
Karl Qi

CERN 2018

Programmable Solutions Group 2

Agenda

▪ High-level synthesis with the Intel® HLS Compiler

▪ Intel® FPGA SDK for OpenCL™

▪ Acceleration Stack for Intel® Xeon CPUs and FPGAs

▪ Deep Learning Inference on FPGAs

Programmable Solutions Group 3

FPGA Overview

▪ Field Programmable Gate Array (FPGA)

– Millions of logic elements

– Thousands of embedded memory blocks

– Thousands of DSP blocks

– Programmable routing

– High speed transceivers

– Various built-in hardened IP

▪ Used to create Custom Hardware!

DSP Block

Memory Block

Programmable

Routing Switch

Logic

Modules

Programmable Solutions Group 4

Traditional FPGA Design Process

Potentially Time-Consuming Effort

Place & Route / Timing Analysis / Timing Closure

Synthesis
HDL

Behavioral Simulation

Programmable Solutions Group 5

Why HLS?

Designing IP at a higher level of abstraction = increase productivity

▪ Debugging software is much faster than hardware

▪ Easier to specify functions in software

▪ Productivity tool for RTL designers

Transistors RTL Software

Programmable Solutions Group

HDL IP

6

HLS Use Model

Standard

gcc/g++

Compiler

EXE

main

f f

t1

f11

f

t2

f

f21

f22 f23

f12 f13

C/C++ Code

HLS

Compiler

FPGA

IP

IP

Directives

Intel® Quartus®

Ecosystem

100% Makefile

compatible

src.c

lib.h

g++ <options> a.exei++ <options>

Programmable Solutions Group 7

HLS Procedure

Intel® HLS

Compiler

HDL IP

C/C++ Source

Functional

Iterations

Architectural

Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP

• Examine compiler generated reports

• Verify design in simulation

Run Quartus® Prime Compilation on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group

Emulation Mode

▪ Just like any executing any other software

▪ Debug with
– printf/cout

– gdb

– Valgrind

src.c

lib.h

i++ -march=x86-64 src.c a.exe|out

Develop with C/C++:
GDB-Compatible Executable

8

Programmable Solutions Group

#include "HLS/hls.h"
#include "assert.h"
#include "HLS/stdio.h"
#include "stdlib.h"

component int accelerate(int a, int b) {
return a+b;

}

int main() {
srand(0);
for (int i=0; i<10; ++i) {

int x=rand() % 10;
int y=rand() % 10;
int z=accelerate(x, y);
printf("%d + %d = %d\n", x, y, z);
assert(z == x + y);

}
return 0;

}

Cosimulation: Synthesize Component Function into

RTL

main() becomes testbench for

component accelerate()

i++ -march=<fpga family> --component accelerate mysource.cpp

accelerate() becomes an FPGA

component

– Use --component i++ argument or

component attribute in source

9

Programmable Solutions Group 10

The Cosimulation Flow

Run Compiler for HLS:

a.prj/components/func/

src.c

lib.h

i++ -march=<fpga fam> -–component
func src.c

a.exe|out

a.prj/reports/

a.prj/verification/

a.prj/quartus/

Executable which will run the testbench and
calls to func in simulation of synthesized IP

All the files necessary to

include IP in a Quartus project.

i.e. .qsys, .ip, .v etc

Component hardware

implementation reports

Simulation testbench

Quartus project to compile all IP

a is the default output name, -o option can be used to specify a non-default output name

Programmable Solutions Group 11

Cosimulation Verifying HLS IP

The Intel® HLS compiler automatically compiles and links C++ testbench with an

instance of the component running in an RTL simulator

▪ To verify RTL behavior of IP, just run the executable generated by the HLS

compiler targeting the FPGA architecture

– Any calls to the component function becomes calls the simulator through DPI

src.c

lib.h

i++ -march=<fpga family> src.c

a.exe|out

a.prj/verification/

Data

IP Function Call

Programmable Solutions Group 12

C/C++ Functions to Dataflow Circuits

Each component function is converted into custom dataflow hardware

▪ Gain the benefits of Intel® FPGAs without the length design process

▪ Implement C/C++ operators as circuits

– HDL code located in <HLS Installation>\ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the function

