
Two-component dark matter in a new B-L model

Based on 1808.03352

Carlos E. Yaguna UPTC, Colombia 2018 Models based on B-L are a compelling alternative for physics beyond the SM

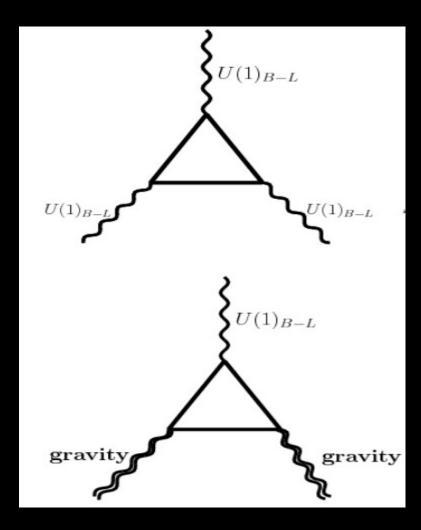
They include a new gauge boson (Z')

They allow to explain neutrino masses

DM candidates can be incorporated

Signals at the LHC

Via the seesaw


Fermion or Scalar

These models require new fermions to cancel the gauge anomalies

They must be SM singlets

Infinite solutions are possible

3 RH v's is the most popular

We propose to cancel the anomalies with RH neutrinos and DM particles

Only 2 RH neutrinos are included

And 4 fermions with fractional charges

Two new scalar fields are also needed

Particles	$U(1)_{B-L}$	$(SU(3)_c, SU(2)_L, U(1)_Y)$
Q_{Li}	1/3	(3 , 2 , 1/6)
u_{Ri}	1/3	$(\overline{3}, 1, 2/3)$
d_{Ri}	1/3	$\left(\overline{3},1,-1/3 ight)$
L_i	-1	(1 , 2 , -1/2)
e_{Ri}	-1	(1, 1, -1)
N_{R1}	-1	(1, 1, 0)
N_{R2}	-1	(1, 1, 0)
ξ_L	10/7	(1, 1, 0)
η_R	-4/7	(1, 1, 0)
ζ_R	-2/7	(1, 1, 0)
χ_L	-9/7	(1, 1, 0)
Н	0	(1 , 2 , 1/2)
ϕ_1	1	(1, 1, 0)
ϕ_2	2	(1, 1, 0)

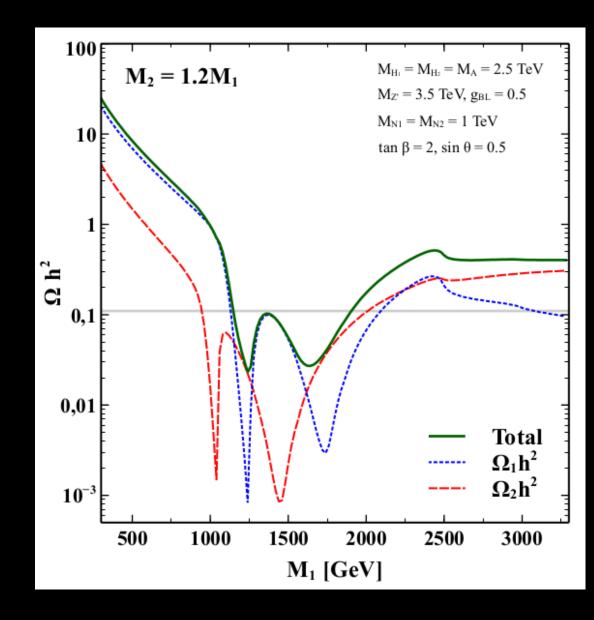
This model automatically includes two dark matter particles

The 4 fermions form 2 Dirac particles

$$\mathcal{L} \supset -a \,\overline{\xi_L} \,\eta_R \,\phi_2 - b \,\overline{\zeta_R} \,\chi_L \,\phi_1$$

