Constraints on neutron star properties from GW170817

Elias Roland Most

Institute for Theoretical Physics, Frankfurt

Collaborators: Lukas Weih

Supervisors: Luciano Rezzolla, Jürgen Schaffner-Bielich

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

HGS-HIRe for FAIR
Helmholtz Graduate School for Hadron and Ion Research

Institute for Theoretical Physics
Can we translate GW170817 to constraints on the EOS?
Ingredients to constrain EOS

Numerical relativity

Physics modelling

EOS CONSTRAINTS

Observation

GW170817

Abbott + 2017

Metzger 2017
Maximum mass constraints from GW170817
The outcome of GW170817

- The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

- Sequences of equilibrium models of **nonrotating** stars will have a maximum mass: \(M_{\text{TOV}} \)
The outcome of GW170817

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

• Sequences of equilibrium models of nonrotating stars will have a maximum mass: \(M_{\text{TOV}} \)

• This is true also for uniformly rotating stars at mass shedding limit: \(M_{\text{max}} \)

• \(M_{\text{max}} \) is simple and quasi-universal function of \(M_{\text{TOV}} \)

(Breu & Rezzolla 2016)

\[M_{\text{max}} = (1.20^{+0.02}_{-0.05}) M_{\text{TOV}} \]
The outcome of GW170817

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

• **Green** region is for uniformly rotating equilibrium models.

• **Salmon** region is for differentially rotating equilibrium models.
The outcome of GW170817

- The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

- **Green** region is for uniformly rotating equilibrium models.
- **Salmon** region is for differentially rotating equilibrium models.
- **Supramassive** stars have

\[M > M_{\text{TOV}} \]

- **Hypermassive** stars have

\[M > M_{\text{max}} \]
The outcome of GW170817

- Merger product in GW170817 could have followed two possible tracks in diagram: **fast (2)** and **slow (1)**

- It rapidly produced a BH when still **differentially** rotating (2)

- It lost differential rotation leading to a **uniformly** rotating core (1).

- (1) is more likely because of large ejected mass (long lived).

- Final mass is near M_{max} and we know this is universal!
Maximum mass constraint

- The merger product of GW170817 was initially differentially rotating but collapsed as uniformly rotating object.

- HMNS core has about 95% gravitational mass of
 \[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

- Ejected rest mass deduced from kilonova emission
 \[M_{e j}^{\text{blue}} = 0.014^{+0.010}_{-0.010} M_\odot \]

- Use universal relations and account errors to obtain
 \[2.01^{+0.04}_{-0.04} \leq \frac{M_{\text{TOV}}}{M_\odot} \lesssim 2.16^{+0.17}_{-0.15} \]

universal relations and GW170817; similar estimates by other groups
Radius constraints from GW170817: A Frankfurt perspective
GW170817: What do we know?

\[M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_\odot \]

\[M_1 = 1.36 - 1.60 M_\odot \]

\[M_2 = 1.17 - 1.36 M_\odot \]

\[\tilde{\Lambda}_{1.4} < 800 \]
Kilonova constraints on the tidal deformability

- Consistency with kilonova modelling (mass ejection) requires lower limit on tidal deformability

\[\tilde{\Lambda} = \frac{16}{13} \left[\frac{(M_A + 12M_B)M_A^4\Lambda_2^{(A)}}{(M_A + M_B)^5} + (A \leftrightarrow B) \right], \]

Errors unclear
Might be as low as \(\sim 200 \) (Coughlin+ 2018)

Radice et al 2018
Limits on radii and deformabilities

- Constraining NS radii of neutron stars is an effort with thousands of papers published over the last 40 years.
- Question is deeply related with EOS of nuclear matter.
- Can new constraints be set by GW170817?
- Ignorance can be parameterised and EOSs can be built arbitrarily as long as they satisfy specific constraints on low and high densities.
Mass-radius relations

- We have produced 10^6 EOSs with about 10^9 stellar models.

- Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817

ERM+(PRL 2018)
one-dimensional cuts

• Closer look at a mass of $M = 1.40 \, M_\odot$

• Can play with different constraints on maximum mass and tidal deformability.

• Overall distribution is very robust

$12.00 < R_{1.4}/\text{km} < 13.45$

$R_{1.4} = 12.45 \, \text{km}$

ERM+ (PRL 2018)
Constraining tidal deformability

- Can explore statistics of all properties of our 10^9 models.
- In particular can study PDF of tidal deformability: $\tilde{\Lambda}$

- LIGO has already set upper limit:

 $$\tilde{\Lambda}_{1.4} \lesssim 800$$

- Our sample naturally sets a lower limit:

 $$\tilde{\Lambda}_{1.4} > 375$$
Mass-radius relations

• Presence of a phase transition leads to second stable branch and “twin-star” models.
Constraining tidal deformability: PTs

- Can repeat considerations with EOSs having PTs
- Lower limit much weaker: $\tilde{\Lambda}_{1.4} \gtrsim 35$
- Large masses have sharp cut-off on upper limit:
 \[\tilde{\Lambda}_{1.7} \lesssim 460 \]

GW detection with $\tilde{\Lambda}_{1.7} \sim 700$ would **rule out** twin stars!
Conclusions

GW170817 provides new limits on maximum mass and radii:

\[
2.01^{+0.04}_{-0.04} \leq \frac{M_{\text{TOV}}}{M_\odot} \lesssim 2.16^{+0.17}_{-0.15}
\]

- \(12.00 < R_{1.4}/\text{km} < 13.45\) \(\bar{R}_{1.4} = 12.45\) km
- \(8.53 < R_{1.4}/\text{km} < 13.74\) \(\bar{R}_{1.4} = 13.06\) km

\(\tilde{\Lambda}_{1.7} \lesssim 460\)

hadronic EOS phase transitions

Upper limit on deformability can rule out twin stars
What do we now know about the EOS?

- All constraints applied.
- Outer core determines radius.