Programmable Solutions Group 13

Compilation Example

Software compiled into dataflow circuit with flow control

▪ Include branch and merge units For Entry

For End

void my_component(int *a,

int *b,

int *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

i++

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions Group

The Default Interfaces

14

component int add(int a, int b) {

return a+b;

}

add

start

busy

a[31:0]

b[31:0]

done

stall

returndata[31:0]

clock Note: more on interfaces later

C++ Construct HDL Interface

Scalar arguments
Conduits associated with the

default start/busy interface

Pointer arguments Avalon memory master interface

Global scalars and

arrays
Avalon memory master interface

Programmable Solutions Group 15

Other Custom Interfaces

▪ Customizable Avalon Streaming Interfaces

– Explicit ready/valid signals for each data argument

▪ Explicit Memory-Mapped Master interfaces

– Create a number of master interfaces with customizable features

▪ Slave Registers

– Slave port for scalar values

▪ Slave Memory

▪ Slave Control

– Call/Return interface done through register

Programmable Solutions Group 16

MM HLS Component with Streaming Interfaces

HLS

Component

Downstream

Component

HLS

Component

Stream

Out

Stream

In

valid

data

ready

Stream

In

Stream

Out
Upstream

Component

valid

data

ready

valid

data

ready

Platform Designer Interconnect

Processor

Data

Master

Slave

CSR

Slave

CSR

Programmable Solutions Group 17

Viewing Waveforms in Modelsim

Locate

Component

Add Signals

to Waveform

Programmable Solutions Group 18

Intel® Quartus® Software Integration

▪ a.prj/components directory contains all

the files to integrate

– One subdirectory for each component

– Portable, can be moved to a different location

if desire

▪ 2 use scenarios

1. Instantiate in HDL

2. Adding IP to a Platform Designer system

integration tool system

Programmable Solutions Group 19

Main HTML Optimization Report

Fast generation of optimization report

Programmable Solutions Group 20

Loops

Serial loop execution hinders function dataflow circuit performance

▪ Use Loop Analysis report to see if and how each loop is optimized

– Helps identify component pipeline bottlenecks

Loop

Unrolled?

Pipelined?

Automatically unrolled?

Fully unrolled?

Partially unrolled?
#pragma unroll implemented?

What’s the Initiation Interval (launch

frequency of new iteration)?

Are there dependency preventing optimal II?

Yes

Yes

No

No

Reason for serial execution?

