

Analysis of Collimation Losses 2018

A. Mereghetti, on behalf of the LHC Collimation Team

Changes due to β -tron Cleaning

Approach

Collimation system designed to stand temporary drop downs in beam lifetime:

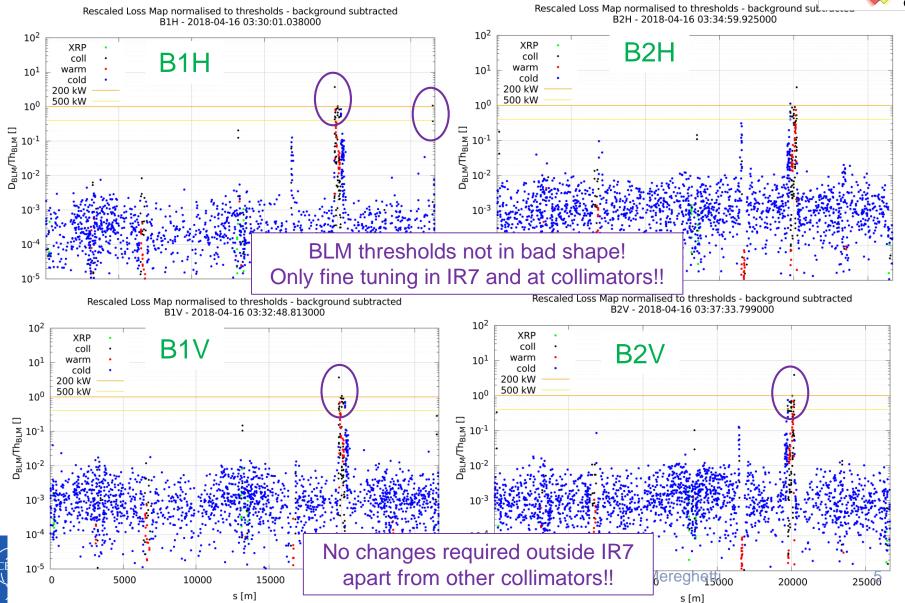
- 500kW beam losses in 1-10s, i.e. limit for jaw *plastic* deformation damage!
- 100kW beam losses in steady state, i.e. limit for jaw elastic deformation loss of performance!

Let's re-tune the BLM thresholds such that we don't dump un-necessarily beforehand:

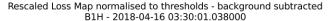
- Cautious approach: 200kW / 40kW, (1-10s / steady state) instead of 500kW / 100kW, for the moment, using MF=0.4 instead of MF=1;
- Use qualification LMs (RS09, all beams/planes) to spot all those BLMs that would trigger a premature beam dump → 3 configurations with XRPs in (N. Fuster Martinez, CWG, 2018-05-07):
 - β*=30cm, 160μrad;
 - $\beta^*=30$ cm, 130μ rad; Most demanding in IR7 (still corrections are very close to previous one)
 - β*=25cm, 130μrad; Most demanding at TCTs
- Change present SSL corrections on 'long' RSs (eg from RS08 onwards) according to scale factors identified with RS09;
 Extrapolation to target beam power loss

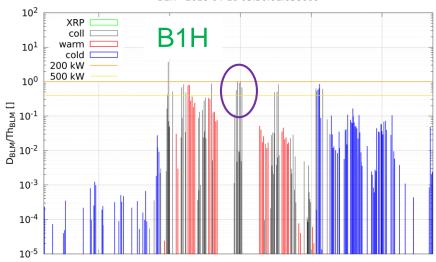
Linear extrapolation of BLMs signals done as:

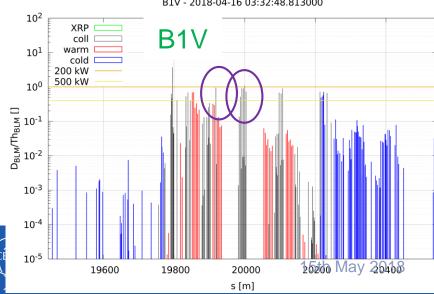
$$Th_{new} [_{Gy/s}] = D_{LM} [_{Gy/s}] \frac{200kW}{P_{L} [_{kW}]} \rightarrow F = \frac{Th_{new} [_{Gy/s}]}{Th_{old} [_{Gy/s}]}$$

