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Can we translate GW | /081 /
to constraints on the EQOS!
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Ingredients to constrain EOS

Numerical relativity Physics modelling
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Maximum mass constraints
from GWI1/70817




The outcome of GW /081 /

* The product of GW /0817 was likely a hypermassive star, 1.e. a
differentially rotating object with initial gravitational mass
My + My = 2.741003 Mo

T T T T e Sequences of equilibrium models
: 11 of nonrotating stars will have a
maximum mass: M.+
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The outcome of GW /081 /

* The product of GW /0817 was likely a hypermassive star, 1.e. a
differentially rotating object with initial gravitational mass
My + My = 2.741003 Mo

T T e Sequences of equilibrium models
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: stability line | 1l of nonrotating stars will have a
maximum mass: M.,

* [his 1s true also for uniformly
1 rotating stars at mass shedding
1F Imits Max
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The outcome of GW /081 /

* The product of GW /0817 was likely a hypermassive star, 1.e. a
differentially rotating object with initial gravitational mass
My + My = 2.741003 Mo
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The outcome of GW /081 /

* The product of GW /0817 was likely a hypermassive star, 1.e. a
differentially rotating object with initial gravitational mass
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*Merger product iIn GW /0817 could have followed two possible

The outcome of GW /081 /

tracks in diagram: fast (2) and slow (1)

*It rapidly produced a BH when

St
o[t

| differentially rotating (2)

ost differential rotation leading

to a uniformly rotating core (1).

*(1) 1s more likely because of
large ejected mass (long lived).

*Final mass I1s near M.« and we
know this Is universal
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Maximum mass constraint

* The merger product of GW /0817 was inttially differentially
rotating but collapsed as uniformly rotating object.

* HMNS core has about 95%
gravitational mass of

My + My = 2741001 Mg
* Ejected rest mass deduced
from kilonova emission
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universal relations
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Radius constraints from
GWI170817:

A Frankfurt perspective
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GW /081 /7:What do we know!
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Kilonova constraints on the
tidal deformability

» Consistency with kilonova i, fq;
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L imits on radi and deformabillities

» Constraining
thousands of

NS radil of neutron s

ars Is an effort with

hapers published ove

~ the last 40 years.

*Question Is deeply related with EOS of nuclear matter.

*Can new constraints be set by GW /081 /¢

*lonorance can be
pDarameterised and
EOSs can be built
arbitrarily as long as 2
they satisfy specific =
constraints on low

and high densities. e
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core

core




*We have produced 10% EOSs with about 10? stellar models.

*Can iImpose
differential
constraints
from the
maximum
mass and
from the tidal
deformability
from

GWI170817
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SEIE=6

imensional cuts

*Closer look at a mass of M = 1.40 M4

*Can play with
different constraints
ON Maximum Mass
and tidal deformability.

* Overall distribution i1s
very robust
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Constraining tidal deformability

 Can explore statistics of all properties of our |0? models.

» In particular can study PDF of tidal deformability: A

* LIGO has already
set upper limit:

Aq4 < 800

*Our sample
naturally sets a
lower limit:
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Presence of a phase transition
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Constraining tidal deformabillity: PTs

 Can repeat considerations with EOSs having PTs

» Lower limit much weaker: A; 4 > 35

* Large masses have
sharp cut-off on
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Conclusions

*GW 170817 provides new limits on maximum mass and radii:

2.01700% < Mroy /Mg < 2.16101f

12.00< Ry 4/km<13.45 R;4=1245km  hadronic EOS
- phase
8.53< Ry 4/km<13.74 Ri14=13.06km transitions

Upper limit on deformability

Aq7 < 460 ,
can rule out twin stars



VWhat do we now know about the EOS!?
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