Programmable Solutions Group 21

Loop Unrolling

Loop unrolling: Replicate hardware to execute multiple loop iterations at once

▪ Simple loops unrolled by the compiler automatically

▪ User may use #pragma unroll to control loop unrolling

▪ Dependencies resolved through scheduling of operations

For Begin

For End

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Op 1

Op 2

Iteration 1 2 3 4 5 …

…

…

Loop

Unroll

Programmable Solutions Group

Loop-Pipelining and Dependencies

▪ Execute next iteration as soon as possible

▪ Dependencies can resolved by the compiler

– Values transferred between loop iterations with FPGA resources
Load

Store

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}

i=0

i=1

i=2

22

Programmable Solutions Group 23

Loop Pipeline Analysis

▪ Automatically Generated

▪ Reports status of loop pipelining

▪ Displays dependency information

▪ Part of HTML Report

– <.prj folder>\reports\report.html

Programmable Solutions Group 24

Loop Pipelining Optimization Report

Reports shows pipeline status of each loop

▪ Minimizing II is the key to loop pipelining optimization

▪ Report shows

– If loops are pipelined

– Reason given if loop not pipelined

– Initiation interval of pipelined loops

– If II>1, shows operations that contributes to loop-carried dependency

– Data computation or memory dependencies

– Dependencies increases II

Programmable Solutions Group

Arbitrary Precision Datatypes

▪ Algorithmic C (AC) datatypes

– From Mentor Graphics under the Apache License

– User Guide shipped with the HLS tool

– <path_to_HLS_installation>/include/ref/ac_datatypes_ref.pdf

▪ Templated classes that allows instantiation of arbitrary sized integers and

arbitrary precision fixed-point datatypes

▪ ac_int and ac_fixed are supported by the Intel® HLS Compiler

▪ Two implementations shipped with the Intel® HLS Compiler

– ref/ac_int.h, ac_fixed.h: Mentor Graphics reference implementation

– HLS/ac_int.h, ac_fixed.h: Intel-optimized implementation for HLS

25

Programmable Solutions Group

Local Component Memories

▪ Local component memories implemented with on-chip RAM resources

– Much better performance than off-chip system memories

▪ Local memory system is customized to your application at compile time

– Dependent on data type and usage

– Banking configuration (number of banks, width), and interconnect customized to

minimize contention

– Big advantage over fixed-architecture accelerators

▪ Note: local memory cannot be dynamically allocated inside the component

26

Programmable Solutions Group 27

Agenda

▪ High-level synthesis with the Intel® HLS Compiler

▪ Intel® FPGA SDK for OpenCL™

▪ Acceleration Stack for Intel® Xeon CPUs and FPGAs

▪ Deep Learning Inference on FPGAs

Programmable Solutions Group

Binary
Programming

File

Offline Compiler

(OpenCL Kernel Compiler)

Standard C

Compiler

Executable
File

OpenCL

Host Program

28

Intel® FPGA SDK for OpenCL™ Usage

OpenCL

Kernels

Intel FPGA OpenCL™ Libraries

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 29

Compiling OpenCL™ Kernel to Intel® FPGA

▪ Using similar concepts and optimization

techniques as HLS
Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Host

Interface

DDR/

QDR

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

__kernel void increment (__global float *a, float

c, int N)

{

int i;

for (i = 0; i < N; i++)

a[i] = a[i] + c;

}
aoc –board=a10_ref

Programmable Solutions Group 30

Benefits of OpenCL™ on FPGAs

▪ For software developers

▪ Faster software-centric development flow

– C-based design leads to shorter architectural exploration and development time

▪ Obtain performance and power advantages of an FPGA

▪ Portability between different HW accelerators (CPU, GPGPU, FPGA, etc)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 31

FPGA Architecture for OpenCL™ Implementation

FPGA

Kernel

Pipeline

Kernel

Pipeline

Host Interface

D
D

RProcessor

External

Memory Controller

& PHY

On-Chip

Memory

Global Memory Interconnect

External

Memory Controller

& PHY

Custom Built

Kernel System

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

Precompiled periphery (BSP)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 32

aoc Output Files

▪ <kernel file>.aoco

– Intermediate object file representing the created hardware system

▪ <kernel file>.aocx

– Kernel executable file used to program FPGA

▪ Inside <kernel file> folder

– <kernel file folder>\reports\report.html

– Interactive HTML report

– Static report showing optimization, detailed area, and architectural information

– <kernel file>.log compilation log

– Intel® Quartus® Prime software generated source and report files

Programmable Solutions Group 33

Example Host Program

void main()

{ ...

// 1. Create then build program

c::Program myprogram = (… mybinaries_of_aocx…);

err = myprogram.build(mydevlist);

// 2. Create kernels from the program

cl::Kernel mykernel(myprogram, ”increment”, &err);

// 3. Tansfer buffers on/to device

err=myqueue.enqueueWriteBuffer(a_device, CL_FALSE, 0, size, a_host);

…

// 4. Set up the kernel argument list

err = mykernel.setArg(0, buffer);

// 5. Launch the kernel

err = myqueue.enqueueTask(mykernel);

// 6. Transfer result buffer back

err = myqueue.enqueueReadBuffer(a_device, CL_TRUE, 0, NUM_ELEMENTS*sizeof(cl_float), a_host);

}

Programmable Solutions Group 34

Compiling the Host Program

▪ Include CL/opencl.h or CL/cl.hpp

▪ Use a conventional C compiler (Visual Studio*/GCC)

▪ Add $INTELFPGASDKROOT/host/include to your

file search path

– Recommended to use aocl compile-config

▪ Link to Intel® FPGA OpenCL™ libraries

– Link to libraries located in the
$INTELFPGASDKROOT/host/<OS>/lib directory

– Recommended to use aocl link-config

Standard

C Compiler

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Intel FPGA

Libraries

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 35

Kernel Development Flow and Tools

Modify kernel.cl

Emulator (~1 min)

HTML Report (~1 min)

Loop Optimization Report

Detailed Area Report

Architectural Viewer

Profiler (Full compile time)

Functional bugs?

Loop inefficiencies?

Undesired hardware structure?

Sub-optimal memory

interconnect?

Done

Poor performance?