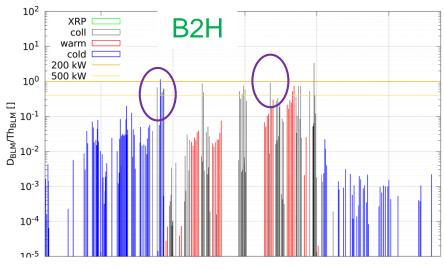

Correction factor to thresholds

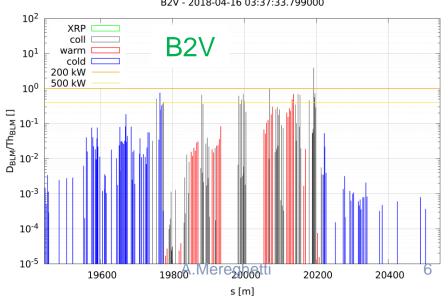
A.Mereghetti 4


β*=30cm, 130 μrad – LHC

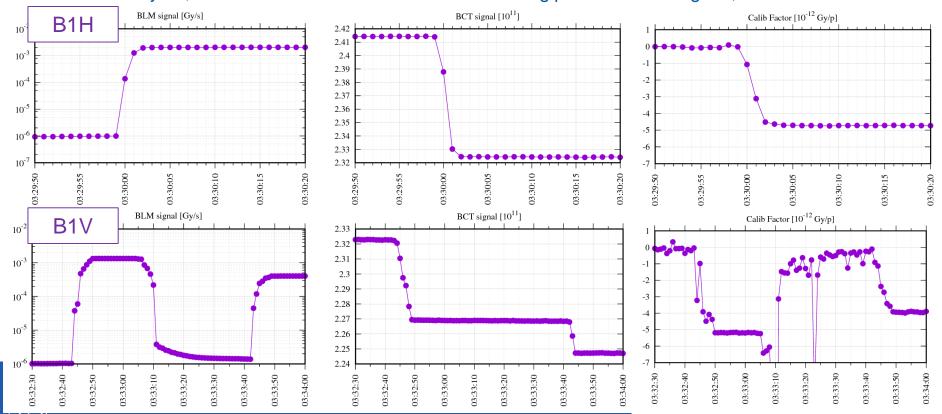

LHC Collimation


β *=30cm, 130 µrad – IR7


LHC Collimation



Rescaled Loss Map normalised to thresholds - background subtracted B1V - 2018-04-16 03:32:48.813000

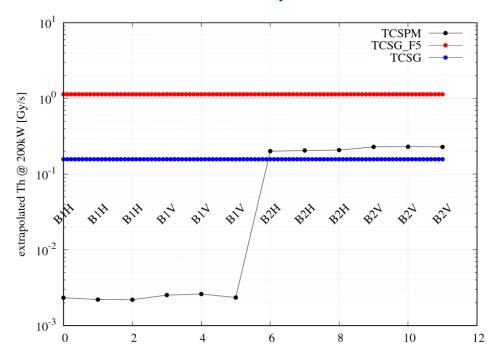

Rescaled Loss Map normalised to thresholds - background subtracted B2V - 2018-04-16 03:37:33.799000

Estimating Beam Power Losses

LHC Collimation
Project
CERN

- As done in 2017, BLM calibration factor estimated via long RSs:
 - Using not the peak BLM signal in RS09 during LM but integrated BLM signal over entire
 excitation via RS11 RS12 not used due to cross-talks between LMs...
 - Using not the variation in beam current during the peak of LM, but the overall loss of beam intensity for the entire excitation;
- → the whole duration of the excitation contribute to the estimation of the calibration factor, not only the very short moment of the LM!
- As last year, BLM at skew collimator used for estimating power loss during LM;

