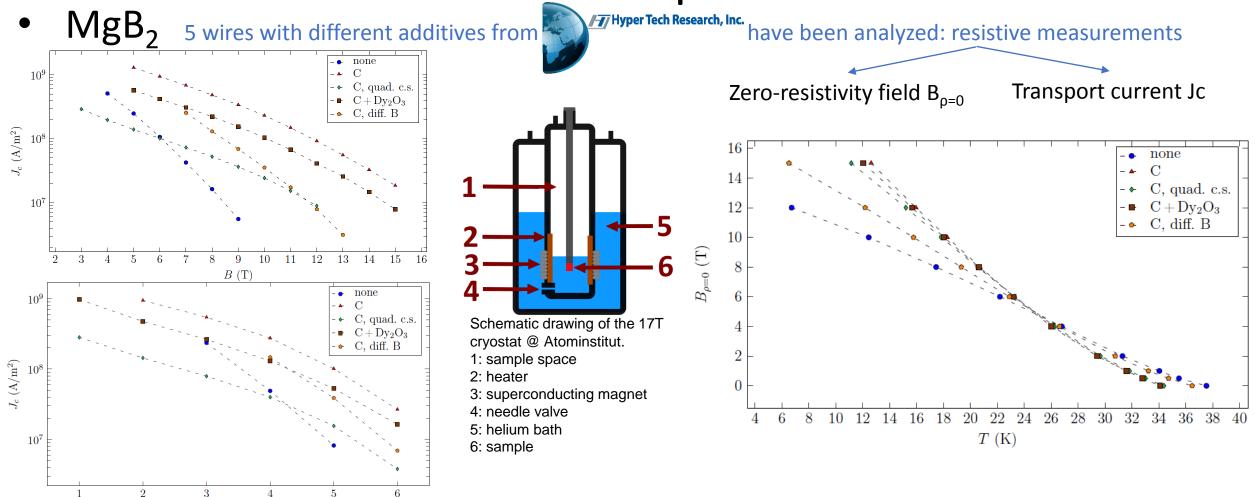
EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879




• Nb₃Sn

2. 8 Internal-Tin (IT) wires from

have been recently received and partially analyzed


- Analysis of the A-15 phase inhomogenities via AC susceptibility ongoing;
- SHPM measurements to be provided (coupled with SEM by ESR12);

EASITrain - European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has

received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

ESR13, WP2

Training, Conferences & Workshops

Training

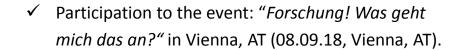
- ✓ B1.2 German course (language training, Deutschinstitut Wien, 03.01.18-28-02-18.)
- ✓B2.1 German course (language training, Deutschinstitut Wien, 01.11.18-21-12-18.)

Conferences

✓ FCC Week (conference, Amsterdam, 9-13/4/2018)

Attended EASITRain events

- ✓ CERN Spring Lectures, CERN (Geneva, CH), 05-23.03.2018
- ✓ Summer School (Vienna, AT), 03-14.09.18



Outreach, Dissemination & Networking

Attending with lecture to "FUTURA COSENZA- Magna Grecia 4.0" (17-18.10.18, Cosenza, IT)

An event organized for the high-school students in the ESR home town (Cosenza, IT), where the ESR meets young pupils presenting his experience as a viable early stage scientific career path.

The ESR toke part to an event with Austrian scientists, politicians and the 1987 Nobel Price Mr.Bednorz organized in the Naturhistorisches Museum.

Outreach, Dissemination & Networking

Dissemination activities

- ✓ FCC-Week 2018 presentation: outline of the work to be done by the ESR within his project
- ✓ ASC 2018 co-authorship on MgB2 paper (under review)

Networking activities

- ✓ Inspiring discussions with the 1987 Nobel Laureate Mr.Bednorz through the ESAS Vienna Summer School (Vienna, AT)
- ✓ Collaboration with other PhD Students from CERN (CH) and UNIGE (IT) on a project related to possible lunar transport systems using superconductors (abstract for paper under further development). The project follows the work done at the Superconductivity Hackathon (Geneva (CH), 09.2017)
- ✓ Networking possibilities with international field experts via EASITrain-organized activities
- ✓ Started collaboration as a contributor on https://magazine.impactscool.com/en/

Impact

- The ESR13 work foreseen a long-term social-relevant impact. Pushing forwards the limits of Low Temperature Superconductors (LTS) has nowadays possible relevant weight in specific niche markets (NMR/MRI, energy storage systems, high energy physics).
- MSC fellowship individual impact:
 - Experience: new nation, new language, new customs. Being moreover in a capital (Vienna) helps finding the ESR path into that culture via different possibilities.
 - Understanding the differences, PROs and CONTROs of both academia and industry;
 - Less time for pure scientific production than a «standard» PhD path but wider range of learning opportunities
 - Responsibility