Programmable Solutions Group 36

Intel® FPGA-Specific Features

▪ Single Work-Item Execution

▪ Channels

▪ Controlling Hardware Generation with Attributes

– Autorun Kernels, Vectorization Factor, Compute Unit replication, etc…

▪ Libraries (Calling custom RTL)

▪ SoC Platforms

▪ Shared Virtual Memory

▪ Custom Boards

Programmable Solutions Group 37

Agenda

▪ High-level synthesis with the Intel® HLS Compiler

▪ Intel® FPGA SDK for OpenCL™

▪ Acceleration Stack for Intel® Xeon CPUs and FPGAs

▪ Deep Learning Inference on FPGAs

Programmable Solutions Group 38

Acceleration Stack for Intel® Xeon® CPU with FPGAs

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Some names pending final approval and may change in the future.

Logos and names provided for illustrative purposes only. Current availability may be different.

Intel® delivers a system-optimized solution stack for your data center workloads

Intel® Hardware

Acceleration Environment
(Intel Acceleration Engine with OPAE Technology, FPGA Interface Manager (FIM))

Acceleration Libraries

User Applications

Industry Standard SW Frameworks

Rack-Level Solutions

Intel Developer Tools
(Intel Parallel Studio XE, Intel FPGA SDK for OpenCL™, Intel Quartus® Prime)

Dynamically Allocate Intel® FPGAs for

Workload Optimization
Rack Scale Design

Deep Learning, Networking, Genomics, etc.

LZ4, Snappy, etc.

Workload Optimization with Less Effort

Common Developer Interface for Intel

FPGA Data Center Products

Fast-Track Your Performance

Simplified Application Development

Leverage Common Frameworks

Programmable Solutions Group 39

Intel® Xeon® with FPGA Virtualization Framework

Simplifies the use of FPGAs in virtualized cloud environments

Application

Drivers

Accelerator

Function

Unit

(AFU)

Signal Bridge and Management

Intel®

Xeon®

Software

FPGA

Hardware

FPGA Interface Manager

Provided by Intel
User, Intel, or 3rd-Party IP

Plugs into Standard Slot

PCIe* and UPI Drivers

Provided by Intel

Open Programmable

Acceleration Engine (OPAE)

Provided by Intel

Libraries

Developed by User

User, Intel, and 3rd Party

CCI-P

Programmable Solutions Group 40

Intel® Programmable Acceleration Card with Intel

Arria® 10 GX FPGA

Intel’s 1st versatile FPGA PCIe acceleration card

that offers inline & look-aside acceleration for workloads requiring up to 45W

1st acceleration card to offer the Acceleration Stack for Intel Xeon CPU with FPGAs

enabling broader FPGA adoption in data center

Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA

https://www.altera.com/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html

Programmable Solutions Group

FPGA Hardware + Interface Manager

FPGA Driver

(physical function – PF)

FPGA API (C) (enumeration, management, access)

Applications, Frameworks, Intel® Acceleration Libraries

Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

Bare Metal OS Virtual Machine

FPGA Driver

(virtual function - VF)

Hypervisor

FPGA Driver (common – AFU, local memory)

Consistent API across product generations and platforms
• Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
• Lightweight user-space library (libfpga)

Open ecosystem for industry and developer community
• License: FPGA API (BSD), FPGA driver (GPLv2)

FPGA driver being upstreamed into Linux kernel

Supports both virtual machines and bare metal platforms

Faster development and debugging of Accelerator Functions

with the included AFU Simulation Environment (ASE)

Includes guides, command-line utilities and sample code

41

Open Programmable Acceleration Engine (OPAE)

OS

Simplified FPGA Programming Model

for Application Developers

http://01.org/OPAE

Programmable Solutions Group 42

OPAE FPGA API – Enumerate, Manage & Access

FPGA

AFU

fpgaReconfigureSlot()

fpgaReset()

fpgaPrepareBuffer();

fpgaReleaseBuffer();

fpgaGetIOVA();

fpgaMapMMIO()

fpgaUnmapMMIO()

fpgaWriteMMIO32()

fpgaReadMMIO32()

fpgaWriteMMIO64()

fpgaReadMMIO64()

fpgaGetNumUmsg()

fpgaSetUmsgAttributes()

fpgaGetUmsgPtr()