- BLM thresholds at 200kW (1-10s) and 40 kW (steady state) have been extrapolated from 2018 qualification LMs (hence based on RS09) in collisions (XRPs in), as done in the past;
- WRT last year, no relevant change is foreseen, in order to avoid premature beam dumps (i.e. <200kW);
- If we want to limit the power loss to 200kW, then some small adjustments in IR7 are needed;
- Reminder: present max power loss kept at 200kW instead of 500kW → to get to actual max, MF can be changed from 0.4 to 1 (fast change while more detailed updates via MT are prepared);
- Other configurations at FT energy do not imply any further change in IR7 BLM thresholds;


Family	BLM triggering the change	Factor	Factor (2017)
THRI_7_TCP	BLMTI.06R7.B2I10_TCP.C6R7.B2	7.23E-01	8.26E-01
THRI_7_TCSG	BLMTI.04R7.B2I10_TCSG.A4R7.B2	1.07E+00	1.19E+00
THRI_7_TCSG_F5	BLMTI.06R7.B2I10_TCSG.A6R7.B2	7.39E-01	7.64E-01
THRI.06_7_AB_TCLA	BLMTI.06L7.B2I10_TCLA.A6L7.B2	8.26E-01	7.87E-01
THRI.06_7_CD_TCLA	BLMTI.06R7.B1E10_TCLA.C6R7.B1	7.19E-01	6.73E-01
THRI.07_7_AB_TCLA	BLMTI.07L7.B2I10_TCLA.A7L7.B2	7.17E-01	8.14E-01
THRI_TCT	BLMTI.04L1.B1I10_TCTPH.4L1.B1	1.50E+00	
BLMQI.06R7.B1E10_MQTL	THRI_IP7_P1_MQTL_FT	5.83E-01	
BLMQI.06L7.B2I20_MQTL	THRI_IP7_P2_MQTL_FT	1.19E+00	
THRI_MQW_IP7	BLMQI.05L7.B1E10_MQWA.D5L7	7.88E-01	

TCSPM

- TCSPM:
 - Prototype IR7 secondary collimator for HiLumi;
 - Jaw in MoGr with three coating stripes (Mo, MoGr, TiN);
 - Used in 2017 only in MD (impedance characterization with beam of coating layer);
 - → BLM thresholds set to max;
 - Operationally used in 2018!!
 - → need for a family!

The regular THRI_7_TCSG family seems to be adequate – checked only against LM scaling;

→ SSL corrections for that family would be driven exactly by this collimator: +60% instead of +10%

Cross Checks

RQ6.A45B1 Trip

 10^{-6}

 10^{-4}

 10^{-3}

 10^{-1}

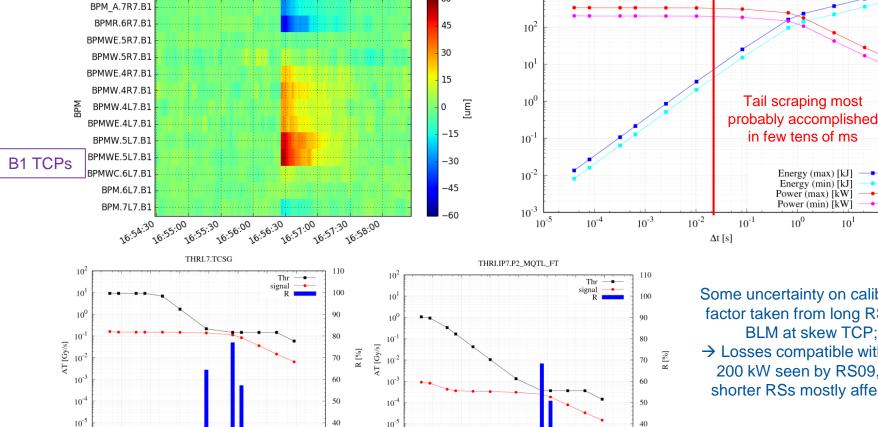
 10^{0}

 10^{1}

 10^{2}

 10^{3}

LHC Collimation Project


 10^{2}

- Trip of RQ6.A45B1 (fill 6612, 2018-04-25, ~16:56, 603b):
 - V sudden orbit shift in IR7 (few tens of μm at TCPs) \rightarrow tail scraping \rightarrow losses;

