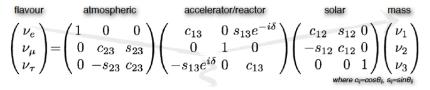
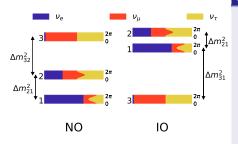
Long BaseLine Neutrino Experiments

Universidad Antonio Narino Bogota, Colombia

December 4, 2018

(日)


1/25


Content

- Introduction
- Long based Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ > < □ > < □ > < 三 > < 三 >

- The Contribution of Latin America to the PDS-SP
- Summary

Standard Neutrino Picture

- Neutrinos are massive
- Mass squared differences
- Mixing angles θ_{12} , θ_{23} , θ_{13}
- What is the value of δ_{CP} ?
- Absolut neutrino mass?
- What is the mass hierarchy?
- Dirac or Majorana?

Content

Introduction

Long-Baseline Neutrino Experiments

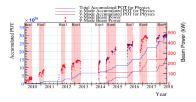
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary

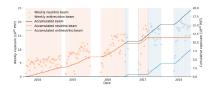
LBL Recipe

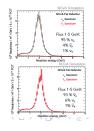
- An intense beam of proton is focused onto a target
- Secondary particles produced from the target are focused by magnetic horns
- The focused particles traverse a long decay region where neutrinos are produced
- A Near detector is needed to measure the initial neutrino Flux
- A Far detector is used to measure the appearence/disappearence of a neutrino flavour


Experiment	Operational	Peak E_{ν}	Baseline	Detector
K2K	1999 - 2004	1 GeV	$250\mathrm{km}$	Water Čerenkov
NuMI/MINOS	2005 - 2011(?)	$3\mathrm{GeV}$	$735\mathrm{km}$	Steel/Scintillator
CNGS/OPERA	2008-	$17{ m GeV}$	$732\mathrm{km}$	Emulsion
T2K	2010-	$0.7{ m GeV}$	$295\mathrm{km}$	Water Čerenkov
NOνA	2012(?)-	$1.8{ m GeV}$	$810\mathrm{km}$	Liquid Scintillator

LBL Beamline

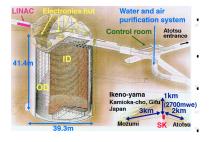
T2K


It uses the J-PARC beam Achieves up to 500 $\rm kW$ POT total: 3.16×10^{21} The beam is 2,5 0 off-axis with respect to the far detector.



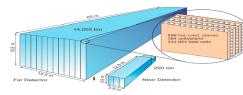
ΝΟνΑ

It uses the NuMI beam Nominal 700 kW since 2017 POT total: 15.66×10^{20} The beam is 0,84 0 off-axis with respect to the far and near detector.



6/25

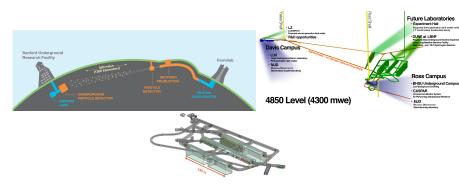
LBL Detectors


T2K

Two Near detectors: ND280 and INGRID ND280 is composed of trackers, a combination of fine grained detectors and Ar TPCs INGRID: on-axis scintillator light detector Far Detector: Water-Cherenkov detector with 50 kTon of ultra-pure water

ΝΟνΑ

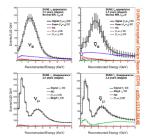
Two identical detectors (except for the size) Detectors are made of 344000 cells highly reflective plastic PVC filled with liquid scintillator. Near Detector: $0.3 \,\mathrm{kTon} \, 1 \,\mathrm{Km}$ from source Far Detector: $14 \,\mathrm{kTon}$ Readout made via WLS fibers to avalanche photo diode array

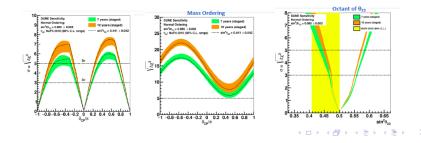

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)
- The Contribution of Latin America to the PDS-SP
- Summary

DUNE Project

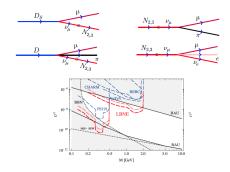
- Measure of ν_e and $\bar{\nu_e}$ appearance and ν_μ and $\bar{\nu_\mu}$ disappearance over a long baseline
- It will use a high-intensity neutrino beam and high-resolution massive detectors
- International science collaboration with strong participation of LA





DUNE Physics Program

Program Physics with primary goals:


- Probe leptonic CP violation
- High-precision measurement of neutrino mixing parameters
- $\bullet~$ determinate $\nu~$ mass ordering
- · detection of supernova neutrinos
- search for BSM Physics

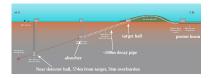
10/25

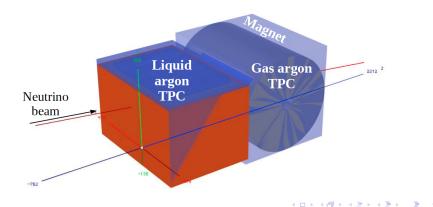
HNL Signature in DUNE

http://arxiv.org/pdf/1307.7335

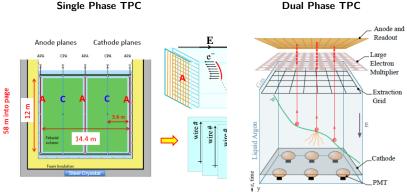
- HNL produced through weak decay of heavy mesons and baryons
- The mesons produced by scattering off of LBNE beam
- INL detected in the ND
- For 500 MeV < M_N < 2 GeV production via D-Mesons</p>
- For 140*MeV* < *M_N* < 500*MeV* production via K-Mesons
- For 50*MeV* < M_N < 140*MeV* production via π-Mesons