1:1

fpgaOpen()

property

token handle

fpgaEnumerate() fpgaClose()

property

token

handle

HW

SW Object

FPGA API

Programmable Solutions Group 43

Two Development Approaches

HDL Programming OpenCL* Programming

HDL

SW
Compiler

exe AFU
Bitstream

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFUApplicationAFU
Simulation

Environment
(ASE)

C

ASE

from Intel®

OPAE

from Intel

OpenCL
Kernels

exe
AFU

Bitstream

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software

FIM +
OpenCL BSP

CPU FPGA

AFUApplication

OpenCL
Host

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group 44

OpenCL™ Flow

▪ Usage no different from traditional OpenCL™ flow

– C based development and optimization flow to create AFUs and Host Application

– Standard OpenCL FPGA application using the Intel® FPGA SDK for OpenCL

– FPGA OpenCL debug and profiling tools supported

▪ The Acceleration Stack abstracted away from user

– OPAE part of the Host Run-Time

Programmable Solutions Group

FPGA Interface Manager

(BBS)
AFU (GBS)

OpenCL

Host

OpenCL

Support

Package

IP

OpenCL™ Support Package for Intel® PAC

45

CPU

FPGA

FPGA

Interface

Unit

OpenCL

Kernel
OpenCL

Kernel
OpenCL

KernelOPAE

SP MMD

OpenCL

Runtime

PCIe*

DDR

External Memory

Interface

DDR

External Memory

Interface

CCI-P

Software

Stack

Programmable Solutions Group 46

RTL AFU

▪ Develop RTL AFU with standard FPGA development tools

▪ Interface with the acceleration stack through Core Cache Interconnect (CCI-P)

– Provides a base platform memory interface

– Simple request/response interface (Simple Read/Write)

– Physical addresses

– No order guarantees

– These minimal requirements satisfy major classes of algorithms, e.g.:

– Double buffered kernels that read from and write to different buffers

– Streaming kernels that read from one memory-mapped FIFO and write to another

On-FPGA

interconnect
AFUCCI-P

Programmable Solutions Group

System

47

RTL Flow

▪ AFU Simulation Environment (ASE) enables seamless portability to real HW

– Allows fast verification of OPAE software together with AFU RTL without HW

– SW Application loads ASE library and connects to RTL simulation

– For execution on HW, application loads Runtime library and RTL is compiled by

Intel® Quartus into FPGA bitstream

AFU Simulation

Environment

Xeon® FPGA

Simulation

Compilation

AFU RTL
OPAE SW

Application

Quartus®

Compilation

Software

Compilation

Programmable Solutions Group 48

Agenda

▪ High-level synthesis with the Intel® HLS Compiler

▪ Intel® FPGA SDK for OpenCL™

▪ Acceleration Stack for Intel® Xeon CPUs and FPGAs

▪ Deep Learning Inference on FPGAs

Programmable Solutions Group 49

Design Flow with Machine Learning

Data Collection Data

Store

Choose

Network

Train

Network

Inference

Engine

Parameters

Selection

Architecture

Choose Network topology
▪ Use framework (e.g. Caffe,

Tensor Flow)

Train Network
▪ A high-performance computing (HPC)

workload from large dataset
▪ Weeks to months process

Inference Engine (FPGA Focus)
▪ Implementation of the neural

network performing real-time
inferencing

Improvement Strategies
• Collect more data
• Improve network

Programmable Solutions Group

libraries

Intel® Deep Learning
Deployment Toolkittools

Frameworks

Intel® DAAL

hardware
Memory & Storage Networking

Intel Python
Distribution

Mlib BigDL

Intel® Nervana™ Graph

inteL® AI portfolio
experiences

Associative
Memory Base

OpenVINO™
toolkit

Visual Intelligence

Intel® FPGA DL
Acceleration

Suite
Intel® Math Kernel Library

(MKL, MKL-DNN)

Compute

More
*

50

Programmable Solutions Group

Solving Machine Learning Challenges with FPGA

Real-Time
deterministic
low latency

Ease-of-use
software abstraction,
platforms & libraries

Flexibility
customizable hardware

for next gen DNN architectures

Intel FPGAs can be customized

to enable advances in machine

learning algorithms.

Intel FPGA hardware

implements a deterministic low

latency data path unlike any

other competing compute

device.

Intel FPGA solutions enable

software-defined programming

of customized machine learning

accelerator libraries.