 10^{3}

RS07/RS08 concerned at few elements:

B1V

 10^{-4}

 10^{-5}

 10^{-2}

 10^{-1}

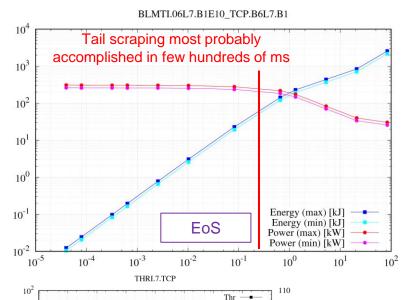
 10^{0}

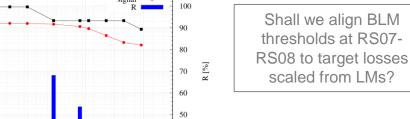
 10^{1}

 10^{2}

Some uncertainty on calibration factor taken from long RSs of BLM at skew TCP:

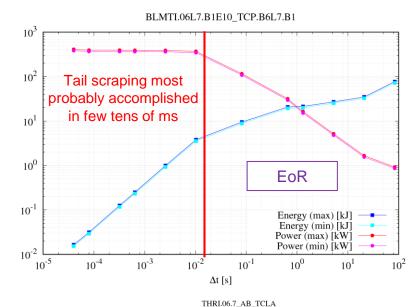
BLMTI.06L7.B1E10_TCP.B6L7.B1

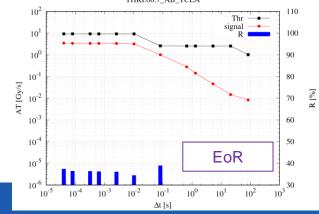

→ Losses compatible with 100-200 kW seen by RS09, but shorter RSs mostly affected!


Δt [s] CERN 15th May 2018

EoR (no MQTL) / EoS Losses

LHC Collimation
Project
CERN


- EoR (no MQTL fill 6611, 2018-04-24, ~22:14, 315b):
 - H orbit shift in IR7 (a few tens of μm at TCPs according to analysis by J.Wenninger) → tail scraping → losses;
 - RS07/RS08 concerned at few elements;
- EoS (fill 6638, 2018-05-02, ~23:22, 2175b):
 - No clear reason for losses (orbit, instability, ...)
 - RS07/RS08 concerned at few elements;



40

2018

10¹

10⁰

10⁻³

10-4

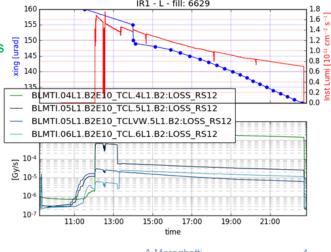
10⁻⁵

AT [Gy/s]

EoS

A.Mereghetti

Changes due Collision Debris


Approach and Caveats

Collision debris induced spurious signals in BLMs nearby interaction points:

- TCT / TCL collimators are involved → TCLs already presented at last BLMTWG meeting;
- Effect mostly visible on long RSs, since signal from debris has time to pile up;
 - In comparison to 2017:
 - TCL.4s are slightly more opened i.e. 16.43 σ at β*=30cm instead of 15 σ, actually reached at β*=25cm;
 - Signals at TCL.5s are systematically lower than those at TCL.4s (as last year);
 - TCL.6s actually never inserted BLM signals affected by upstream XRPs:
- In 2018, quite a complex gymnastics at the high luminosity IPs:
 - · crossing angle anti-levelling;
 - β* levelling;
- Many configurations to check, as BLM response to pp-collision may not stay the same;

