Access Intel® FPGASs for
Acceleration

Karl Qi
CERN 2018

Agenda

High-level synthesis with the Intel® HLS Compiler
Intel® FPGA SDK for OpenCL™
Acceleration Stack for Intel® Xeon CPUs and FPGAs

Deep Learning Inference on FPGAs

FPGA Overview PSP Bock

Memory Block

— { ADDRA ADDRB o
————+ DATAINA DATAIN B |+
DATAQUT A DATAQUT B

o WE_A WE_B |,
CLK_B

» Field Programmable Gate Array (FPGA)

— Millions of logic elements

— P ClKA

— Thousands of embedded memory blocks .-~~~ Iii S am

- S 1}
e | L]
— Thousands of DSP blocks 7 s am - 5
’ B n ooo.gmic
— Programmable routing BE 5 ER
| - = Sl cesthiess:
— High speed transceivers i T
15G280LN3FA3E3V0S) | L R e Ty
— Various built-in hardened IP E_ 2{34:34:} Tl
.. _."H ‘-:"f-: H"|!'1 — . .
.. e S -
= Used to create Custom Hardware! as f:}ﬁﬁ}
Sl - o e
Programmable e =TSRSS = T =y Modules
mom mwmnimmn

Programmable Solutions Group (intel. . 3

Traditional FPGA Design Process

Potentially Time-Consuming Effort

Behavioral Simulation

Place & Route / Timing Analysis / Timing Closure

~:;;:'?-1‘:;-_:;;_, - ~ Intel’ Quartus Prime

Design Software

uoﬂ@eﬂ@eeeﬂ@ &

Programmable Solutions Group

SR
)0 R

Synthesis

L.i[},_i'} 5:::@ D et

DB:[}DDD-» | o

Why HLS?

Designing IP at a higher level of abstraction = increase productivity
= Debugging software is much faster than hardware
= Easier to specify functions in software

= Productivity tool for RTL designers

Transistors =4 software

HLS Use Model }j

C/C++ Code 1ib.h

Directives

tanar

HLS
geclg++ — i

Compiler

100% Makefile
compatible

Intel® Quartus®
Ecosystem

Programmable Solutions Group (intel. . 6

HLS Procedure

Create Component and Testbench in C/C++

e Functional Verification with g++ or i++ .
Functional
o o e Use -march=x86-64 lterations
S Both compilers compatible with GDB
Intel® HLS Architectural

. Iterations
Compiler /

Run Quartus® Prime Compilation on Generated IP
* Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group

Emulation Mode

= Just like any executing any other software
= Debug with

— printf/cout

— gdb

— Valgrind

GDB-Compatible Executable
Develop with C/C++:

SPC.C — > j++ -march=x86-64 src.c —————> a.exe|out

-

Programmable Solutions Group (intel. . 8

Cosimulation: Synthesize Component Function into
RTL

#include "HLS/hls.h"
#include "assert.h"
#include "HLS/stdio.h" f
#include "stdlib.h"

i++ -march=<fpga family> --component accelerate mysource.cpp|

accelerate () becomes an FPGA
component int accelerate(int a, int b) {
return a+b; Component
¥

— Use --component i++ argument or

int main() {

srand(0); component attribute in source
for (int i=0; i<10; ++i) {
i =rand() % 10;
R ‘ main () becomes testbench for
int z=accelerate(x, y);
orIntF("%d + %d = %d\n~, X, y, 2); Component accelerate ()
assert(z == x + y);
}
return 0;

Programmable Solutions Group (intel. . [e]

The Cosimulation Flow

Executable which will run the testbench and
calls to func in simulation of synthesized IP

—> a.exe|out _
Run Compiler for HLS: 4 All the files necessary to
/include IP in a Quartus project.
L > a.prj/components/func/ i.e..qgsys, .ip, .v etc
S i++ -march=<fpga fam> --component
func src.c
S a.prj/reports/ _Component _hardware

implementation reports

—> a.prj/verification/ <«——Simulation testbench

——> a.prj/quartus/ <«——Quartus project to compile all IP

a is the default output name, -o option can be used to specify a non-default output name

Programmable Solutions Group

Cosimulation Verifying HLS IP

The Intel® HLS compiler automatically compiles and links C++ testbench with an
iInstance of the component running in an RTL simulator

= To verify RTL behavior of IP, just run the executable generated by the HLS
compiler targeting the FPGA architecture

— Any calls to the component function becomes calls the simulator through DPI

IP Function Call

a.exe|out

src.c i++ -march=<fpga family> src.c ‘ g k6l g

Data

a.prj/verification/

Programmable Solutions Group (intel. . 11

C/C++ Functions to Dataflow Circuits

Each component function is converted into custom dataflow hardware

= Gain the benefits of Intel® FPGAs without the length design process

* Implement C/C++ operators as circuits
— HDL code located in <HLS Installation>\ip —>
— Load Store units to read/write memory
— Arithmetic units to perform calculations

— Flow control units

acl_staging_reg.v

acl_stall_free_sink.v

acl_stall_free_sink_...

