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Restoring force is the Coriolis force 

 

eigenfrequencies 

 

 

Normal modes (𝑖𝑜-modes) – similar to the modes in a non-
superfluid star; normal and superlfuid liquid components are 
comoving 

 

Superfluid modes (𝑖𝑠-modes) – exist only in superfluid stars; 
normal and superfluid components have different velocities; 
eigenfrequencies are very temperature-dependent; 
effective damping via mutual friction. 
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3/20 Haskell, Degenaar, Ho (2012) 

Rotating NSs support inertial oscillation modes, in particular r-modes, 
which are unstable with respect to gravitational waves emission 
(CFS instablilty). Dissipation suppresses this instability. 

Instability window boundary: 

dissipation GW excitation 
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Gusakov, Chugunov, Kantor,  
Phys. Rev. D, 90, 063001 (2014) 

At certain temperatures the 
r-mode experiences an 
avoided crossing with a 
superfluid mode. 
 
=> strong damping due to 
mutual friction. 
=> NS evolution proceeds 
along the stability peak 



Is the resonance stabilization scenario relevant  for real NSs? 

Can we use it to constrain properties of superdense matter? 

 

Method: 

1) Calculate temperature-dependent inertial modes spectrum for 
realistic EOSs and superfluidity models,  find resonance interactions with 
normal r-modes 
2) Calculate instability windows 

3) Match instability windows against observational data 
(spin frequencies and temperatures for NSs in LMXBs) 

 

Microphysics input: 

EOS 

thermodynamic derivatives 

superfluid entrainment matrix (Andreev-Bashkin matrix) 

transport coefficients: bulk viscosity, shear viscosity, mutual friction… 
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In most of papers SFL inertial modes are studied only at 𝑇 = 0. 

(e.g. Lindblom & Mendell 2000; Prix et al. 2002; Lee & Yoshida 
2003; Andersson et al. 2009) 

 

Kantor & Gusakov (2017): 

- finite temperatures 

- normal and superfluid r-modes only 

- second order in Ω, 𝜎 = Ω 𝜎0 + 𝜎1Ω
2  

- Newtonian limit + Cowling approximation 

- 𝑛𝑝𝑒, 𝑛𝑝𝑒𝜇 NS core composition 

- ignored entrainment between SFL neutrons and protons 
(it is important, see Lee & Yoshida 2003) 
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Kantor & Gusakov (2017): 

avoided crossings of normal and superfluid r-modes 
in 𝑛𝑝𝑒 and 𝑛𝑝𝑒𝜇 NS 
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Normal and SFL inertial modes 

- Newtonian limit + Cowling approximation 

- lowest order in rotational frequency Ω 

- 𝑛𝑝𝑒 NS 

- entrainment between superfluid neutrons and protons 

- weak drag regime 

- finite-temperature effects 

- constant critical temperatures 𝑇𝑐𝑛, 𝑇𝑐𝑝 
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Continuity equations 

Euler equation: 

‘superfluid’ equation 

small perturbations 
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Lowest-order terms in spin frequency Ω: 

Poloidal-toroidal decomposition (Saio 1982): 
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‘odd’ modes: 

‘even’ modes: 

 Infinite set of ODEs for harmonics 
with different 𝑙 

fixed 𝑚, summation over 𝑙 



𝑀 = 1.4𝑀⊙  

𝑛𝑝𝑒 core – APR EOS (Akmal, Pandharipande, Ravenhall 1998), 
Heiselberg & Hjorth-Jensen 1999 parametrization 

NS crust – EOS BSk20 (Potekhin et al. 2013) 

critical temperatures 𝑇𝑐𝑛 = 6 × 108 K,  𝑇𝑐𝑝 = 5 × 109 K 

entrainment matrix 𝑌𝑖𝑘 = 𝑌𝑖𝑘(𝑛𝑏,
𝑇

𝑇𝑐𝑛
,
𝑇

𝑇𝑐𝑝
): Kantor & Gusakov (2011) 

 

𝑚 = 2 inertial modes, 𝑙0 −𝑚 = 1,3,5 (odd modes) 

Keep only lowest harmonics, 𝑙 ≤ 𝑚 + 2𝑘𝑚𝑎𝑥 + 1 

𝑘𝑚𝑎𝑥 = 3  for 𝑙0 −𝑚 = 3,5 

𝑘𝑚𝑎𝑥 = 2  for 𝑙0 −𝑚 = 1 (r-modes) 
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In case 𝑌𝑛𝑝 = 0 

(no entrainment) 

there are two purely toroidal modes: 

normal 𝑟𝑜-mode and superfluid 𝑟𝑠-mode, 

with the same frequency 
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(Andersson & Comer 2001, Lee & Yoshida 2003, Andersson et al. 2009) 



In case 𝑌𝑛𝑝 ≠ 0 (ℎ1 ≠ ℎ) one can write a perturbation theory in 
Δℎ ≡ ℎ1 ℎ − 1. 
First-order corrections to eigenfrequencies and eigenfunctions can 
be found analytically. 

 

Eigenfrequency for the m=2 𝑟𝑠-mode coincide with the numerically 
calculated within the accuracy <1%  

even at Δℎ~0.2 − 0.25 

15/20 



16/20 

normal r-mode (not affected by Δℎ): 

superfluid r-mode: 

𝜎0 1 , 𝐶0 and 𝐶1 are found analytically 
from the first-order in Δℎ equations 



The modes are close to each other at 𝑇 → 𝑇𝑐 

But in the lowest order in Ω the normal r-mode remains the 
same! => no resonance interaction 

Further work: include next-to-leading order terms in Ω 
(Kantor & Gusakov 2017) to calculate the avoided crossings 
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We calculated the spectrum of inertial modes in slowly rotating 
SFL NSs, including both the entrainment and finite temperature 
effects for the first time. 

 

We also developed an approximate method that allows to 
calculate the superfluid r-mode analytically in the limit of small 
entrainment. 

 

Future plans: 

- Calculate the superfluid r-mode analytically in next-to-leading 
order in Ω and Δℎ, find avoided crossings with the normal r-
mode 

- Calculate inertial modes for different models (EOS, 𝑇𝑐 profiles), 
find more avoided crossings with the normal r-mode 

- Calculate instability windows 
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◦ EOS 

◦ Thermodynamic derivatives 𝜕𝜇𝑖 𝜕𝑛𝑗  

◦ Superfluid gaps 

◦ Superfluid entrainment matrix 𝑌𝑖𝑘(𝑛𝑏 , 𝑇) 

◦ Transport coefficients: bulk viscosity, shear 
viscosity, mutual friction 
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r-mode 

In barotropic nonSFL NS (Yoshida & Lee 2000): 

In SFL 𝑛𝑝𝑒 NS – the same amount of SFL 𝑖𝑠-modes additionally 

(𝑖0-modes) 

all harmonics with с 𝑙 > 𝑙0 are suppressed 

 
(𝑙0 − 𝑚 ) determines the number of nodes for eigenfunctions 
     (Yoshida & Lee 2000) 
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