Detailed analysis focused only on few representative fills

8th May 2018

A.Mereghetti

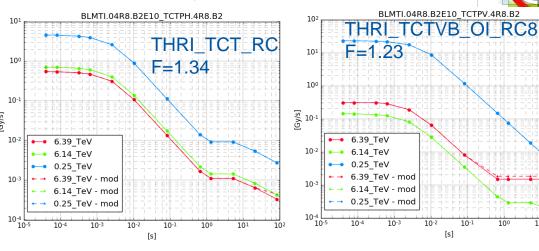
4

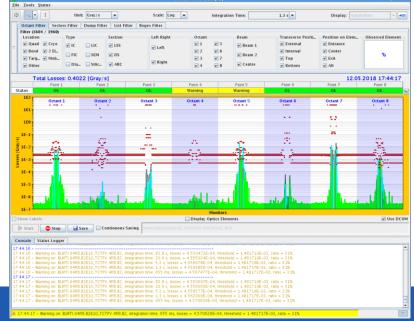
Linear extrapolation of BLMs signals done as:

$$D_{th} = D_L \frac{TL}{L}$$

IP	Lumi [Hz μb ⁻¹]
1/5	2 104
8*	6 10 ²
2**	4

*above current lumi levelling;


** current lumi levelling;


3x, to get to warning level;

Task Manager Lumi Display Exp. Separation Levelling IP2: Excelling New York (Levelling Status) P optimization Emittance Scan IP steering Automatic Scan Collision Scrup Levelling GP2 | Evelling New York (Levelling Status) P optimization Emittance Scan IP steering Automatic Scan Collision Scrup Levelling GP3 | Everling GP3 | Everling Automatic Scan Collision Scrup Levelling GP3 | Everling GP3 | Everling Automatic Scan Collision Scrup Levelling GP3 | Everling Automatic Scan Collision Scrup Levelling GP3 | Everling GP3 | Everling Automatic Scan Collision Scrup Levelling GP3 | Everling GP3 |

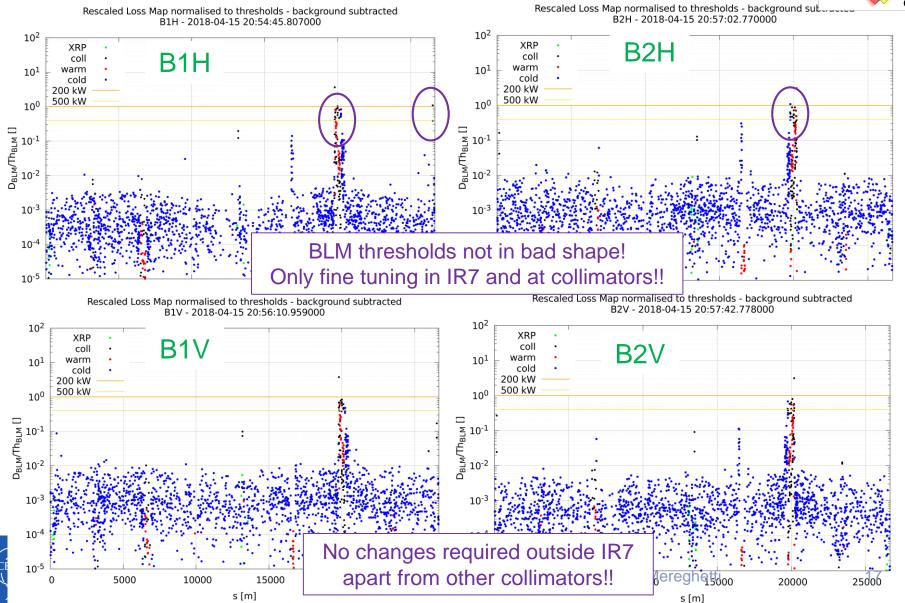
Corrections valid also for recent issues with TCTPV.4R8 during β^* levelling

Only IR8 needs corrections;

