Cooling of neutron stars with hyperonic admixtures

Adriana Raduta IFIN-HH Bucharest

Collaborators: Armen Sedrakian (FIAS, Frankfurt), Jia Jie Li (ITP, Frankfurt), Fridolin Weber (San Diego Univ.)

PHAROS WG1+WG2 meeting, September 26-28, 2018, Coimbra, Portugal

Neutrino and Photon Emission

- NS are born hot $T \approx 10^{11}$ K,
- cooling is realized via ν -emission from the whole body and by transport of heat towards the surface
 - i) thermal relaxation (t ≤ 10 100 yrs); the crust and core are thermally decoupled; the surface temp. reflects the the crust's thermal state,
 - \blacktriangleright ii) $\nu\text{-cooling}$ ($t\lesssim10^5$); the star is isothermal; the cooling is due to the core,
 - $\blacktriangleright\,$ iii) $\gamma\text{-cooling}~(t\gtrsim10^5);$ the cooling wave moves toward the surface
- global thermal balance

$$C(T_i)dT_i/dt = -L_{\nu}^{\inf}(T_i) - L_{\gamma}^{\inf}(T_s); T_i(t) = T(r,t)\exp\left[\Phi(r)\right],$$

• EoS determines the cooling: $\{n_i\}, i = B, L$ determine the fast cooling mechanisms, specific heat, superfluidify gaps

・ロット (雪) (き) (き) (き)

Neutrino emission from the core

Mechanisms and emissivities (Q):

- bremsstrahlung: $B + B' \rightarrow B + B' + \nu_l + \tilde{\nu}_l$, $B = n, p, l = e, \mu, \tau$; $Q \propto T^8$ (slow),
- MURCA: $n + B \rightarrow p + B + l + \tilde{\nu}_l$; $Q \propto T^8$ (slow),
- DURCA: $\Lambda \rightarrow p + l + \tilde{\nu}_l$, $\Sigma \rightarrow n + l + \tilde{\nu}_l$, $\Sigma \rightarrow \Lambda + l + \tilde{\nu}_l$, $\Xi^- \rightarrow \Lambda + l + \tilde{\nu}_l$, $\Xi^- \rightarrow \Xi^0 + l + \tilde{\nu}_l$; $Q \propto T^6$ (fast),
- in case of superfluidity Cooper pair breaking formation (PBF): $BB \rightarrow B + B + \nu_l + \tilde{\nu}_l$; $Q \propto T^7$ (medium).

[Yakovlev, Kaminker, Gnedin & Haensel, Phys.Rep.354 (2001)]

Microphysics and thermal evolution

- Equation of State (EoS): composition (particle degrees of freedom, abundances), effective masses (emissivities, thermal properties), compactness (redshift)
- superfluidity (SF): ${}^{1}S_{0}$ if $0.1 \leq k_{F} \leq 1.2$ fm⁻¹ (protons, hyperons), ${}^{3}P_{2}$ if $1.2 \leq k_{F} \leq 2(3?)$ fm⁻¹ (neutrons)
 - significant dispersion of results because of interaction potentials and many body techniques,

[Sedrakian & Clark (2018); Ding et al., PRC94 (2016)]

- $\Delta({}^{3}P_{2}) << \Delta({}^{1}S_{0})$
- SF suppresses MURCA and DURCA; suppresses the specific heat

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Microphysics and thermal evolution

- Equation of State (EoS): composition (particle degrees of freedom, abundances), effective masses (emissivities, thermal properties), compactness (redshift)
- superfluidity (SF): ${}^{1}S_{0}$ if $0.1 \leq k_{F} \leq 1.2$ fm⁻¹ (protons, hyperons), ${}^{3}P_{2}$ if $1.2 \leq k_{F} \leq 2(3?)$ fm⁻¹ (neutrons)
 - significant dispersion of results because of interaction potentials and many body techniques,

[Sedrakian & Clark (2018); Ding et al., PRC94 (2016)]

SF suppresses MURCA and DURCA; suppresses the specific heat.

NS thermal evolution

- thermal evolution depends on mass, EoS, SF properties
- it additionally depends on composition of the envelope (correlated with the age), exotica, heat sources (accretion, magnetic field, rotation)

[Page et al., ApJS 155 (2004); Yakovlev & Pethick, Ann. Rev. Astron. Astrophys. (2004); Page, Geppert & Weber, NPA 777 (2006)]

• pioneering work on cooling on NS with hyperons [Haensel & Gnedin, A&A290, 290 (1994); Schaab, Balberg & Schaffner-Bielich, ApJ504, L99 (1998); Tsuruta et al., ApJ691, 621 (2009)]

Conclusion: as soon as they nucleate, hyperons lead to fast cooling even if hyperonic SF is accounted for

イロト 不得 とうせい かほとう ほ

Cooling of hyper-nuclear stars: recent contributions

- Raduta, Sedrakian & Weber, MNRAS 475, 4347 (2018) isolated NS; Fe-envelope; several EoS (DDME2, GM1A, SWL); Λ and Ξ SF
- Negreiros, Tolos, Centelles, Ramos & Dexheimer, ApJ 863, 104 (2018) isolated NS; Fe-envelope; FSU2H; no Y-SF
- Grigorian, Voskresensky & Maslov, arXiv:1808.01819 isolated NS; composition of the envelope depends on age; MKVORH ϕ ; in-medium MURCA

Conclusion: massive stars with hyperonic admixture in agreement with thermal observations; significant dependence on SF gaps cooling agents not the same!!!