acl_stall_monitor.v

acl_start_signal_ch...

acl_stream_fifo.v

acl_stream_to_vect...

acl_task_copy_finis..
acl_toggle_detect.v

acl_token_fifo_cou.

acl_valid_fifo_coun...

acl_vector_to_stre
acl_vector_to_stre...
acl_work_group_di.

acl_work_group_di...

acl_work_group_li...
acl_work_group_li
acl_work_item_iter...
avalon_concatenat...
avalon_concatenat...
avalon_conduit_fa.
avalon_conduit_fa...
avalon_split_multib...
avalon_split_multib...
barrier_fifo.v
bram_256x4M.v
bram_256x4M_hw.tcl
bram_256x67M.v
bram_256x67M_hw...
bram_512x4M.v

bram_512x4M_hw.tcl
bram_512x33M.v
bram_512x33M_hw...
config_switchl.v
config_switch32.v
CosDPStratixvf400...
CosDPstratixvf400...
CosPiDPStratixvf40
CosPiDPStratixvfao0...
cra_ring_node.sv
cra_ring_node_hw.tcl
cra_ring_rom.sv
cra_ring_rom_hw.tcl
cra_ring_root.sv

cra_ring_root_hw.tcl

dotp_core.vhd
dotp_core_sv.vhd
dotProduct64_dut_..
dotProduct64_dut_...
dotProduct64_safe...
dotp_wrapper.v
dotp_wrapper_sv.v
dotp_wrapper_tom...
dp_addb.vhd
dp_addpipe .vhd
dp_adds.vhd
dp_clz64.vhd
dp_clzpipe64.vhd
dp_div_core.vhd
dp_divnornd.vhd

— Connect circuits according to data flow in the function

Programmable Solutions Group

intel‘ . 12

Compilation Example

Software compiled into dataflow circuit with flow control

* Include branch and merge units For Entry
my component (int *a, Load ai] Load bJ[i]
int *b,
int *c,
int N) a[i] + bfi]
{
int i; ‘ll n
for (1 = 0; i < N; i++) Store c[i]
cli] = ali] + blil; !
} For End —

Programmable Solutions Group (intel. . 13

The Default Interfaces

component int add(int a, int b) {
return a+b;

C++ Construct HDL Interface

Conduits associated with the

g .
one | Scalar arguments default start/busy interface

stall
Pointer arguments Avalon memory master interface

Global scalars and
arrays

returndata[31:0]
- Avalon memory master interface

clock Note: more on interfaces later

Programmable Solutions Group (intel. . 14

Other Custom Interfaces

Customizable Avalon Streaming Interfaces

— Explicit ready/valid signals for each data argument

Explicit Memory-Mapped Master interfaces

— Create a number of master interfaces with customizable features

Slave Registers

— Slave port for scalar values

Slave Memory

Slave Control

— Call/Return interface done through register

MM HLS Component with Streaming Interfaces

Processor

Platform Designer Interconnect

valid | valid R valid .
Upstream da% Stream Streamldaﬁ Stream Stream| d=t=n | Downstream
|
Component| read In Out « ready In Out ‘read;’ Component
HLS HLS

Component Component

Programmable Solutions Group intel. . 16

Viewing Waveforms in Modelsim

ModelSim - Intel FPGA Edition 1

File Edit View Compile Simulate Add Objects Tools Layout Bookmarks Window Help

|B-& 32 ca HE AR | Bt e EEEEEERE IR
‘ [1 [0 [vo [auf g || [%3 2il5d 1B || B2 0 el % 8 F | Bew wE v B | search: | RiP I W IS WO

¥|Instance

=4 th

_»}_r--j clock_reset_inst

;!fj--j component_dpi_controll
_»}_r--j concatenate_componeni

£ jthjmymult_inst/clock
£ fth/mymult_inst/resetn
£ fth/mymult_inst/start
4o ftb/mymult_inst/busy
B£ jth/mymult_inst/a
B4 jth/mymult_inst/b
+ = fth/mymult_inst/return...
4. fth/r mult_inst/done

resetn
4. done
£ stall

[t_component_dpi

. PPult_component_dpi| | (++& returndata P '

5 mymult inst _.ofmymult_inst/stall
H :}‘ mymult_internal_inst

: +-l mymult_internal .AI‘

Tu/El enlit Faminnnant chart ir Add Signals

to Waveform

Programmable Solutions Group

Intel® Quartus® Software Integration

add add_inst |
// Interface: clock (clock end)

" a.prj/components directory contains all 7 tertce: e et)

// Interface: call (conduit sink)

the files to integrate AT o

// Interface: return (conduit source)

.done (), // 1-bit valid output
. 11 (), -bi 11 i
— One subdirectory for each component 7 itertace: retirnaats {conault source)

// Interface: a (conduit sink)

— Portable, can be moved to a different location 77 amertace: b (condut st
. . . () // 32-bit data input
if desire)

