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Super�uidity in neutron stars

Theoretical predictions:

T . Tmax
c ∼ 108 − 1010 K

   super�uid neutrons in the core &
in the inner crust of NSs.

Wong+, ApJ, 2001

Observational evidence:

I Long relaxation time scales in

pulsar glitches,

I Fast cooling in Cassiopeia A,

I QPOs from SGRs, ...
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This work

Consequence of super�uidity:

several dynamically distinct �uids inside NSs,

coupled through both dissipative and non-dissipative e�ects.

Questions:

What is the impact of general relativity on

the non-dissipative couplings between the �uids ?

Are general-relativistic e�ects important on

the global dynamics of giant pulsars glitches ?
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Assumptions & ingredients Prix et al., PRD, 2005 & Sourie et al., PRD, 2016

Equilibrium con�gurations:

T = 0 and no magnetic �eld,

dissipative e�ects are neglected,

uniform composition: p, e−, n
   the crust is not included,

asymptotically �at, stationary,
axisymmetric & circular metric,

rigid-body rotation: Ωn, Ωp

   global model.

The neutron star is thus described by two perfect �uids:

99K a neutron super�uid and a �uid of charged particles
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Equations of state

Polytropic EoSs,

Density-dependent RMF models (DDH & DDHδ).

 0

 0.5

 1

 1.5

 2

 8  9  10  11  12  13  14  15  16

M
G

 (
M

⊙
)

R
p
circ (km)

PSR J0348+0432

PSR J1614-2230

DDHδ - 0 Hz    

DDHδ - 716 Hz

DDH - 0 Hz      

DDH - 716 Hz  
E
(
nn, np,∆

2
)

7 / 21 PHAROS WG1+WG2 meeting University of Coimbra - September, 27th 2018



Introduction Super�uid NSs at equilibrium Applications to pulsar glitches Conclusion

Fluid angular momenta

 Komar angular momentum (axisymmetry):

JK = Jn + Jp

see Langlois, Sedrakian & Carter, MNRAS, 1998.

Moments of inertia:
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dJX = IXX dΩX + IXY dΩY X ,Y ∈ {n, p}
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Fluid angular momenta

 Komar angular momentum (axisymmetry):

JK = Jn + Jp

see Langlois, Sedrakian & Carter, MNRAS, 1998.

Moments of inertia:

dJX = IXX dΩX + IXY dΩY X ,Y ∈ {n, p}

ÎX = IXX + IXY Î = Î n + Î p

99K IXY contains any possible non-dissipative couplings

between the �uids.
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Angular momentum of �uid X

In the slow-rotation approximation and to �rst order in the lag

δΩ = Ωn − Ωp, we get:

JX '
´

Σt
nXµ

X B
N

(ΩX − ω) r2 sin2 θ d
3V

+
´

Σt
nXµ

X εX
B
N

(ΩY − ΩX ) r2 sin2 θ d
3V
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Angular momentum of �uid X

In the slow-rotation approximation and to �rst order in the lag

δΩ = Ωn − Ωp, we get:

JX '
´

Σt
nXµ

X B
N

(ΩX − ω) r2 sin2 θ d
3V

+
´

Σt
nXµ

X εX
B
N

(ΩY − ΩX ) r2 sin2 θ d
3V

entrainment e�ect

due to the strong interactions

between nucleons in the core:

pαX = KXXnXu
α
X +KXY nY u

α
Y

Andreev & Bashkin, SJETP, 1976

relativistic frame-dragging e�ect

associated with the rotation of
the two �uids, Ωn and Ωp:

gtϕ 6= 0

Carter, Annals of Physics, 1975
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Fluid couplings

Angular momentum of �uid X:

JX =

ˆ
nXµ

X B
N
r2 sin2 θ d3V × ΩX

+

ˆ
εX nXµ

X B
N
r2 sin2 θ d3V × (ΩY − ΩX )

−
ˆ
ω nXµ

X B
N
r2 sin2 θ d3V

IX = �moment of inertia� of �uid X 99K
´

Σt

ρX r
2 sin2 θ d3V

ε̃X = entrainment parameter averaged over the star.

