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Success of ΛCDM Cosmology

Astrophysical observations (CMB, BAO, Ly-α forest, local distribution and
evolution of galaxies as well as peculiar velocity of local group, etc) ranging
from horizon scale (∼ 15000 Mpc) to the typical scale between galaxies (1 Mpc)
are all consistent with a Universe that was seeded by a scale invariant primordial
spectrum, and that is dominated by dark energy ∼ 70% followed by ∼ 25% of
Cold Dark Matter (CDM) and only ∼ 5% of baryons plus radiation [Planck
Collaboration et al., 2016]; [Vogelsberger et al., 2014]; [Kitaura, Angulo, et al.,
2012]

Being the most compelling evidence for the existence of CDM the precise
features of the CMB
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Carlos R. Argüelles Self-gravitating systems of elementary particles as models for DM halos & structure formation



The ΛCDM paradigm: preliminarities
Alternatives to CDM: Ultra light DM, WDM, Interacting DM

Conclusions

Success of ΛCDM Cosmology
Small-scale challenges to ΛCDM

LOST SATELLITE PROBLEM: possible solution is to argue that galaxy
formation becomes increasingly inefficient as DM mass drops

TOO BIG TO FAIL: large population of predicted (Aquarius-simulations)
massive subhalos (with Vmax > 30 km/s) which don’t fit the data
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Small-scale challenges to ΛCDM

CORE-CUSP PROBLEM: Central regions of DM-dominated galaxies (as
inferred from rotation curves) tend to be less cuspy than in LCDM halos

BARYONIC FEEDBACK becomes inefficient for low (stellar mass M∗) galaxies
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Different outcomes respect to standard cosmological simulations when dropping
one or more assumptions

Carlos R. Argüelles Self-gravitating systems of elementary particles as models for DM halos & structure formation



The ΛCDM paradigm: preliminarities
Alternatives to CDM: Ultra light DM, WDM, Interacting DM

Conclusions

N-body simulation approaches
Theoretical field descriptions: self-gravitating particles

Self-interacting DM in simulations

N-body method sample the underlying phase-space distribution with particles

A cross section for isotropic and elastic scattering among DM particles can
modify the small-scale structure
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Large cross-section reduces the central density of DM halos and make them
rounder
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WDM in simulations

Free streaming of (relativistically decoupled) particles damp primordial density
fluctuation below a cutoff scale

the small spread in velocity-space (respect to CDM) allows N-body simulations
to solve WDM similarly as CDM within VLASOV-POISSON, but with a
modified initial power spectrum
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Suppression of power below a given scale implies a difference in
DM-halo morphology (for BELOW keV particles) [Schneider et al., MNRAS 2012]

Radial distribution of sub-structure (High res. N-body for few keV thermal DM)
show that WDM halos

M > 5× 109M�; r > 0.1rvir ∼ 101kpc (1)

are indistinguishable from CDM halos and well fitted by Einasto profiles
(α ≈ 0.6) [Bose et al., MNRAS 2017]
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FDM in simulations

From VLASOV-POISSON to SCHRÖEDINGER-POISSON
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Theoretical field descriptions: bosons
& fermions.
(A complementary framework to
N-body simulations)
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Bosons: Ultra-light DM or Fuzzy DM

Main physical motivation for a FDM particle: occurs in QCD-axion
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Bosons: Ultra-light DM or Fuzzy DM

The temperature T0 at which ρFDM ∝ a−3 is 500 eV (z ∼ 106)
Evolution of ρ(r) = m|Ψ|2 from radiation era to matter-radiation equality (at ∼
1 eV) implies m ∼ 10−22 eV

Carlos R. Argüelles Self-gravitating systems of elementary particles as models for DM halos & structure formation



The ΛCDM paradigm: preliminarities
Alternatives to CDM: Ultra light DM, WDM, Interacting DM

Conclusions

N-body simulation approaches
Theoretical field descriptions: self-gravitating particles

SELF-GRAVITY: A large collection of bosons in the same state: described by a
classical field Ψ - SCHRÖEDINGER-POISSON (ρ(r) = m|Ψ|2) -

−~/2m∇2Ψ + VmΨ = mEΨ ∇2V = 4πGm|Ψ|2 (2)

The lowest eigenstate solution (En; n = 0) is stable. The nth excited states are
unstable and decay to the ground state → Gravitational cooling! [Seidel, PRL
1994]; [Schwabe, PRD 2016]
Central density eigenstates: ρc ∝ m3M4ρn. For (n = 0)
M ∼ 109M� ; ρc ∼ 5M�/pc3 ⇒ m ∼ 10−22 eV [Hui, et al. PRD 2017]