I: System Contents # | Address Map £ | Interconnect Reguirements &% | Details &2

D D D System: top Path: top_Ipf_0 returndata

.
u 2 use Scenarlos |E| Use | Connections HName Description Export Clock
lj‘ B dock_in Clock Bridge
(= in_clk Clock Input clk exported
. - — out_clk Clock Output clock_in_o
B B reset_in Reset Bridge
1 . I nStantI ate I n H D L clic Clock Input clock_in_...
@ (= in_reset Reset Input reset [cli]
lz‘ — out_reset Reset Output [clk]
H H B2 top_hpf_0 hpf_internal
2. Adding IP to a Platform Designer system A
call Conduit [clock]
H H clock Clack Input clock_in_...
Integratlon tool System reset Reset Input [clock]
< return Conduit top_hpf_0_return [clock]
A=s! returndata Conduit top_hpf_O_returndata |[clock]
e X Conduit [clock]
B top_lpf_0 Ipf_internal
A=s! alpha Conduit wop_Ipf_0_alpha [clock]
2=a call Conduit top_Ipf_0_call [clock]
clock Clock Input clock_in_...
reset Reset Input [clock]
return Conduit [clock]
——— returndata Conduit [clock]
A=s! ® Conduit wop_Ipf_0_x [clock]

Programmable Solutions Group

Main HTML Optimization Report

Fast generation of optimization report

Reports View reports...~

Summary I

Loops analysis

Inf ;
it Area analysis of system

Project Name "
Area analysis of source

w

T - ;
argetFamily D component viewer

I++ Version Component memory viewer

Quartus Version Verification statistics

i++ -march=Arria10 add_excpp -

Command
jadd_exout

Programmable Solutions Group (intel. . 19

Loops

Serial loop execution hinders function dataflow circuit performance

= Use Loop Analysis report to see if and how each loop is optimized

— Helps identify component pipeline bottlenecks

Automatically unrolled?

Unrolled’? Fully unrolled?

Partially unrolled?
#pragma unroll implemented?
No
i : What’s the Initiation Interval (launch
P|pe||ned? frequency of new iteration)?
Are there dependency preventing optimal [1?
1 No
Reason for serial execution?

Programmable Solutions Group

Loop Unrolling

Loop unrolling: Replicate hardware to execute multiple loop iterations at once
= Simple loops unrolled by the compiler automatically

= User may use #pragma unroll to control loop unrolling

»= Dependencies resolved through scheduling of operations

Iteration 1 2 3 4 5

£ £a en

Loop-Pipelining and Dependencies

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

}

= Execute next iteration as soon as possible

= Dependencies can resolved by the compiler

— Values transferred between loop iterations with FPGA resources % ﬂLoad

Store

Loop Pipeline Analysis

Reports View reports...~
= Automatically Generated @ Show fuly nvoledloops | MGScpp =P
Pipelined Il Bottleneck Details F] :3 } (&
M M M ! I 48 // Main loop of MGS. .)
= Reports status of loop pipelining SO P R AT - 4t S
e . 51 OrdFFgaFmgPomt t_magnitude _inv = 1 |
Gictdbict) et Ak ;é::mly .‘ 52 // find magnitude of t_(*i) (i-th H
1 H M column)
= Displ d d format o |
isplays dependency information — 5 et an -0
Fully unrolled loop (MGS.cpp:55) n/a nfa nja pragma unro
#pragma unroll | 55 for (int row = 8; row < ROWS_COMPONENT
| H row++)
. Unrolled by 56 ~ {
Faly oolled {oop {63 mpo) oA Iy e #pragma unroll ‘ 57 // hardened dot-product
58 QrdFloatingPoint val =
t_matrix[row] [i & COLS MASK];
dB5 (MGS<pp71) Ye 1 L il 5
Smeaesce = o 1:1 59 sum = sum + (val * val); [~
Details
qrd.B4:
® |teration executed serially across qrd.B5. Only a single loop iteration will execute inside this region due to memory dependency:
® From: Load Operation (MGS.cpp: 58)
e To: Store Operation (MGS.cpp: 109)
* |teration executed serially across qrd.B5. Only a single loop iteration will execute inside this region due to memory dependency:
e From: Load Operation (MGS.cpp: 58) &l

= Part of HTML Report
— <.prj folder>\reports\report.html

Programmable Solutions Group

Loop Pipelining Optimization Report

Reports shows pipeline status of each loop
= Minimizing Il is the key to loop pipelining optimization

= Report shows

— If loops are pipelined
— Reason given if loop not pipelined

— Initiation interval of pipelined loops

— If 1I>1, shows operations that contributes to loop-carried dependency
— Data computation or memory dependencies
— Dependencies increases Il

Programmable Solutions Group (intel. . 24

Arbitrary Precision Datatypes

Algorithmic C (AC) datatypes
— From Mentor Graphics under the Apache License

— User Guide shipped with the HLS tool
— <path to HLS installation>/include/ref/ac datatypes ref.pdf

Templated classes that allows instantiation of arbitrary sized integers and
arbitrary precision fixed-point datatypes