εLTYX & εLTXX = contribution of �uids Y and X on Lense-Thirring
e�ects on X .
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Entrainment VS frame-dragging

In the general-relativistic framework, one thus gets:

JX = IX

(
1− εLTXX − ε̃X

)
ΩX + IX

(
ε̃X − εLTYX

)
ΩY

In the Newtonian limit (see, e.g., Sidery+, MNRAS, 2010):

JX = IX (1− ε̃X ) ΩX + IX ε̃XΩY

99K the �uids are only coupled by entrainment.

In GR: additional coupling through frame-dragging e�ects.

99K already pointed out by Carter, Annals of Physics, 1975
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Entrainment VS frame-dragging

Total coupling coe�cients:

ε̂X = IXY / (IXX + IXY )

In the slow-rotation approximation:

ε̂p =
ε̃p − εLTn p

1− εLTp p − εLTn p

Remarks:

in Newt. gravity: ε̂X = ε̃X

ε̂n = Î p/Î n × ε̂p ' 0.05× ε̂p
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Vortex-mediated glitch theory
Anderson & Itoh, Nature, 1975

Two-�uid model
Baym et al., Nature, 1969

Charged particles:

Ωp = Ω ↔ pulsar

Super�uid neutrons:

Ωn & Ωp
a
n
g
u
la

r 
v
e
lo

c
it

ie
s

time

�p

�n

Key assumption: the vortices can pin to the crust and/or to �ux tubes.
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Once a critical lag Ωn − Ωp is reached:

some vortices get unpinned and are allowed to move radially

99K angular momentum transfer between the �uids
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Angular momentum transfer
Langlois et al., MNRAS, 1998 & Sidery et al., MNRAS, 2010

Ωn − Ωp = δΩ0 ⇒ the dynamics is governed by mutual friction forces

Assuming straight vortices, the mutual friction moment considered reads

Γint = −
ˆ R

1 +R2
Γnnn$nχ

2
⊥ dΣ× (Ωn − Ωp) = −2B̄Î nΩnζ × δΩ
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   the geometry of the vortex array and the interactions between
super�uid vortices and superconducting �ux tubes are poorly known.
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Spin-up time scale

Evolution equations:{
J̇n = + Γint,

J̇p = − Γint. 99K
δΩ̇

δΩ
= − Î Î n

InnIpp − I 2
np

× 2B̄ζΩn

I Theoretical rise time:

 δΩ(t) = δΩ0 × e−
t

τr τr =
Î p

Î
× 1− ε̂p − ε̂n

2ζB̄Ωn

I Numerical modelling:

hyp.: hydrodynamical time ∼ 0.1 ms� rise time (dissipation)

99K Computation of Ωn(t) & Ωp(t) pro�les from Ωn,0 > Ωp,0 using
a quasi-stationary sequence of equilibrium con�gurations.
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Time evolution

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz,

MG = 1.4 M� & B̄ = 10−4
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99K the spin-up time scale can be very precisely estimated
from stationary con�gurations only.
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In�uence of general relativity on τr
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I polytropic EoSs

I compactness parameter:

Ξ =
GMG

Rc,eqc2

NB: for NSs, Ξ ' 0.2

I these relative di�erences
also depend on Ω

99K GR can have a large impact on the dynamics of pulsar glitches!
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Conclusion & perspectives

Additional coupling through relativistic frame-dragging e�ects,

Relativistic corrections on the spin-up time: ∼ 50% (core),

↪→ should be included in a quantitative model of glitches.

Future work:

I Build a local model in which only a small
part of the super�uid is decoupled from the
rest of the star (di�erential rotation),

I Take the crust into account!