Both are neutral and stable

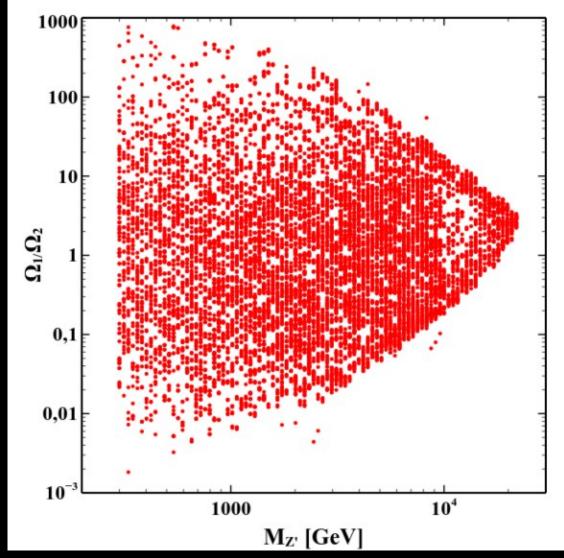
A two-component DM scenario is realized


Two DM particles

Without any discrete simmetries

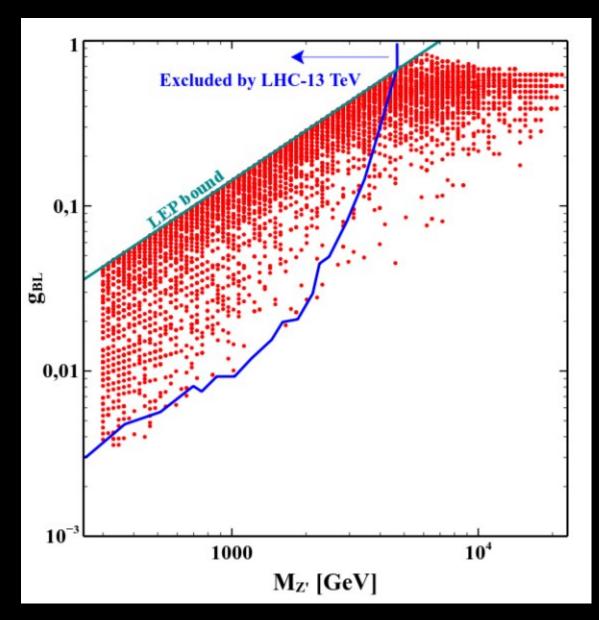
The observed dark matter density can be dominated by any of the two particles

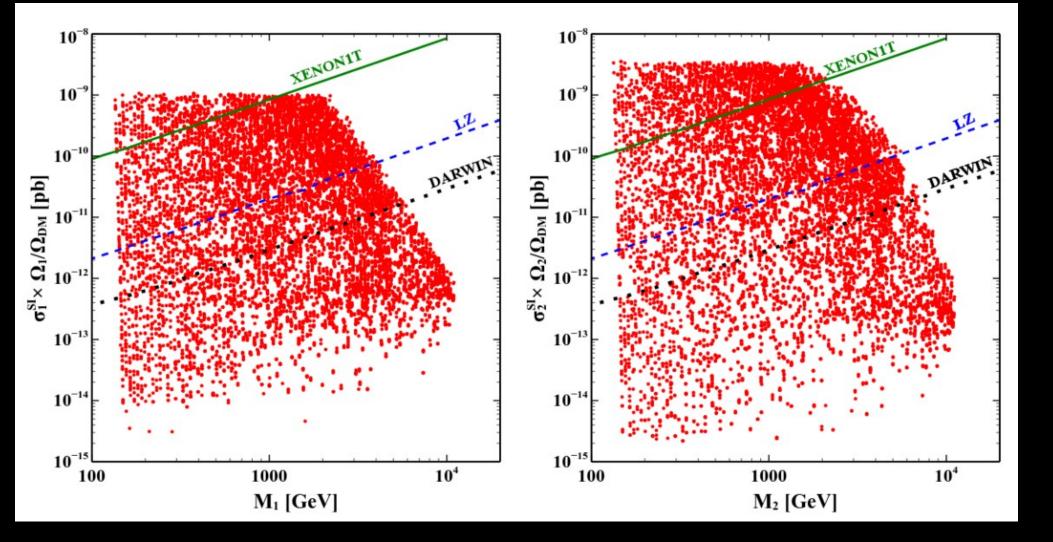
Both DM particles contribute to Ω


Their contributions vary significantly

For viable models, Ω_1 and Ω_2 are of the same order at large dark matter masses

At low M_{DM} , Ω_1/Ω_2 varies over a wide range


At high M_{DM} , Ω_1/Ω_2 tends to about 3


The LHC data severely restricts the low mass region of this model

Models with M_z,< 6 TeV are nearly excluded

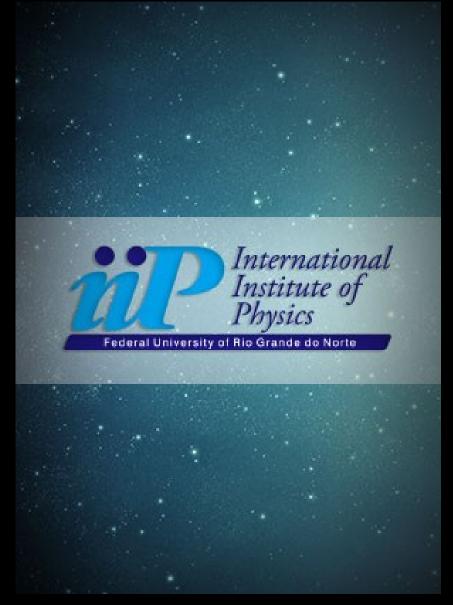
Viable models feature M_{DM} > 3 TeV

Future direct detection experiments will probe many viable models

We proposed an appealing extension of the SM based on the B-L gauge symmetry

It gives rise to a rich phenomenology

It contains two DM particles


It is being probed by current experiments

Particles	$U(1)_{B-L}$	$(SU(3)_c, SU(2)_L, U(1)_Y)$
Q_{Li}	1/3	(3 , 2 , 1/6)
u_{Ri}	1/3	$(\overline{3}, 1, 2/3)$
d_{Ri}	1/3	$\left(\overline{3},1,-1/3 ight)$
L_i	-1	(1 , 2 , -1/2)
e_{Ri}	-1	(1, 1, -1)
N_{R1}	-1	(1, 1, 0)
N_{R2}	-1	(1, 1, 0)
ξ_L	10/7	(1, 1, 0)
η_R	-4/7	(1, 1, 0)
ζ_R	-2/7	(1, 1, 0)
χ_L	-9/7	(1, 1, 0)
Н	0	(1 , 2 , 1/2)
ϕ_1	1	(1, 1, 0)
ϕ_2	2	(1, 1, 0)

Dark Matter and Weak Interactions (DARKWIN) Conference

Dark Matter Neutrino Physics Model Building Collider Physics

September 2-13, 2019 IIP, Natal, Brazil

