Deviations to Tri-Bi-Maximal mixing in the limit of $\mu \leftrightarrow \tau$ symmetry

Diana Carolina Rivera Agudelo in collaboration with A. Pérez-Lorenzana and Sergio Tostado

3rd COMHEP USC, Cali, Colombia

December 4, 2018

Outline

(1) Introduction
(2) $\mu-\tau$ symmetry in the mixing matrix and deviations from TBM pattern
(3) TBM limit in the mass matrix
(4) Results and conclusions

Introduction: Neutrino mixing

Standard parametrization: $c_{i j} \equiv \cos \theta_{i j}, s_{i j} \equiv \sin \theta_{i j}$

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{C P}} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{C P}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{C P}} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{C P}} & -c_{12} s_{23}-c_{23} s_{12} s_{13} e^{i \delta_{C P}} & c_{23} c_{13}
\end{array}\right) P_{\nu}
$$

- $P_{\nu}=\operatorname{diag}\left[1, e^{-i \frac{\beta_{1}}{2}}, e^{-i \frac{\beta_{2}}{2}}\right]$
- Global analysis (1σ) :

$$
\begin{array}{ll}
\theta_{12} /^{\circ}=34.5_{-1.0}^{+1.2}, & \theta_{13} /^{\circ}=8.45_{-0.14}^{+0.16}, \\
\theta_{23} /^{\circ}=47.7_{-1.7}^{+1.2}, & \delta_{c p} / \pi=1.32_{-0.15}^{+0.21}
\end{array}
$$

- Majorana nature $\Longleftrightarrow 0 \nu \beta \beta$

Neutrino oscillation between three generations
Credits T2K coll.

[^0]
$\mu-\tau$ symmetry and TBM pattern

- If $\theta_{13}=0, \quad \theta_{23}=\pi / 4$

$$
U_{\mu-\tau}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
\frac{-s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{-s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

- $c_{12}\left(s_{12}\right)$ stands for $\sin \theta_{12}\left(\cos \theta_{12}\right)$
- When $\sin ^{2} \theta_{12}=1 / 3 \rightarrow$ Tri-Bi-Maximal ${ }^{2}$ (TBM) mixing

TBM main features

Null reactor angle, no CP violation, solar angle $\theta_{12}=30^{\circ}$
Disfavored by experiments
Maximal atmospheric angle $\theta_{23}=45^{\circ}$ is still allowed

${ }^{2}$ T. Fukuyama and H. Nishiura, arXiv:hep-ph/9702253 [hep-ph].

Deviations from TBM pattern

However, small deviations from $\mu \leftrightarrow \tau$ symmetry can be adopted. Let us consider

- $U_{P M N S}=U_{T B M} U_{\text {Corr }}$, where

Correction matrix

$$
U_{\text {Corr }}=U_{i j}(\phi, \sigma) \operatorname{Diag}\left(1, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{1}}{2}}, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{2}}{2}}\right)
$$

Two possibilities since U_{12} is trivial:

$$
U_{13}=\left(\begin{array}{ccc}
\cos \phi & 0 & \sin \phi e^{-i \sigma} \\
0 & 1 & 0 \\
-\sin \phi e^{i \sigma} & 0 & \cos \phi
\end{array}\right), \quad U_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi e^{-i \sigma} \\
0 & -\sin \phi e^{i \sigma} & \cos \phi
\end{array}\right)
$$

ϕ and σ encode the deviation from TBM mixing. α_{1} and α_{2} are aimed to account for the Majorana nature.

Relations between experimental parameters and PMNS entries

Mixing angles:

$$
\sin ^{2} \theta_{12}=\frac{\left|U_{e 2}\right|^{2}}{1-\left|U_{e 3}\right|^{2}}, \quad \sin ^{2} \theta_{23}=\frac{\left|U_{\mu 3}\right|^{2}}{1-\left|U_{e 3}\right|^{2}}, \quad \sin ^{2} \theta_{13}=\left|U_{e 3}\right|^{2},
$$

CP is obtained from Jarlskog invariant

$$
\begin{aligned}
J_{C P} & =\operatorname{Im}\left[U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right] \\
& =\left(1-s^{2} \theta_{13}\right) \sqrt{s^{2} \theta_{13} s^{2} \theta_{12} s^{2} \theta_{23}\left(1-s^{2} \theta_{12}\right)\left(1-s^{2} \theta_{23}\right)} \sin \delta_{C P} .
\end{aligned}
$$

Case I: 1-3 Rotation

$U_{P M N S}=U_{T B M} U_{13}(\phi, \sigma) \operatorname{Diag}\left(1, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{1}}{2}}, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{2}}{2}}\right)$

$$
\begin{aligned}
\sin ^{2} \theta_{12} & =\frac{1}{3-2 \sin ^{2} \phi}, \\
\sin ^{2} \theta_{23} & =\frac{1}{2}\left(1+\frac{\sqrt{3} \sin 2 \phi \cos \sigma}{3-2 \sin ^{2} \phi}\right), \\
\sin ^{2} \theta_{13} & =\frac{2}{3} \sin ^{2} \phi .
\end{aligned}
$$