Antonelli & Pizzochero, 2017
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Thank you!
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In�uence of general relativity on τr
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Spacetime metric
Bonazzola, Gourgoulhon, Salgado & Marck, A&A, 1993

Rotating neutron stars, at equilibrium, described by (E , g):

asymptotically �at: g → η at spatial in�nity (r → +∞),

stationary & axisymmetric:
∂gαβ
∂t =

∂gαβ
∂ϕ = 0,

circular: perfect �uids ⇒ purely circular motion around the rotation
axis with Ωn, Ωp (+ rigid rotation).

Spacetime metric in quasi-isotropic coordinates:

gαβ dx
α
dxβ = −N2

dt2 + A2(dr2 + r2 dθ2) + B2r2 sin2 θ(dϕ− ω dt)2

At spatial in�nity

N,A,B → 1 & ω → 0
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Metric potentials

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  5  10  15  20  25  30

N

r (km)

θ = 0
 θ = π/2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20  25  30

ω
/Ω

n 

r (km)

θ = 0
 θ = π/2

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  5  10  15  20  25  30

A

r (km)

θ = 0
 θ = π/2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  5  10  15  20  25  30

B
-A

r (km)

 θ = π/2

24 / 21 PHAROS WG1+WG2 meeting University of Coimbra - September, 27th 2018



Relativistic two-�uid hydrodynamics
Carter, "Covariant theory of conductivity in ideal �uid or solid media", 1989 & Carter & Langlois, Nuc. Phys. B, 1998

System = two perfect �uids:

super�uid neutrons → ~nn = nn~un,

protons & electrons → ~np = np~up.

Energy-momentum tensor

Tαβ = nnαp
n
β + npαp

p
β + Ψgαβ

↪→ conjugate momenta

Entrainment matrix:{
pnα = Knnnnα +Knpn

p
α

p
p
α = Kpnnnα +Kppn

p
α

99K entrainment e�ect

Equation of state

E(nn, np,∆
2)
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3+1 formalism

Foliation of the spacetime (E , g) by

(Σt)t∈R, with unit normal ~n

Eulerian observer On : 4-velocity = ~n

lapse function N : ~n = −N ~∇t,

shift vector ~β : ~∂t = N~n + ~β.

3+1 metric:

gαβ dx
α
dxβ = −N2

dt2 + γij
(
dx i + βi dt

) (
dx j + βj dt

)
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Numerical procedure

 

Paramètres d’entrée : 

 une EOS 

   
       

 
 

           

Initialisation : 

         et             

         

   
         

    
  

    

    

Convergence threshold

|H i
k+1(r , θ)− H i

k(r , θ)| < ε

At each iteration

For given values of (µn, µp,∆2),
we compute:

1. Ψ, nn, np and α from the EoS

2. The source terms E , pϕ, S
i
i ,

3. Einstein Equations are solved,

4. Kinetic terms Ui et Γi,

5. Computation of H i
k+1.
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Density pro�les

MG = 1.4 M�, Ωn/2π = Ωp/2π = 716 Hz
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Vorticity

Super�uid vorticity

wµν = ∇µpnν −∇νpnµ 99K $n =
√

wµνwµν
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Angular momenta

Axisymmetry ↔ ~χ

Komar de�nition:

JK = −
´

Σt

T (~n, ~χ)︸ ︷︷ ︸
−pϕ

d
3V

Eulerian observer ~n (3+1)

Angular momentum of each �uid
Langlois, Sedrakian & Carter, MNRAS, 1998

pϕ = Γnnnp
n
ϕ︸ ︷︷ ︸

jnϕ

+ Γpnpp
p
ϕ︸ ︷︷ ︸

jpϕ

JX =

ˆ
Σt

jXϕ A2Br2 sin θ dr dθ dϕ
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Fluid couplings
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In�uence of Ω on the couplings
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Where does the vortex unpinning take place?