51

Programmable Solutions Group

Why Intel® FPGAs for Machine Learning?

Convolutional Neural Networks are Compute Intensive

Fine-grained & low latency
between compute and memory

Convolutional Neural Networks are Compute Intensive

Function 2Function 1 Function 3

IO IO

Optional

Memory
Optional Memory

Pipeline Parallelism

Feature Benefit

Highly parallel

architecture

Facilitates efficient low-batch video

stream processing and reduces latency

Configurable

Distributed

Floating Point DSP

Blocks

FP32 9Tflops, FP16, FP11

Accelerates computation by tuning

compute performance

Tightly coupled

high-bandwidth

memory

>50TB/s on chip SRAM bandwidth,

random access, reduces latency,

minimizes external memory access

Programmable

Data Path

Reduces unnecessary data movement,

improving latency and efficiency

Configurability

Support for variable precision (trade-off

throughput and accuracy). Future proof

designs, and system connectivity

Programmable Solutions Group

FPGAs Provide Deterministic System Latency

FPGAs can leveraging parallelism across the entire chip reducing the compute

time to a fraction

FPGA Xeon

I/O Latency

Compute Latency

System Latency = I/O Latency + Compute Latency

0.25ms 1ms

0.3ms

53

Programmable Solutions Group 54

Intel® FPGA Deep Learning Acceleration Suite

▪ CNN acceleration engine for common
topologies executed in a graph loop
architecture

– AlexNet, GoogleNet, LeNet, SqueezeNet,
VGG16, ResNet, Yolo, SSD, LSTM…

▪ Software Deployment

– No FPGA compile required

– Run-time reconfigurable

▪ Customized Hardware Development

– Custom architecture creation w/ parameters

– Custom primitives using OpenCL™ flow

Convolution PE
Array

Crossbar

prim prim prim custom

D
D

R

Memory
Reader
/Writer

Feature Map Cache

D
D

R

Config
Engine

Programmable Solutions Group

DLA SW

API

Intel® FPGA DLA Suite Usage

GoogleNet Optimized Template

ResNet Optimized Template

Additional, Generic CNN Templates

SqueezeNet Optimized Template

VGG Optimized Template

• Supports common software frameworks (Caffe, Tensorflow)

• Intel DL software stack provides graph optimizations

• Intel FPGA Deep Learning Acceleration Suite provides turn-
key or customized CNN acceleration for common topologies

Caffe TensorFlow

Intel®

Xeon®

Processor

Intel ®

FPGA

Inference

Engine

Model

Optimizer

Conv
PE Array

Crossbar

DD
R

Memor
y

Reader
/Writer

Feature Map Cache

DD
R

DD
R

DD
R

Config
Engine

Optimized Acceleration Engine

Standard ML Frameworks

Intel Deep Learning

Deployment Toolkit

Part of OpenVINO™ toolkit

Heterogenous

CPU/FPGA

Deployment

Pre-compiled Graph Architectures

Hardware Customization Supported

Programmable Solutions Group

Mapping a Topology to the Architecture in FPGA

Using the Intel® DL Deployment Toolkit component of the OpenVINO™ toolkit to

enable deployment of trained model on all Intel® architectures

▪ CPU, GPU, FPGA, …

▪ Optimize for best execution

▪ Enable users to validate and tune

▪ Easy-to-use runtime API across all devices

56

.prototxt

.caffemodel

Trained
Model

Model Optimizer

FP Quantize

Model Compress

Inference Engine

GEN

MKL-DNN/
clDNN

Model Analysis

FPGA

Optimize a deploy-ready
model

DLA Runtime
Engine

CPU

MKL-DNN

.pb

Intermediate
Representation

.bin
.xml

Runtime Programming

Programmable Solutions Group 57

Using the Inference Engine API

IR
Parse

(using CNNNetReader)
Load Network

Create Engine

Instance

Infer

auto netBuilder = new InferenceEngine::CNNNetReader();
netBuilder->ReadNetwork(“Model.xml”);
netBuilder->ReadWeights(“Model.bin")

auto enginePtr = new InferenceEngine::InferenceEnginePluginPtr(getSuitablePlugin(eFPGA));

enginePtr->LoadNetwork(*netBuilder->network, &resp);