Dirac CP

$$
\sin \delta_{C P}=-\frac{(2+\cos 2 \phi) \sin \sigma}{\left[(2+\cos 2 \phi)^{2}-3 \sin ^{2} 2 \phi \cos ^{2} \sigma\right]^{1 / 2}} .
$$

Majorana phases

$$
\beta_{1}=\alpha_{1}, \quad \beta_{2}=\alpha_{2}+2\left(\sigma-\delta_{C P}\right)
$$

Case II: 2-3 Rotation

$$
U_{P M N S}=U_{T B M} U_{23}(\phi, \sigma) \operatorname{Diag}\left(1, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{1}}{2}}, \mathrm{e}^{-\mathrm{i} \frac{\alpha_{2}}{2}}\right)
$$

$$
\begin{aligned}
\sin ^{2} \theta_{12} & =1-\frac{2}{3-\sin ^{2} \phi}, \\
\sin ^{2} \theta_{23} & =\frac{1}{2}\left(1-\frac{\sqrt{6} \sin 2 \phi \cos \sigma}{3-\sin ^{2} \phi}\right), \\
\sin ^{2} \theta_{13} & =\frac{1}{3} \sin ^{2} \phi
\end{aligned}
$$

Dirac CP

$$
\sin \delta_{C P}=-\frac{(5+\cos 2 \phi) \sin \sigma}{\left[(5+\cos 2 \phi)^{2}-24 \sin ^{2} 2 \phi \cos ^{2} \sigma\right]^{1 / 2}}
$$

Majorana phases

$$
\beta_{1}=\alpha_{1}, \quad \beta_{2}=\alpha_{2}+2\left(\sigma-\delta_{C P}\right)
$$

$\mu-\tau$ symmetric limit in the mass matrix

- Since $M_{\nu}=U_{\nu} \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) U_{\nu}^{\mathrm{T}}, \quad U_{\nu}=U_{T B M}$ implies

$$
\left|m_{e \mu}\right|=\left|m_{e \tau}\right| \quad \text { and } \quad m_{\mu \mu}=m_{\tau \tau}
$$

Deviations can be accommodated in a correction matrix via

$$
M_{\nu}=M_{\mu-\tau}+\delta M(\hat{\delta}, \hat{\epsilon})
$$

Breaking parameters

$$
\begin{aligned}
\hat{\delta} & =\frac{\sum_{i}\left(U_{e i} U_{\tau i}-U_{e i} U_{\mu i}\right) m_{i}}{\sum_{i} U_{e i} U_{\mu i} m_{i}} \\
\hat{\epsilon} & =\frac{\sum_{i}\left(U_{\tau i} U_{\tau i}-U_{\mu i} U_{\mu i}\right) m_{i}}{\sum_{i} U_{\mu i} U_{\mu i} m_{i}}
\end{aligned}
$$

Results Case I $\left(U_{13}\right)$

Correlation between CP parameters and the atmospheric angle. Case $\alpha_{2}=0$.

Results Case I $\left(U_{13}\right)$

Neutrinoless double beta decay. Case $\alpha_{2}=0$.

Results Case II $\left(U_{23}\right)$

Correlation between CP parameters and the atmospheric angle. Case $\alpha_{2}=0$.

Results Case II $\left(U_{23}\right)$

Neutrinoless double beta decay. Case $\alpha_{2}=0$.

Concluding Remarks

- TBM pattern is actually disfavored by experiments
- Corrections to TBM matrix can predict current mixing angles
- Small $\mu-\tau$ symmetry breaking in the mass matrix could help bounding Majorana phases via a precise determination of the atmospheric angle
- Small breaking favors degenerate hierarchy and can be tested in future experiments

Thank you!!

Correction Parameters

Case I:

Case II:

- Better correlation is obtained for $\alpha_{2}=0$. Values of α_{1} are the same of β_{1}.
- These regions are consistent with current 3σ ranges of the mixing angles

$\mu-\tau$ symmetric mass matrix

Mass matrix obtained from $U_{\mu-\tau}$

$$
M_{v}^{\mu-\tau}=\left(\begin{array}{ccc}
m_{1} c_{12}^{2}+m_{2} s_{12}^{2} & -\frac{s 2_{12}}{\sqrt{8}}\left(m_{1}-m_{2}\right) & \sigma \frac{s 2_{12}}{\sqrt{8}}\left(m_{1}-m_{2}\right) \\
-\frac{s 2_{12}}{\sqrt{8}}\left(m_{2}-m_{1}\right) & \frac{1}{2}\left(m_{1} s_{12}^{2}+m_{2} c_{12}^{2}+m_{3}\right) & \frac{-\sigma}{2}\left(m_{1} s_{12}^{2}+m_{2} c_{12}^{2}-m_{3}\right) \\
\sigma \frac{s 2_{12}}{\sqrt{8}}\left(m_{1}-m_{2}\right) & \frac{-\sigma}{2}\left(m_{1} s_{12}^{2}+m_{2} c_{12}^{2}-m_{3}\right) & \frac{1}{2}\left(m_{1} s_{12}^{2}+m_{2} c_{12}^{2}+m_{3}\right)
\end{array}\right)
$$

[^0]: ${ }^{1}$ P.F. de Salas et al., PLB 782, 6332018