= ac_int and ac fixed are supported by the Intel® HLS Compiler

Two implementations shipped with the Intel® HLS Compiler

- ref/ac int.h, ac fixed.h: Mentor Graphics reference implementation

— HLS/ac int.h, ac fixed.h: Intel-optimized implementation for HLS

Local Component Memories

= Local component memories implemented with on-chip RAM resources

— Much better performance than off-chip system memories

= Local memory system is customized to your application at compile time
— Dependent on data type and usage

— Banking configuration (number of banks, width), and interconnect customized to
minimize contention

— Big advantage over fixed-architecture accelerators

= Note: local memory cannot be dynamically allocated inside the component

Agenda

* Intel® FPGA SDK for OpenCL™
= Acceleration Stack for Intel® Xeon CPUs and FPGASs

= Deep Learning Inference on FPGAs

Intel® FPGA SDK for OpenCL™ Usage

Ope'nCL

Kerbels

Intel’ FPGA SDK for OpenCL’ OpenCL

Host Pijogram

Offline Compiler
(OpenCL Kernel Compiler)

Exec‘:ﬂtable Biary .
File Programming

7
. |

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 28

Compiling OpenCL™ Kernel to Intel® FPGA

= Using similar concepts and optimization
techniques as HLS

Host
Interface
store [& | sore | store
LLLLLLL d d Load d
__kernel void increment (global float *a, float FHE DDR/
c, int N) ' QDR
{ Store | W | Store Store
int i;
for (1 = 0; i < N; i++)

ali] = a[i] + c; ao poard=al(

Benefits of OpenCL™ on FPGAs

For software developers

Faster software-centric development flow

— C-based design leads to shorter architectural exploration and development time

Obtain performance and power advantages of an FPGA

Portability between different HW accelerators (CPU, GPGPU, FPGA, etc)

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 30

FPGA Architecture for OpenCL™ Implementation

Precompiled periphery (BSP)

FPGA
Processor 4 Host Interface 8
Py
" 7‘ R — S k.
I Global Memory Interconnect \
| < :
[
[€ [
I |
. | <€ |
Custom Built Kernel Kernel I
Kernel System | Plpellne Pipeline I
I |
| |
| |
\

*OpenCL and the OpenCL logo are trademarks of Apple Inc. use

Programmable Solutions Group

aoc Output Files

» <kernel file>.aoco

— Intermediate object file representing the created hardware system

= <kernel file>.aocx

— Kernel executable file used to program FPGA

= |Inside <kernel file> folder

— <kernel file folder>\reports\report.html
— Interactive HTML report
— Static report showing optimization, detailed area, and architectural information

— <kernel file>.log compilation log

— Intel® Quartus® Prime software generated source and report files

Programmable Solutions Group (intel. . 32

Example Host Program

void main ()
{ e
// 1. Create then build program

c::Program myprogram = (.. mybinaries of aocx..);
err = myprogram.build (mydevlist) ;

// 2. Create kernels from the program
cl: :Kernel mykernel (myprogram, “increment”, &err);

// 3. Tansfer buffers on/to device
err= .enqueueWriteBuffer (a2 device, CL FALSE, 0, size, a host);

// 4. Set up the kernel argument list
err = mykernel.setArg(0, buffer);

// 5. Launch the kernel

err = enqueueTask (mykernel) ;

// 6. Transfer result buffer back
err = .enqueueReadBuffer (a device, CL TRUE, 0, NUM ELEMENTS*sizeof (cl float), a host);

Programmable Solutions Group intel. . 33

Compiling the Host Program

main () {
read data(..
manipulate(..

);
)

Include CL/opencl.h or CL/cl.hpp

Use a conventional C compiler (Visual Studio*/GCC)

Add SINTELFPGASDKROOT/host/include to your
file search path

— Recommended to use aocl compile-config

Link to Intel® FPGA OpenCL™ libraries

— Link to libraries located in the
SINTELFPGASDKROOT/host/<0S>/1ib directory

— Recommended to use aocl link-config

. *OpenCL and the OpenCL | tradi ks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group penCL and the OpenCL logo are trademarks of Appl used by permissior ror |ntel ~ 34

Kernel Development Flow and Tools

Modify kernel.cl

v

Emulator (~1 min)

g

HTML Report (~1 min)
Loop Optimization Report L
Detailed Area Report
Architectural Viewer

¥

Profiler (Full compile time)

Functional bugs?

Programmable Solutions Group

Intel® FPGA-Specific Features

= Single Work-Item Execution
= Channels

= Controlling Hardware Generation with Attributes

— Autorun Kernels, Vectorization Factor, Compute Unit replication, etc...
= Libraries (Calling custom RTL)
= SoC Platforms
= Shared Virtual Memory

= Custom Boards

Agenda

= Acceleration Stack for Intel® Xeon CPUs and FPGAS

= Deep Learning Inference on FPGAs

Acceleration Stack for Intel® Xeon® CPU with FPGAS

Dynamically Allocate Intel® FPGAs for

Workload Optimization Rack-Level Solutions (intel‘) Rack Scale Design n

openstack

Simplified Application Development Deep Learning, Networking, Genomics, etc.