- 4 同 6 4 日 6 4 日 6 - 日

Hyperonic pairing

Adriana Raduta (IFIN-HH)

NS with hyperons by DDME2: cooling curves

 $M_{\Lambda} = 1.39 M_{\odot}; \ M_{\Xi^-} = 1.54 M_{\odot}; \ M_{\Sigma^-} = 1.60 M_{\odot}$

[Raduta, Sedrakian & Weber, MNRAS 475, 4347 (2018)] data:Beznogov and Yakovlev, MNRAS447 (2014)

Cooling curves: DDME

 $M=1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.85, 1.9, 2M_{\odot}$ data: Beznogov & Yakovlev, MNRAS (2015)

p(CCDK), no Y-SF: $M > 1.55 M_{\odot}$ too cold

p(CCDK), Y-SF: OK up to $1.85 M_{\odot}$

p(BCLL), Y-SF: $M \gtrsim 1.4 M_{\odot}$ too cold Raduta, Sedrakian & Weber, MNRAS 475, 4347 (2018)

11 / 20

Neutron Star EoS with hyperons:

Model	Ref.	K	L	<i>n</i> _{DU}	$M_{\rm DU}$	nA	M_{Λ}	Y_2	n_{Y_2}	M_{Y_2}
		(MeV)	(MeV)	(fm^{-3})	(M_{\odot})	(fm^{-3})	(M_{\odot})		(fm^{-3})	(M_{\odot})
NL3	[1]	271.6	118.9	0.21	0.85	0.28	1.47	Ξ-	0.33	1.73
GM1A	[2]	300.7	94.4	0.28	1.10	0.35	1.49	Ξ^-	0.41	1.67
DDME2	[1]	250.9	51.2	-	-	0.34	1.39	Ξ^-	0.37	1.54
SWL	[3]	260.0	55.0	0.90	2.00	0.41	1.5	Ξ^-	0.45	1.65
PKA1	[4]	230.0	103.5	0.25	0.98	0.32	1.44	Σ^{-}	0.39	1.57
PK01	[4]	250.3	97.7	0.25	1.01	0.33	1.53	Ξ^-	0.53	1.87
PKO3	[4]	262.4	83.0	0.28	1.22	0.33	1.55	Σ^{-}	0.45	1.81

- [2] Gusakov, Haensel & Kantor, MNRAS 429 (2014);
- [3] Spinella, Ph.D. Thesis, SDSU (2017);
- [4] Li, Long & Sedrakian, EPJA54 (2018).

Cooling of NS with hyperons

N-DURCA active in $M \ge 1.22 M_{\odot}$, partially suppressed by n³P₂ and p¹S₀

 (Λ,p) active in $M\geq 1.56 M_{\odot}$ protons and Λ in the core $M>1.7 M_{\odot}$ are normal

 (Ξ^-, Λ) active in $M \ge 1.89 M_{\odot}$

Cooling of NS with hyperons

n ${}^{3}P_{2}$ pairing

Adriana Raduta (IFIN-HH)

Conclusions

- a large set of RMF EoS with hyperons, including HF EoS
- SF in different nucleonic and hyperonic channels
- thermal states of intermediate-mass hyper-NS are compatible with data (middle-age objects)
- oldest NS thermal states are very sensitive to n ${}^{3}P_{2}$ SF-gap
- non-vanishing n ³P₂ SF-gap requires heat sources in order to make old NS comply with data [Haensel & Gnedin, AA290, 458 (1994)]

Magnetic field effect on T_{eff}

Heating by resistive effects Pons et al., PRL 98, 071101 (2007)

Neutron ${}^{3}P_{2}$ gap - effect on cooling

 $1.4M_{\odot}$, APR [Page et al., ApJS 155, 623 (2004)]

Proton ${}^{1}S_{0}$ gap - effect on cooling

1.1 M_{\odot} , APR 1=NS, 2=T, 3=AO, 4=BCLL, 5=CCY_ms, 6=CCDK [Page et al., ApJS 155, 623 (2004)]

Magnetic field

Fig. 2. Cooling curves in the presence of nucleon superfluidity, with $T_{c,n} = T_{c,p} = 10^9$ K. Solid curves: no magnetic field. Dashed curves: $B = 3 \times 10^{12}$ G. The curves correspond to a set of neutron star models with $M/M_{\odot} = 1.3$, 1.4, 1.5, 1.7, lower temperature corresponding to higher mass

[Haensel & Gnedin, AA290, 458 (1994)]

Cooling of neutron stars with hyperonic adm