InferenceEngine::TBlob<float> output;
InferenceEngine::SizeVector inputDims;
netBuilder->getInputDimentions(inputDims);
InferenceEngine::TBlob<short> input(inputDims);
input.allocate();
enginePtr->Infer(input, output, &resp);

CNNNetwork

instance

CNNNetwork

instance

Programmable Solutions Group 58

User Flow

IP
Architect

Neural
Net

Design
Intel® FPGA SDK

for OpenCL™

Bitstream
Library

Data
Scientist

Compile

User Customization
of DLA Suite
Source Code

OpenVINO™ toolkit

Turnkey Software Deployment Flow

FPGA Architecture Development Flow

Design ProgramRun

Programmable Solutions Group 59

Customization for Architecture Developers

Add a custom primitive into crossbar

▪ Three primitive types supported:

– Unary (ReLU, Tanh)

– Binary (Eltwise Add, Mult)

– Window (Pool, LRN, Norm)

– Unary w/ coefficients

– Scale/Dropout (a couple of coefficients

per layer: coefficients loaded via layer

config)

– BatchNorm (dozen or more coefficients

per layer: coefficients loaded via DDR)

Convolution PE
Array

Crossbar

prim prim prim custom

D
D

R

Memory
Reader
/Writer

Feature Map Cache

D
D

R

Config
Engine

custom

Programmable Solutions Group 60

Machine Learning on Intel® FPGA Platform

Acceleration Stack Platform Solution

DLA Runtime Engine DLA Workload

OpenCL™ Runtime
BBS

Hardware

Platform & IP

Software Stack

DL Deployment Toolkit

Acceleration Stack

Application

PAC Family

Boards

Intel® Xeon

CPU

ML Framework

(Caffe*, TensorFlow*)

For more information on the Acceleration Stack for Intel® Xeon® CPU with FPGAs on

the Intel® Programmable Acceleration Card, visit the Intel® FPGA Acceleration Hub

https://www.altera.com/solutions/acceleration-hub/acceleration-stack.html

Programmable Solutions Group 61

DLA Architecture: Built for Performance

▪ Maximize Parallelism on the FPGA

– Filter Parallelism (Processing Elements)

– Input-Depth Parallelism

– Winograd Transformation

– Batching

– Feature Stream Buffer

– Filter Cache

▪ Choosing FPGA Bitstream

– Data Type / Design Exploration

– Primitive Support

ReLU

Convolution /

Fully

Connected

Norm MaxPool

Stream Buffer

Conv
PE

Array

Crossbar

ReL
U

Max
Pool

DDR

Memory
Reader
/Writer

Feature Map Cache

DDR

DDR

DDR

Config
EngineNor

m

Execute

Programmable Solutions Group

CNN Computation in One Slide

Inew 𝑥 𝑦

=

𝑥′=−1

1

𝑦′=−1

1

Iold 𝑥 + 𝑥′ 𝑦 + 𝑦′ × F 𝑥′ 𝑦′

Input Feature Map

(Set of 2D Images)

Filter

(3D Space)

Output Feature

Map

Repeat for Multiple Filters

to Create Multiple “Layers”

of Output Feature Map

62

Programmable Solutions Group 63

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

Programmable Solutions Group 64

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

Programmable Solutions Group 65

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

Programmable Solutions Group 66

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Stream Buffer

output

input

Blocks are run-time reconfigurable and bypassable

Programmable Solutions Group 67

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

Programmable Solutions Group 68

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

MaxPool

Programmable Solutions Group 69

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

Programmable Solutions Group 70

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

Programmable Solutions Group 71

Mapping Graphs in DLA

Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

Programmable Solutions Group

Efficient Parallel Execution of Convolutions

▪ Parallel Convolutions
– Different filters of the same

convolution layer processed in

parallel in different processing

elements (PEs)

▪ Vectored Operations
– Across the depth of feature

map

▪ PE Array geometry can be

customized to hyperparameters

of given topology

FPGA

Double-Buffer

On-Chip RAM

Filters
(on-chip RAM)

F
ilt

e
r

P
a

ra
lle

lis
m

(O
u
tp

u
t
D

e
p

th
)