Leverage Common Frameworks

Fast-Track Your Performance Acceleration Libraries Lz4, snappy, etc. gJfly 5 DPDK

SEE

3 & €aua ;
Workload Optimization with Less Effort : Intel Developer Tools . ML ~ Quartus'Prime
(Intel Parallel Studio XE, Intel FPGA SDK for OpenCL™, Intel Quartus® Prime) OpencL Dewgn suke

Common Developer Interface for Intel Acceleration Environment
FPGA Data Center Products (Intel Acceleration Engine with OPAE Technology, FPGA Interface Manager (FIM))

XEON'
PLATINUM
inside”

‘

. Intel® delivers a system-optimized solution stack for your data center workloads

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Programmable Solutions Group Some names pending final approval and may change in the future.
Logos and names provided for illustrative purposes only. Current availability may be different.

Intel® Xeon® with FPGA Virtualization Framework

- Intel®
Developed by User Application Xeon®
3 Software

User, Intel, and 3" Party

PCle* and UPI Drivers - Open Programmable
Provided by Intel e Acceleration Engine (OPAE)

Provided by Intel

FPGA
Accelerator e
Function CCI-P
FPGA Interface Manager Unit User, Intel, or 314-Party IP
Provided by Intel (AFU) Plugs into Standard Slot

Signal Bridge and Management

Simplifies the use of FPGAs in virtualized cloud environments

Programmable Solutions Group

Intel® Programmable Acceleration Card with Intel
Arria® 10 GX FPGA

Intel’s 1st versatile FPGA PCle acceleration card
that offers inline & look-aside acceleration for workloads requiring up to 45W

TR——
1st acceleration card to offer the Acceleration Stack for Intel Xeon CPU with FPGASs
enabling broader FPGA adoption in data center

Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA

https://www.altera.com/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html

Open Programmable Acceleration Engine (OPAE)

Simplified FPGA Programming Model
for Application Developers
Consistent API across product generations and platforms
» Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
 Lightweight user-space library (libfpga)

FPGA API (C) (enumeration, management, access)

Open ecosystem for industry and developer community
* License: FPGA API (BSD), FPGA driver (GPLv2)

FPGA Driver (common — AFU, local memory)

FPGA driver being upstreamed into Linux kernel FPGA Driver FPGA Driver
(physical function — PF) (virtual function - VF)

Supports both virtual machines and bare metal platforms

0s Hypervisor

Faster development and debugging of Accelerator Functions
with the included AFU Simulation Environment (ASE)

FPGA Hardware + Interface Manager

_ _ o Bare Metal OS Virtual Machine
Includes guides, command-line utilities and sample code

. Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

Programmable Solutions Group (intel' . 41

http://01.org/OPAE

OPAE FPGA API — Enumerate, Manage & Access
fpgaReconfigureSlot()

fpgaReset()

fpgaPrepareBuffer();
fpgaReleaseBuffer();
fpgaGetlOVA();

A\ 4

fpgaMapMMIO()

fpgaUnmapMMIO()
fpgaWriteMMIO32()
fpgaReadMMIO32()
fpgaWriteMMIO64()
fpgaReadMMIO64()

\ 4

fpgaEnumerate() fpgaClose()

HW

fpgaGeiNumUmsg) 1]
frgaOpen() fpgaSetUmsgAttributes()
fpgaGetUmsgPtr() - SW Object

FPGA API

Programmable Solutions Group (intel. . 42

Two Development Approaches

HDL Programming OpenCL* Programming
ASE OPAE Quartus Frime & a Inftel"FPGA SDK
from Intel® from Intel ooson Savre openct or OpenCL
OpenCL OpenCL
o C HDL ® Host Kernels
SW. E,Z\TQ SW OpenCL
Coni)ller l Compiler Compiler
oxe AFU l A!U

Bitstream exe Bi

itstream

. ! 1

A =
Simulation Sonr OpenCL SR —
Environment Software Emulator Software OpenCL BSP

(ASE) CPU CPU FPGA

Programmable Solutions Group

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

OpenCL™ Flow

= Usage no different from traditional OpenCL™ flow
— C based development and optimization flow to create AFUs and Host Application

— Standard OpenCL FPGA application using the Intel® FPGA SDK for OpenCL
— FPGA OpenCL debug and profiling tools supported

= The Acceleration Stack abstracted away from user
— OPAE part of the Host Run-Time

’

OpenCL™ Support Package for Intel® PAC

~
\

1

1

FPGA Interface Manager AFU (GBS)
(BBS)

OpenCL
Support
Package

FPGA IP
Interface
Unit

i i =4 External Memory
i ! Interface
 Software !