λdb

2π
=

~
mv

= 1.9kpc

(
10−22eV

m

)(
10kms−1

v

)
de− Broglie wavelength

(3)
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FDM is unstable ONLY for masses larger than Jeans mass
MJ ∼ 107M�(10−22eV/m)3/2

The number of CDM sub-halos RISES for Mh below 108M�, while for FDM
halts

The power spectrum in FDM is SUPPRESSED relative to CDM at small scales

Ly-α forest offers additional prove of power spectrum: mWDM > 3.3 keV
translates in mFDM > 2× 10−21 eV ⇒ Tension!! [Hui, et al. PRD 2017]
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WDM & FDM: Suppression of structure below Mpc

Matter power spectrum which are cuted-off below given scale produce less
amount of substructure and less concentrated [Lovell, et al. MNRAS 2012]
THIS PICTURE: High-res. N-body simulations: z = 0; box of 1.5 Mpc side
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Fermions: WDM & keV particles

Fermions with self-gravity DO ADMIT a perfect fluid approximation basically
due to the Pauli exclusion pple. [Ruffini, Phis.Rev 1969]

Challenge: Solve the Einstein equations for hydrostatic equilibrium (T.O.V: i.e.
perfect fluid) of a thermal and semi-degenerate fermion gas (spherical
symmetry)

dM

dr
= 4πr2ρ,

dP

dr
= −

1

2

dν

dr
(c2ρ+ P),

dν

dr
=

2G

c2

M + 4πr3P/c2

r2[1− 2GM/(c2r)]

ρ = m
2

h3

∫
f (p)

[
1 +

ε(p)

mc2

]
d3p,

P =
1

3

2

h3

∫
f (p)

[
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
ε d3p,

f (r , p) =
1

e
ε(p)−µ(r)

kT (r) + 1

, ε(p) =
√

c2p2 + m2c4 −mc2
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Theory: Thermodynamics and Statistical physics

COLLISIONLESS RELAXATION: described by the VLASOV-POISSON equation

∂f

∂t
+ v

∂f

∂r
−∇Φ(r, t)

∂f

∂v
= 0 4Φ = 4πG

∫
fd3v

Main collisionless mechanisms: phase mixing & violent relaxation. Defined over
macroscopic (averaged) states: f → f̄

VIOLENT RELAXATION [Lynden Bell, MNRAS 1967]: the total energy of the
bodies is NOT conserved

dE

dt
=
∂Φ

∂t
|r(t)

COLLISIONLESS RELAXATION TIME proper of violently changing Φ is the
Dynamical time tD � tR → Relaxation in galaxies can be approached without
the need for collisions

(Macroscopic) Maximization entropy principle at fixed total mass and energy (η
is a phase-space patch or macrocell)

S =

∫
ρ(r, v, η) ln ρ(r, v, η)dηd3rd3v f̄ (r, v) =

∫
ρ(r, v, η)ηdη

δS = 0 ⇒ f̄ =
1

eβ[ε(p)−α] + 1
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Dimensionless form of the diff. eqtns. → Necessary step
r̂ = r/χ, χ ∝ m−2

dM̂

dr̂
= 4πr̂2ρ̂, (4)

dθ

dr̂
= −

1− β0(θ − θ0)

β0

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
, (5)

dν

dr̂
=

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
, (6)

β(r) = β0e
− ν(r)+ν0

2 . (7)

Free parameters: β= kT/mc2, θ= µ/kT and m

Initial condition problem:

M(0) = 0; ν0 = 0; θ(0) = θ0 > 0; β(0) = β0; (8)

DM halo observables typical of spiral galaxies (boundary conditions):

rh = 25Kpc; vh = 168 km/s; Mh = 1.6× 1011M� (9)
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β0 = kT/mc2 ∝ vh quite independently of θ0;

ρ(r) solutions for a wide range of free parameters (θ0,m), for given HALO
boundary conditions inferred from observables
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RAR ROTATION CURVES for fixed boundary conditions
m is mainly sensitive to the Core
For m ∼ 10keV/c2 → Mc ∼ 106M� (SgrA* candidate)

θ0 m(keV /c2) rc (pc) Mc (M�)
11 0.420 3.3× 101 8.5× 108

25 4.323 2.5× 10−1 1.4× 107

30 10.540 4.0× 10−2 2.7× 106

40 64.450 1.0× 10−3 8.9× 104

58.4 2.0× 103 9.3× 10−7 1.2× 102

98.5 3.2× 106 3.2× 10−13 7.2× 10−5
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Fermions: WDM & keV particles

General solutions: Novel CORE-HALO fermionic profiles which depend on the
particle mass. Central dense core fulfills ’quantum condition’ λdb > 3lcore
[Ruffini, C. R. A, Rueda MNRAS 2015]
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The S-stellar cluster & central gas