External DDR

Programmable Solutions Group 73

Winograd Transformation

▪ Perform convolutions with fewer multiplication

– Allows more convolutions to be done on FPGA

▪ Take 6 input features elements and 3 filter elements

– Standard convolution requires 12 multiplies

– Transformed convolution requires just 6 multiplies

ReLU

Convolution /

Fully

Connected

Norm

MaxPool

Winograd

Transform

Stream Buffer

Winograd

Transform

Programmable Solutions Group 74

Fully Connected Computation and Batching

▪ Fully Connected Layer computation does not allow for data reuse of weights

– Different from convolutions

– Very memory bandwidth intensive

▪ Solution: Batch up images

– Weights reused across multiple images

𝑜 = 𝑰𝒗𝒆𝒄 ∗ 𝑾𝒗𝒆𝒄

…

𝑶𝒗𝒆𝒄 = 𝑰𝒎𝒂𝒕 ∗ 𝑾𝒗𝒆𝒄

Batching

Programmable Solutions Group 75

Feature Cache

Feature data cached on-chip

▪ Streamed to a daisy chain of parallel processing elements

▪ Double buffered

– Overlap convolution with cache updates

– Output of one subgraph becomes input of another

– Eliminates unnecessary external memory accesses

Double-Buffer

On-Chip RAM

Stream buffer size

Programmable Solutions Group 76

Filter Cache

Filter weights cached in each processing element

▪ Double buffered in order to support prefetching

– While one set is used to calculate output feature maps, another set is prefetched

DDR
Conv Conv

DDR

Programmable Solutions Group 77

DLA Architecture Selection

▪ Find ideal FPGA image that meets your needs

▪ Create custom FPGA image based on need

Programmable Solutions Group 78

Support for Different Topologies

Tradeoff between features and performance

Convolution PE Array

Crossbar

ReLU Norm MaxPool

Memor
y

Reader
/Writer

Feature Map Cache

Config
Engine

Convolution PE Array

Crossbar

ReLU Norm MaxPool

Memor
y

Reader
/Writer

Feature Map Cache

Config
Engine

LRN

Permut
e

Concat
Flatte

n
SoftMa

x

Reshap
e

vs

Programmable Solutions Group 79

Supported Primitives and Topologies

Topologies

✓ Supported

✓ Upon Request

✓ Future

Primitives

✓ batch norm ✓ concat ✓ flatten

✓ max pool ✓ relu, leaky relu ✓ lrn normalization

✓ average pool ✓ scale ✓ softmax

✓ inner product ✓ permute ✓ prelu

✓ reshape ✓ detection output ✓ conv

✓ priorbox ✓ fully connected ✓ eltwise

✓ bias ✓ group conv ✓ depthwise conv

✓ local conv ✓ sigmoid ✓ elu

✓ power ✓ crop ✓ proporal

✓ slice ✓ depthwise conv ✓ roi pooling

✓ dilated conv

✓ tanh ✓ deconv

✓ AlexNet

✓ GoogleNet v1 ✓ SSD

✓ ResNet18 ✓ SSD

✓ ResNet50

✓ ResNet101

✓ SqueezeNet ✓ SSD

✓ VGG16

✓ Tiny Yolo

✓ LeNet

Programmable Solutions Group 80

Design Exploration with Reduced Precision

Tradeoff between performance and accuracy

▪ Reduced precision allows more processing to be done in parallel

▪ Using smaller Floating Point format does not require retraining of network

▪ FP11 benefit over using INT8/9

– No need to retrain, better performance, less accuracy loss

FP11
FP10
FP9
FP8

Sign, 5-bit exponent, 10-bit mantissaFP16
Sign, 5-bit exponent, 5-bit mantissa

Sign, 5-bit exponent, 4-bit mantissa

Sign, 5-bit exponent, 3-bit mantissa

Sign, 5-bit exponent, 2-bit mantissa

Programmable Solutions Group 81

Summary

▪ Use HLS Compiler to generate excelleration IP for HW Developers

▪ Use OpenCL to accelerate for software developers

– May use over Acceleration Stack

▪ Acceleration stack enables data center acceleration

– Supports RTL and OpenCL flow, HLS in the future

▪ Use Deep Learning Acceleration Suite to easily deploy inference tasks on the

FPGA

– Supported for the Acceleration Stack

– In the future will support custom platforms

Programmable Solutions Group 82

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and

may require enabled hardware, software or service activation. Performance

varies depending on system configuration. Check with your system manufacturer

or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria,

Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel

Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