15th May 2018

A.Mereghetti

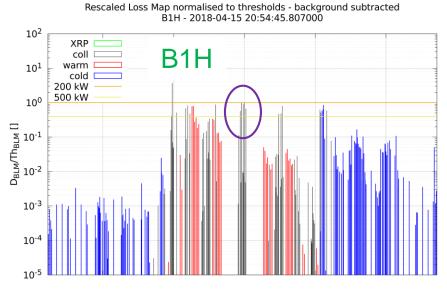
LHC Collimation



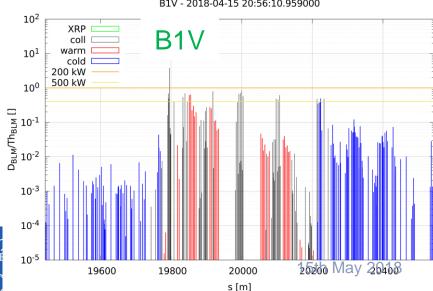
Reserve Slides

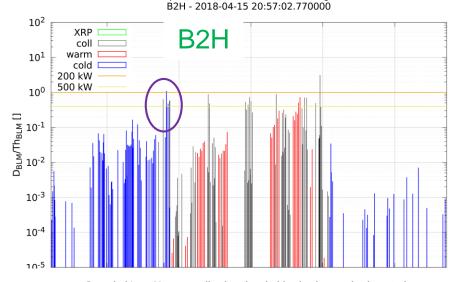
β *=30cm, 160 μ rad – LHC

LHC Collimation

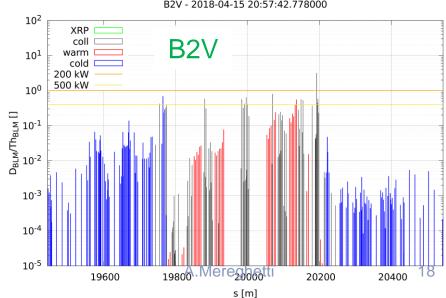

β*=30cm, 160 µrad – IR7

Rescaled Loss Map normalised to thresholds - background sub-

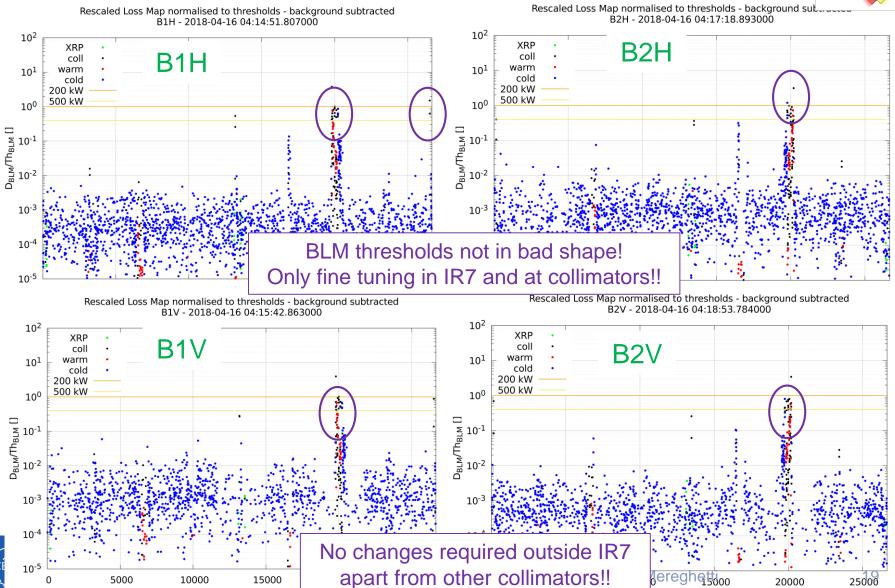

LHC Collimation


Project

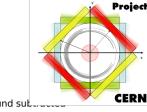
CERN

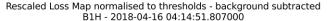


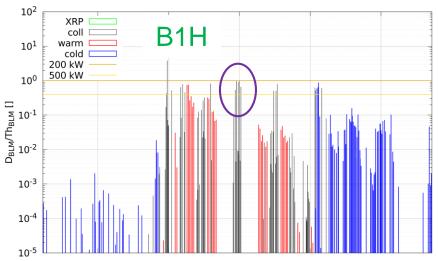
Rescaled Loss Map normalised to thresholds - background subtracted B1V - 2018-04-15 20:56:10.959000