Stack

RTL AFU

On-FPGA

interconnect

= Develop RTL AFU with standard FPGA development tools

= |nterface with the acceleration stack through Core Cache Interconnect (CCI-P)

— Provides a base platform memory interface
— Simple request/response interface (Simple Read/Write)
— Physical addresses
— No order guarantees

— These minimal requirements satisfy major classes of algorithms, e.q.:
— Double buffered kernels that read from and write to different buffers
— Streaming kernels that read from one memory-mapped FIFO and write to another

Programmable Solutions Group (intel. . 46

RTL Flow OPAE SW AFU RTL

Application

System

Xeon® FPGA

= AFU Simulation Environment (ASE) enables seamless portability to real HW

— Allows fast verification of OPAE software together with AFU RTL without HW
— SW Application loads ASE library and connects to RTL simulation

— For execution on HW, application loads Runtime library and RTL is compiled by
Intel® Quartus into FPGA bitstream

Programmable Solutions Group (intel, ~ 47

Agenda

= Deep Learning Inference on FPGAs

Design Flow with Machine Learning

1

. Improvement Strategies
Selection + Collect more data
> + Improve network

1

Choose Architecture Train

Parameters Inference
Engine

Network Network

Choose Network topolo Train Network Inference Engine (FPGA Focus)
potogy * A high-performance computing (HPC) *» |mplementation of the neural
= Use framework (e.g. Caffe,) :
workload from large dataset network performing real-time
Tensor Flow) . .
= Weeks to months process inferencing

Programmable Solutions Group (intel. . 49

INTEL" AI PORTFOLIO

BPRIENGES g, B2 = ® e (2 &, ®

B Microsoft

PRAMEWORKS 2%, & =, CNTK B CGallesaffron
Mia sl ¥ theano Ttoch ARt L
Tnuls Intel® Deep Learning OpenVINO™
Deployment Toolkit toolkit
Intel Python ® e = e |
LIBRARIES p::onDistrib‘tlxtion Ir;\tel lFPG.L.\ DL Intel® Nervana™ Graph ... o |
 uion Intel® Math Kernel Library Memory Base
Intel® DAAL Suite (MKL, MKL-DNN)

(bieD REALSENSE %
Movidius %

e -
= -

W

Memory & Storage Networking Visual Intelligence

HARDWARE

Programmable Solutions Group

Solving Machine Learning Challenges with FPGA

Intel FPGA solutions enable Intel FPGA hardware Intel FPGAs can be customized
software-defined programming implements a deterministic low to enable advances in machine
of customized machine learning latency data path unlike any learning algorithms.

accelerator libraries. other competing compute
device.

Programmable Solutions Group (intel. . 51

Why Intel® FPGAs for Machine Learning?
Convolutional Neural Networks are Compute Intensive

Highly parallel Facilitates efficient low-batch video
architecture stream processing and reduces latency
Configurable FP32 9Tflops, FP16, FP11
Distributed Accelerates computation by tunin
Floating Point DSP P y 9
compute performance
Blocks
Tightly coupled >50TB/s on chip SRAM bandwidth,
high-bandwidth random access, reduces latency,
memory minimizes external memory access
intel‘ et
(e 5 Fine-grained & lowo:atency Programmable Reduces unnecessary data movement,
Sy RS pute and memory Data Path improving latency and efficiency
Insiae
fa Opional Memary Support for variable precision (trade-off

<« \ <« \ <\ Configurability throughput and accuracy). Future proof
.m,m_,m_, designs, and system connectivity

16 Pipeline Parallelism 10

Programmable Solutions Group (intel. .

FPGAs Provide Deterministic System Latency

FPGAs can leveraging parallelism across the entire chip reducing the compute
time to a fraction gystem Latency = I/0 Latency + Compute Latency

Compute Latency 0.3ms

1 GoogleNet (Batch 1) Compute
I 1

Latency

Arria 10 Stratix 10 Stratix 10 P4/P40 (RT)
FP11 FP11 Binary

I/O Latency 0.25ms 1ms

Intel® FPGA Deep Learning Acceleration Suite E E

= CNN acceleration engine for common
topologies executed in a graph loop Feature Map Cache
architecture

— AlexNet, GoogleNet, LeNet, SqueezeNet, Memory

VGG16, ResNet, Yolo, SSD, LSTM... Reader
Convolution PE [/Writer

» Software Deployment Array
— No FPGA compile required
— Run-time reconfigurable

» Customized Hardware Development 1 I I

— Custom architecture creation w/ parameters
— Custom primitives using OpenCL™ flow prim prim prim custom

Programmable Solutions Group

Intel® FPGA DLA Suite Usage

Standard ML Frameworks * Supports common software frameworks (Caffe, Tensorflow)
* Intel DL software stack provides graph optimizations

* Intel FPGA Deep Learning Acceleration Suite provides turn-

e Intel Deep Learning key or customized CNN acceleration for common topologies

el Deployment Toolkit
Part of OpenVINO™ toolkit Optimized Acceleration Engine

Inference

Engine oD

Feature Map Cache

Memor
y

Pre-compiled Graph Architectures

Reader
[Writer

|

|

|

|

|

1 GoogleNet Optimized Template Conv
: ResNet Optimized Template PE Array
|

|

|

|

|

|

SqueezeNet Optimized Template
@ VGG Optimized Template
@ Additional, Generic CNN Templates

L Hardware Customization Supported/.