Glitches have been generally thought to originate from the crust, because:

the core super�uid was expected to be strongly coupled to the crust
Alpar et al., ApJ, 1984

the analysis of glitch data suggested that the super�uid represents a
few percent of the total angular momentum of the star Link et al., PRL,

1999

However, this scenario has been recently challenged:

I considering entrainment e�ects, the crust does not carry enough
angular momentum Andersson et al., PRL, 2012 & Chamel, PRL, 2013

I a huge glitch has been observed in PSR 2334+61 Alpar, AIP Conf.Proc.,

2011

I the core super�uid could be decoupled from the rest of the star, if
vortices are pinned to �ux tubes Gügercinoglu & Alpar, ApJ, 2014

The core super�uid plays a more important role than previously thought.
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Gravitational wave amplitude

h+(t) = − 3
2
sin2 i G

Dc4
Q̈ = h0 sin

2 i e−
t

τr

h
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Entrainment e�ects

Dynamical e�ective mass:

3~p
X

= m∗X
3~uX

→ in the rest frame of the second �uid.

Zero-velocity frame:

special relativity

m∗X = µX ×
(
1− ε∗X

)
entrainment
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The Vela pulsar

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz

B−

MG (M⊙)

DDH
DDHδ
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τr = 30 s

τr = 10 s
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τr = 0.1 s

I B̄↗ =⇒ τr↘

I Constraint on B̄:

τr < 30 s ⇒ B̄ > 10−5

I B̄ < 0.5  τr > 0.6 ms

↪→ the glitch event is a
quasi-stationary process
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In Newtonian gravity

In the Newtonian limit (µX ' mX , B = N = 1, ω = 0), we get:

JX =

ˆ
Σt

ρX (1− εX ) ΩX r
2 sin2 θ d

3V+

ˆ
Σt

ρX εX (ΩY − ΩX ) r2 sin2 θ d
3V

De�ning the moment of inertia IX and the mean entrainment parameter
ε̃X as

IX ≡
´

Σt

ρX r
2 sin2 θ d3V IX ε̃X ≡

´
Σt

ρX r
2 sin2 θ εX d

3V

JX = IX (1− ε̃X ) ΩX + IX ε̃XΩY

 IXY =
∂JX
∂ΩY

= IX ε̃X
see, e.g., Sidery, Passamonti &
Andersson, MNRAS, 2010.
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In General Relativity

Let's go back to

JX '
´

Σt

nXµ
X B
N

(ΩX − ω) r2 sin2 θ d
3V

+
´

Σt

nXµ
X εX

B
N

(ΩY − ΩX ) r2 sin2 θ d
3V

The �moment of inertia� IX and the mean entrainment parameter ε̃X are
now given by

IX ≡
´

Σt

iX d
3V IX ε̃X ≡

´
Σt

iX εX d
3V

The additional term associated with frame-dragging e�ect can be
expressed as ´

Σt

iX ω d
3V ≡ IX

(
εLTX→XΩX + εLTY→XΩY

)
JX = IX

(
1− εLTX→X − ε̃X

)
ΩX + IX

(
ε̃X − εLTY→X

)
ΩY
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Frame-dragging contribution

 IXY =
∂JX
∂ΩY

= IX
(
ε̃X − εLTY→X

)
99K additional coupling arising from frame-dragging e�ects.

Already pointed out by B. Carter in
1975. By dimensional considerations:

Inε
LT
p n = Ipε

LT
n p

' κGInIp/(R3c2)

×
(
1− εLTn n)

(
1− εLTp p)

Carter, Annals of Physics, 1975
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Distinct glitching behaviors

Wang et al., Ap&SS, 2012
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quasi-periodic giant glitches with
a very narrow spread in size
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Distinct glitching behaviors

Wang et al., Ap&SS, 2012

quasi-periodic giant glitches with
a very narrow spread in size

glitches of various sizes at
random intervals of time

Di�erent models of glitches Haskell & Melatos, IJMPD, 2015

I Rearrangement of the moment of inertia 99K crustquakes,

I Angular momentum transfer between two �uids 99K super�uidity.
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