Rescaled Loss Map normalised to thresholds - background subtracted B2V - 2018-04-15 20:57:42.778000

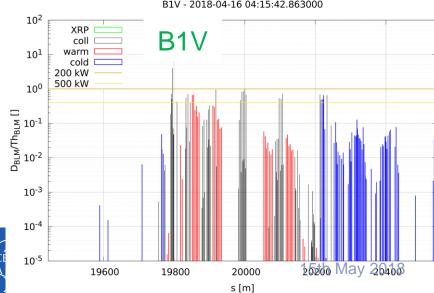
β*=25cm, 130 μrad – LHC


LHC Collimation

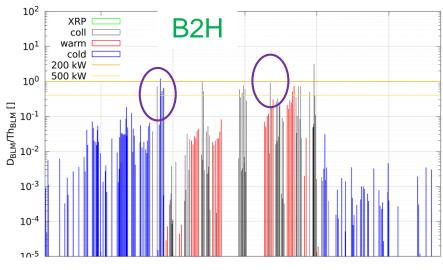

s [m]

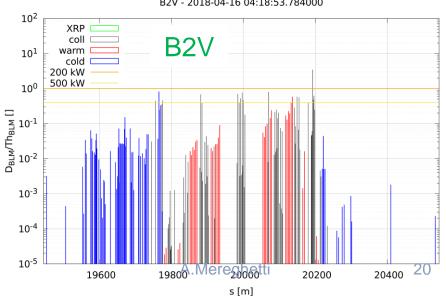

s [m]

β*=25cm, 130 µrad – IR7

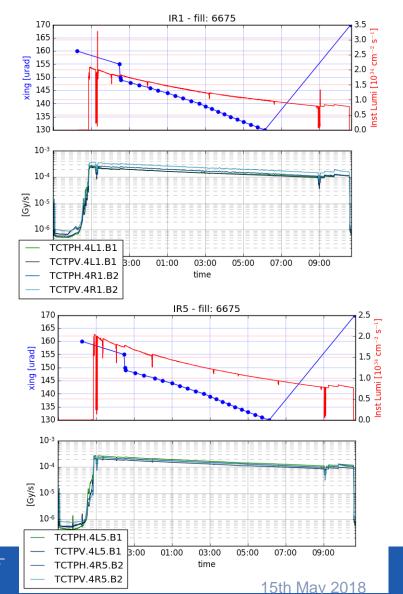


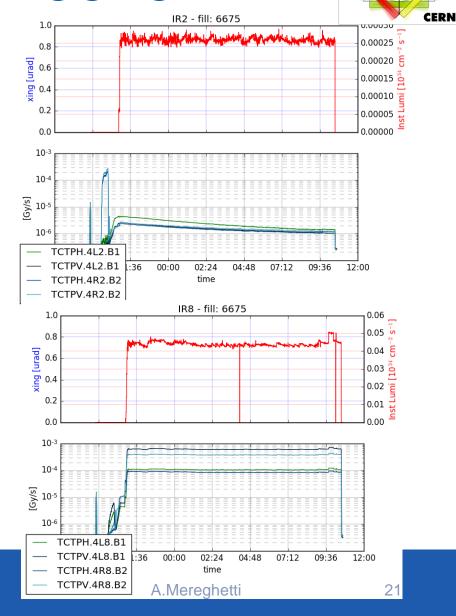
LHC Collimation




Rescaled Loss Map normalised to thresholds - background subtracted B1V - 2018-04-16 04:15:42.863000

Rescaled Loss Map normalised to thresholds - background sub---B2H - 2018-04-16 04:17:18.893000




Rescaled Loss Map normalised to thresholds - background subtracted B2V - 2018-04-16 04:18:53.784000

Lumi Losses – fill 6675

LHC Collimation

