Constraints on neutron star properties from GW170817

Elias Roland Most

Institute for Theoretical Physics, Frankfurt

Collaborators: Lukas Weih

Supervisors: Luciano Rezzolla, Jürgen Schaffner-Bielich

Can we translate GW170817 to constraints on the EOS?

Ingredients to constrain EOS

Numerical relativity

EOS CONSTRAINTS

4

Observation GW170817

Abbott+ 2017

Metzger 2017

Maximum mass constraints from GW170817

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

• Sequences of equilibrium models of nonrotating stars will have a maximum mass: M_{TOV}

• The product of GW170817 was likely a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

- Sequences of equilibrium models of nonrotating stars will have a maximum mass: M_{TOV}
- This is true also for **uniformly** rotating stars at mass shedding limit: $M_{\rm max}$
 - $M_{
 m max}$ simple and quasiuniversal function of $M_{
 m TOV}$ (Breu & Rezzolla 2016)

$$M_{\text{max}} = (1.20^{+0.02}_{-0.05}) M_{\text{TOV}}$$

• The product of GW 1708 17 was likely a hypermassive star, i.e. a differentially rotating object with initial gravitational mass

$$M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$$

- Green region is for uniformly rotating equilibrium models.
- Salmon region is for differentially rotating equilibrium models.

• The product of GW I 708 I 7 was likely a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $\frac{3}{2}$

$$M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$$

- Green region is for uniformly rotating equilibrium models.
- •Salmon region is for differentially rotating equilibrium models.
- Supramassive stars have

$$M > M_{\text{TOV}}$$

Hypermassive stars have

$$M > M_{\rm max}$$

- Merger product in GW170817 could have followed two possible tracks in diagram: fast (2) and slow (1)
- It rapidly produced a BH when still differentially rotating (2)
- It lost differential rotation leading to a uniformly rotating core (I).
- (I) is more likely because of large ejected mass (long lived).
- Final mass is near $M_{
 m max}$ and we know this is universal!

Maximum mass constraint

- The merger product of GW170817 was initially **differentially** rotating but collapsed as **uniformly** rotating object.
- •HMNS core has about 95% gravitational mass of

$$M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$$

• Ejected **rest mass** deduced from kilonova emission $M_{\rm ei}^{\rm blue} = 0.014^{+0.010}_{-0.010}\,M_{\odot}$

•Use universal relations and account errors to obtain

Rezzolla, ERM, Weih (ApJL 2018)

pulsar timing

$$2.01^{+0.04}_{-0.04} \le M_{\rm TOV}/M_{\odot} \lesssim 2.16^{+0.17}_{-0.15}$$

universal relations and GW170817; similar estimates by other groups

Radius constraints from GW170817: A Frankfurt perspective

GW170817:What do we know?

Kilonova constraints on the tidal deformability

 Consistency with kilonova modelling (mass ejection) requires lower limit on tidal deformability

$$\tilde{\Lambda} = \frac{16}{13} \left[\frac{(M_A + 12M_B)M_A^4 \Lambda_2^{(A)}}{(M_A + M_B)^5} + (A \leftrightarrow B) \right],$$

Errors unclear
Might be as low as ~200
(Coughlin+ 2018)

Radice et al 2018

Limits on radii and deformabilities

- Constraining NS radii of neutron stars is an effort with thousands of papers published over the last 40 years.
- Question is deeply related with EOS of nuclear matter.
- Can new constraints be set by GW170817?
- Ignorance can be parameterised and EOSs can be built arbitrarily as long as they satisfy specific constraints on low and high densities.

Mass-radius relations

• We have produced 106 EOSs with about 109 stellar models.

 Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817

one-dimensional cuts

- Closer look at a mass of $M=1.40\,M_{\odot}$
- Can play with different constraints on maximum mass and tidal deformability.
- Overall distribution is very robust

$$12.00 < R_{1.4}/\text{km} < 13.45$$

$$\bar{R}_{1.4} = 12.45 \,\mathrm{km}$$

Constraining tidal deformability

- Can explore statistics of all properties of our 109 models.
- ullet In particular can study PDF of tidal deformability: $\tilde{\Lambda}$
- LIGO has already set upper limit:

$$\tilde{\Lambda}_{1.4} \lesssim 800$$

Our sample naturally sets a lower limit:

$$\tilde{\Lambda}_{1.4} > 375$$

Mass-radius relations

1.8

1.6

0.8

M = 2.16

Christian+ (2018)

stable

unstable

 Presence of a phase transition leads to second stable branch and "twin-star" models.

Constraining tidal deformability: PTs

- Can repeat considerations with EOSs having PTs
- Lower limit much weaker: $\tilde{\Lambda}_{1.4} \gtrsim 35$
- Large masses have sharp cut-off on upper limit:

$$\tilde{\Lambda}_{1.7} \lesssim 460$$

GW detection with $\tilde{\Lambda}_{1.7} \sim 700$ would rule out twin stars!

Conclusions

*GW170817 provides new limits on maximum mass and radii:

$$2.01_{-0.04}^{+0.04} \le M_{\text{TOV}}/M_{\odot} \lesssim 2.16_{-0.15}^{+0.17}$$

$$12.00 < R_{1.4}/\text{km} < 13.45$$

$$R_{1.4} = 12.45 \,\mathrm{km}$$

hadronic EOS phase transitions

$$8.53 < R_{1.4}/\text{km} < 13.74$$

$$\bar{R}_{1.4} = 13.06 \,\mathrm{km}$$

Upper limit on deformability can rule out twin stars

$$\tilde{\Lambda}_{1.7} \lesssim 460$$

What do we now know about the EOS?