The central 10−3 pc . r . 2 pc consist in young S-stars and molecular gas
obeying a Keplerian law (v ∝ r−1/2)

The observational near-IR technics were developed in S. Gillessen et al. (Apj)
(2009) and in S. Gillessen et al. (Apj) (2015) for S-stars and gas cloud G2

Observations implies Mc ≈ 4.2× 106M� within the smallest pericenter
rp(S2) ≈ 6× 10−4 pc
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The outermost DM halo constraints: Sgr-dwarf

The outermost satellite galaxies of the MW are excellent total DM tracers

The Sgr-dwarf satellite with its stream motion of tidally disrupted stars was well
observed and well reproduced numerically Belokurov et al. (MNRAS) (2014), S.
Gibbons et al. (MNRAS) (2014)
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Extended RAR model

Objective: solve in the more general way the relativistic equations for
hydrostatic equilibrium of a thermal and semi-degenerate fermion gas including
for escape of particles

fc (p) =

{
1−e(ε−εc )/kT

e(ε−µ)/kT +1
, ε ≤ εc

0, ε > εc

ε(p) =
√

c2p2 + m2c4 −mc2

The parametric equation of state (EOS) of the fermion gas is

ρ = m
2

h3

∫
fc (p)

[
1 +

ε(p)

mc2

]
d3p,

P =
1

3

2

h3

∫
fc (p)

[
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
ε d3p,

The problem is treated in a spherically symmetric metric

ds2 = eνc2dt2 − eλdr2 − r2dθ2 − r2 sin2 θdφ2,
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Theory: Thermodynamics and Statistical physics

DM halo formation: COLLISIONLESS RELAXATION & ESCAPE OF
PARTICLES → generalized Fokker-Planck equation for fermions P.H. Chavanis,
Physica A (2004)

∂f

∂t
+ v

∂f

∂r
−∇Φ(r, t)

∂f

∂v
=

∂

∂v
Jf 4Φ = 4πG

∫
fd3v

Stationary solutions of the form f = f (ε) (f (εc ) = 0, εc = v2/2 + Φ) can be
found, satisfying the H-theorem for an arbitrary functional

S = −
∫

C(f )d3rd3v

The generalized Kinetic equation has a thermodynamical structure
(corresponding to a canonical description in the case of KRAMERS)

If C(f ) is the Boltzmann Entropy functional

f (ε) = A(exp [−β(ε)]− exp [−β(εc )]) classical particles

If C(f ) is the Fermi-Dirac Entropy functional

f (ε) =
1− eβ(ε−εc )

eβ(ε−µ) + 1
quantum or classical particles
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Theory: The RAR model

The Einstein equations can be written can be written in the form of Tolman and
Oppenheimer and Volkoff

dM

dr
= 4πr2ρ,

dP

dr
= −

1

2

dν

dr
(c2ρ+ P),

dν

dr
=

2G

c2

M + 4πr3P/c2

r2[1− 2GM/(c2r)]

And λ is related to the mass M through

e−λ = 1−
2GM

c2r
.

The thermodynamic equilibrium conditions within GR (Klein conditions)
together to energy conservation along a geodetic G. Ingrosso, A&A (1992)

eν/2T = constant,

eν/2(µ+ mc2) = constant,

eν/2(ε+ mc2) = constant.
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Theory: The RAR model

Dimensionless form of the diff. eqtns. → Necessary step
r̂ = r/χ, χ ∝ m−2

dM̂

dr̂
= 4πr̂2ρ̂,

dθ

dr̂
= −

1− β0(θ − θ0)

β0

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
,

dν

dr̂
=

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
,

β(r) = β0e
− ν(r)+ν0

2

W (r) = W0 + θ(r)− θ0

Free parameters: m, β= kT/mc2, θ= µ/kT and W= εc/kT

M(0) = 0; ν0 = 0; θ(0) = θ0 > 0; β(0) = β0; W (0) = W0

Initial condition problem: Solved for different m such that M(r) satisfy the
required observations
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Fermions: WDM: keV-ish DM

Extended RAR theory including for escape of particles provide new solutions al-
lowing for more compact quantum cores [C. R. A, et al. PDU (2018) 1606.07040]
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Fermions: WDM: keV-ish DM

Extension of the RAR profiles including for escape of particles provides excellent
fits to the MW rotation curve [C. R. A, et al. PDU (2018) 1606.07040]
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[C. R. A et al. PDU (2018) 1606.07040]
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Typical Seyfert-like Spirals