Heterogenous
CPU/FPGA

Deployment
Intel® pioy
Xeon®

Processor

Programmable Solutions Group

Mapping a Topology to the Architecture in FPGA

Using the Intel® DL Deployment Toolkit component of the OpenVINO™ toolkit to
enable deployment of trained model on all Intel® architectures

= CPU, GPU, FPGA, ...

= Optimize for best execution

= Enable users to validate and tune

= Easy-to-use runtime API across all devices

'F‘ Model Optimizer %]
% Tensar P Guaniize
| » . Model Compress ‘
Catfe

| Model Analysis | Intermediate

Inference Engine

Trained

Representation
Model -prototxt bin
.caffemodel Optimize a deploy-ready xml

model

Using the Inference Engine API

Parse CNNNetwork -
Marance Load Network

(using CNNNetReader)

Create Engine
Instance CNNNetwork
instance
auto netBuilder = new InferenceEngine::CNNNetReader(); \ |
~» netBuilder->ReadNetwork(“Model.xml”);
netBuilder->ReadWeights(“Model.bin")

\
| auto enginePtr = new InferenceEngine::InferenceEnginePluginPtr(getSuitablePlugin(eFPGA));

J
enginePtr->LoadNetwork(*netBuilder->network, &resp);

InterencekEngine: :TBlob<tloat> output;
InferenceEngine::SizeVector inputDims;
netBuilder->getInputDimentions(inputDims);
InferenceEngine: :TBlob<short> input(inputDims);
input.allocate();

enginePtr->Infer(input, output, &resp);

Programmable Solutions Group (intel. . 5Y4

User Flow

Eind. Lo

Turnkey Software Deployment Flow

Neural
Net

FPGA Architecture Development Flow

el e

Programmable Solutions Group

Iintel® FPGA SDK
for OpenCL™

Customization for Architecture Developers

Add a custom primitive into crossbar Feature Map Cache

» Three primitive types supported:
Memory
— Unary (ReLU, Tanh) Reader
— Binary (Eltwise Add, Mult) Convolution PE [Writer
Arra
— Window (Pool, LRN, Norm) /

— Unary w/ coefficients

— Scale/Dropout (a couple of coefficients
per layer: coefficients loaded via layer
config)

— BatchNorm (dozen or more coefficients
per layer: coefficients loaded via DDR)

Programmable Solutions Group

Machine Learning on Intel® FPGA Platform

Acceleration Stack Platform Solution

ML Framework
(Caffe*, TensorFlow*)

Software Stack A Hardware

b Platform & IP
Application

DL Deployment Toolkit

DLA Runtlme Englne DLA Workload
OpenCLTM Runtime
Acceleratlon Stack

Intel® Xeon PAC Family
CPU Boards

For more information on the Acceleration Stack for Intel® Xeon® CPU with FPGAs on
the Intel® Programmable Acceleration Card, visit the Intel® FPGA Acceleration Hub

Programmable Solutions Group (intel. . 60

https://www.altera.com/solutions/acceleration-hub/acceleration-stack.html

DLA Architecture: Built for Performance

Feature Map Cache

= Maximize Parallelism on the FPGA amory

[/Writer

— Filter Parallelism (Processing Elements)
— Input-Depth Parallelism
— Winograd Transformation
— Batching

— Feature Stream Buffer

— Filter Cache

* Choosing FPGA Bitstream
— Data Type / Design Exploration

Stream Buffer

— Primitive Support

[
224,

Inew1 [x] [Jq

- Z Z Ioig [x + 1y + y'] x Fx'1[y']

m
-lll----====l
Filter -----===-----
Input Feature Map (3D Space) ----=-------=
(Set of 2D Images) --==------==-
Ll L
Output Feature ----====----=
Map ll==-----ll-
] Repeat for Multiple Filters

to Create Multiple “Layers”
of Output Feature Map

Programmable Solutions Group

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il

AlexNet Graph
AdhAh b b A A d
L

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il

AlexNet Graph
ERTERTSEEE RS B B
L Stream Buffer

|nut

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il

S1E18 88888

Stream Buffer
| outut

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il
AlexNet Graph

Stream Buffer

()y)
RelU == T 1)

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il
AlexNet Graph

Stream Buffer

()y)
RelU == T 1)

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il

AlexNet Graph

Bi8is84- 888

outut
| Stream Buffer
|nut

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il
AlexNet Graph

Stream Buffer

())
RelU == T 1)

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il
AlexNet Graph

Stream Buffer

())
RelU == T 1)

Blocks are run-time reconfigurable and bypassable

Conv ReLu Norm MaxPool Fully Conn.

Mapping Graphs in DLA Il
AlexNet Graph

Stream Buffer

()L)

Blocks are run-time reconfigurable and bypassable

Efficient Parallel Execution of Convolutions

External DDR

. = Parallel Convolutions

(on-chip RAM) — Different filters of the same

convolution layer processed in
. parallel in different processing

SEamm: elements (PEs)

Double-Buffer
On-Chip RAM

= Vectored Operations
— Across the depth of feature
map

=
Lad

Filter Parallelism
(Output Depth)

uuuu

= PE Array geometry can be
customized to hyperparameters
of given topology

Programmable Solutions Group (intel, \

Winograd Transformation

Features Filters
= Perform convolutions with fewer multiplication o[[iz[i3]i4] 5[] fo[r1[r2]]
— Allows more convolutions to be done on FPGA ¥ Transform y Transform

| | HEERE EREEEE
» Take 6 input features elements and 3 filter elements

b

— Standard convolution requires 12 multiplies

— Transformed convolution requires just 6 multiplies N x|
4 X han
Stream Buffer rBl <
Winograd
vy __ VvV VvV V V V A
Transform '
N_IaXPOOI ¢ Transform
Winograd
Transform '

Programmable Solutions Group (intel. . 73

Fully Connected Computation and Batching

= Fully Connected Layer computation does not allow for data reuse of weights

— Different from convolutions Moo Grapn

— Very memory bandwidth intensive B Rl J
= Solution: Batch up images

— Weights reused across multiple images

0= IV@C * erc Ovec — Imat * erc

Feature Cache s

Feature data cached on-chip Double-Butfer
_ _ _ On-Chip RAM
= Streamed to a daisy chain of parallel processing elements

= Double buffered
— Overlap convolution with cache updates
— Output of one subgraph becomes input of another

— Eliminates unnecessary external memory accesses

Programmable Solutions Group (intel, \ 75

Filter Cache

Filter weights cached in each processing element

= Double buffered in order to support prefetching

— While one set is used to calculate output feature maps, another set is prefetched

Programmable Solutions Group

DLA Architecture Selection

* Find ideal FPGA image that meets your needs

» Create custom FPGA image based on need

Arch Name ALEXMNET GOOGLENET SQUEEZENET VGG RESMNET18 RESMET18 MAMUAL RESMETS0 RESMET101
0-8-1_rc_fp32 8x8_arch02 YES YES YES YES YES YES
0-8-1_rc_fpl6 4x4 arch03 YES YES YES YES YES YES YES YES
0-8-1 rc fpl6 8x32 arch09 YES YES YES ¥ES
0-8-1 rc fpl6 8x32 archl0 YES
0-8-1 rc fpl6 8x32 archll YES YES YES
0-8-1 rc_fpl6 8x32 archl2 YES YES YES
0-8-1 rc_fpll 16x32 archl7 YES YES YES
0-8-1 rc fpll 16x32 archl8 YES
0-8-1_rc_fpll 16x32_archl6 YES YES YES YES YES
0-8-1_rc_fpll 16x32_arch20 YES YES YES YES YES
0-8-1 rc_fpl0 16x32 arch23 YES YES YES
0-8-1 rc_fp9 16%32 arch25 YES YES YES
0-8-1 rc fp8 16x32 arch2b YES YES YES

Programmable Solutions Group (intel. . 77

Support for Different Topologies

Tradeoff between features and performance

Feature Map Cache Feature Map Cache

Memor Memor
y y
Reader Reader
[Writer [/Writer

Crossbar

e

m_ I
Config

Programmable Solutions Group (intel‘ l

Supported Primitives and Topologies

Primitives Topok)gies
v" AlexNet
v GoogleNet v1 v SSD
v" ResNetl18 v SSD
v" ResNet50

v ResNet101

v SqueezeNet v SSD
v VGG16

v Tiny Yolo

v" LeNet

v' Supported
v Upon Request

- tanh - deconv
v Future

Programmable Solutions Group

Design Exploration with Reduced Precision

Tradeoff between performance and accuracy
= Reduced precision allows more processing to be done in parallel
= Using smaller Floating Point format does not require retraining of network

» FP11 benefit over using INT8/9

— No need to retrain, better performance, less accuracy loss
FP16 | HENNNNEEEEEEEEEE Sign 5-bit exponent, 10-bit mantissa

FP11 "' HEENENEEEER Sign, 5-bit exponent, 5-bit mantissa
FP1O "N EENEEEE Sign, 5-bit exponent, 4-bit mantissa
FPO EEENNEEE Sign, 5-bit exponent, 3-bit mantissa
FP8 EEEEEEE Sign, 5-bit exponent, 2-bit mantissa

Summary

Use HLS Compiler to generate excelleration IP for HW Developers

Use OpenCL to accelerate for software developers

— May use over Acceleration Stack

Acceleration stack enables data center acceleration
— Supports RTL and OpenCL flow, HLS in the future

Use Deep Learning Acceleration Suite to easily deploy inference tasks on the
FPGA

— Supported for the Acceleration Stack

— In the future will support custom platforms

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system manufacturer
or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria,
Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel
Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

(lntel) |
experience
what'’s inside”