THE CASE OF m = 48 keV FERMIONIC DARK MATTER

Observationally-inferred boundary condition at rh: Mh(rh = 48 kpc)= 1×1012M�

PREDICTED: Mc ∈ (4× 105, 2× 108)M� ; Mtot ∈ (1× 1012, 2× 1012)M� [C.
R. A et al. (2018) 1606.07040]
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Typical normal Ellipticals

THE CASE OF m = 48 keV FERMIONIC DARK MATTER

Observationally-inferred boundary condition at rh: Mh(rh = 90 kpc)= 5×1012M�

PREDICTED: Mc ∈ (1× 106, 2× 108)M� ; Mtot ∈ (6× 1012, 9× 1012)M� [C.
R. A et al. (2018) 1606.07040]
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Typical Dwarf Spheroidals

THE CASE OF m = 48 keV FERMIONIC DARK MATTER

Observationally-inferred boundary condition at rh: Mh(rh = 0.4 kpc)= 3×107M�

PREDICTED: Mc ∈ (3× 103, 4× 106)M� ; Mtot ∈ (3× 107, 5× 107)M� [C. R.
A et al. (2018) 1606.07040]
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Normal Galaxies → NO Active Nuclei
NOR Jets (Mc ∼ 106−7M�)

Active Galaxies → YES Active Nuclei AND
Jet emission (Mc ∼ 109−10M�)
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CONSTRAINTS ON PARTICLE
PHYSICS BEYOND SM
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Coupling with Higgs provides (through SSB mechanism) the Quark, Lepton
(e,µ,τ) and gauge boson - mass generation

Lψ ∝ −m(ψ̄LψR + ψ̄RψL) BUT in SM @ νR (10)

Minimal extension of SM (νMSM) adding 3 right-handed STERILE (QSM = 0)
neutrinos T. Asaka, S. Blanchet, M. Shaposhnikov PLB (2005) 0503065

Group-invariance in νMSM model: SU(3)xSU(2)xU(1) remains unchanged!

L = LSM + iνR∂µγ
µνR − g L̄νRφ−M/2ν̄cRνR (11)

A Lagrangian extension including for self-interactions LI under self-gravity was
analyzed C. Argüelles, N. Mavromatos, et al. JCAP (2016) 1502.00136

L = LGR + LνR + LV − gVVµJ
µ
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Indirect νs detection from GC

Sterile neutrino Decay channel: N1 → να + γ

f =
Γγ

4πMN1

∫
dΩ

∫
dxρDM(x) =

Γγ

4πMN1

SDM

DM density profile assumption (i.e. RAR model) → ρDM ≡ ρDM(ms)
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Indirect νs detection from GC

DM halos in terms of self-gravitating neutral fermions can put constraints on
particular DM models such as νMSM [R. Yunis, C.R.A. et al., (2018)
1810.05756]
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Relaxed systems of self-gravitating bosons/fermions arising
from stationary solutions of Schröedinger-Piosson/
Vlasov-Poisson provide novel core-halo profiles which may
offer insights to non-linear structure formation on small scales
Non-interacting FDM - mFDM ∼ 1− 10× 10−22 eV - or
WDM (semi-degenerate) fermions mWDM ∼ 10− 100 keV
may provide solutions to the challenges faced by ΛCDM on
scales below 10 kpc or so
Standard FDM models are in tension with Ly-α forest data
and (ruled out!) by galaxy scaling relations such as ρc ∝ r−1

c

[Deng et al., PRD 2018] (Interacting FDM is needed!)
Virialized WDM within the RAR model for semi-degenerate
fermions (above 10-keV) is in line with Ly-α and galaxy
rotation curves & scaling-relations data sets [C.R.A. et al.,
(2018) 1810.00405]
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THANK YOU! QUESTIONS?
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Strong lensing around SgrA*: RAR-core Vs. BH

Deflection angle α̂(r0) in the Relativistic Regime

α̂(r0) = 2

∫ ∞
r0

eλ/2dr√
(r4/b2)e−ν − r2

− π.

b = r0 exp [−ν(r0/2)] impact parameter.

For Schwarschild BH the deflection angle can reach α̂ > 3/2π (i.e relat. images)
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Strong lensing around SgrA*: RAR-core Vs. BH

RAR-core: At r ∼ 10−5 pc strong lensing effects arises: Einstein ring at r ∼ 4Rs

L. G. Gómez, C. R. Argüelles, V. Perlick, J. A. Rueda, R. Ruffini, PRD (2016)
DM RAR cores do not show a photon sphere (α̂(r0) < 1), i.e. they do not cast
a shadow as the BH does!
The EHT expect angular resolution of ∼ 30µarcsec (angular diameter θ of BH
shadow ∼ 50µarcsec ∼ 6Rs)
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