The LBNF Beamline


- The LBNF neutrino beam will be produced using $60 120 \, {\rm GeV}$ protons from Fermilab's main injector
- Initial nominal power of 1.2 MW (10¹⁴ protons-on-target/sec)
- \bullet In the future upgradeable to 2.4 MW
- Can run in neutrino (FHC) and antineutrino (RHC) modes by switching polarity of magnetic horns
- Wideband beam enables use of second maximum and enhances probing BSM phenomena

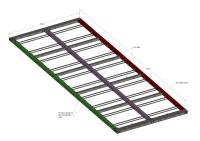


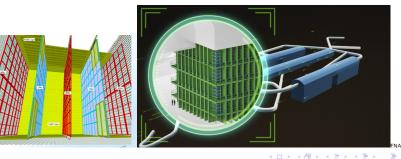
The DUNE Near Detector


- ND located 574m downstream of production target
- dedicated to measure flux, cross-section and to constrain detector uncertainties
- System composed of multiple detectors:
 - Finely-segmented pixel readout LArTPC
 - Magnetized Multipurpose tracker
 - · Electromagnetic calorimeter
 - Muon Chambers

The DUNE Far Detector

- Liquid Argon Time projection Chambers (LArTPC)
- Two technologies: Single Phase and Dual Phase

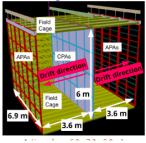



i,y

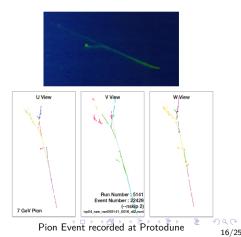
Dual Phase TPC

Single phase Detector

- 10 kt fiducial cryostat
- Width = 14.5 m, Height=12 m, Length=58 m
- 150 APAs, 200 CPAs
- PD system integrated
- 385000 Readout Channels
- Start of Construction 2022
- Operational by 2026



..gov


DUNE Prototypes

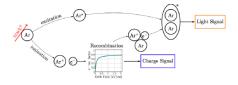
- At CERN there are builded two prototypes exposes to a test beam at CERN
- Protodune single phase has 420 ton active LAr
- A small TPC prototype is under construction at Fermilab

Single Phase

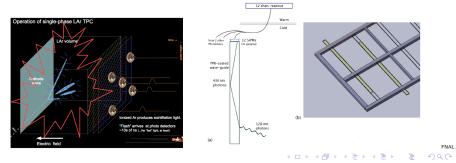
event display of three views of a cosmic track

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

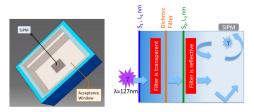

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary


Photon Detector System

Tasks of the PD

- Help to the Trigger System
- Ollection total light emitted
- Help to the Reconstruction and particles identification



Photon Collection Baseline

- Light Collection System: Collects photons from a large area and drives towards the actives sensors. X-ARAPUCA is the baseline design
- Silicon Photonmultipliers (SiPMs): MPPCs are currently the baseline. FBK is being strongly persued
- Seadout electronics: Exploring low cost to waveform high frequency digitization
- Old Summing board plus warm digitization

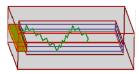


Figure: https://arxiv.org/pdf/1601.02984.pdf

(日)

Content

- Introduction
- Long-Baseline Neutrino Experiments
- DUNE Overview
- The DUNE Single Phase Photon Detection System (PDS-SP)

< □ ト < □ ト < 三 ト < 三 ト</p>

- The Contribution of Latin America to the PDS-SP
- Summary

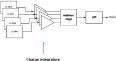
SiPM Connections

Design of the Active Ganging boards

Esteban Cristaldo, Jorge Molina Carlos Montiel, Diego Aranda

DUNE-SP Photon Detection System Conceptual Design Review

November 12th, 2018


We want to know if we can amplify 12 SiPM in paralell (active ganging) with one output channel.

Two preamps models studied

Design scheme

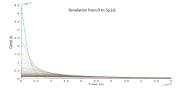
Three stages of the circuit for 48 SiPM:

or transimpedance

Transimpedance model

- · This is a first order low pass filter
- Rf and Cf establish the bandwith and frequency cut point
- Eliminates high frequency noise

Charge integrator model


- · This is a second order band pass filter
- Cf and Cs establish the bandwith and frequency cut point
- · Eliminates low and high frequency noise

Preamplifier from discrete components

Signals from the SiPMs

Front-end developement for ARAPUCA transistor-based version

Presenter: Amaro Lopes Marcelo Paschoal, Marcelo Lima, Herman Lima, Rafael Nóbrega

<ロト < 同ト < 三ト < 三ト

22/25

4-stage discrete MOSFET operational amplifier - Features

- · Very high input resistance (ideally infinity)
- Low output resistance (~35Ω)
- · Passive loads (active loads may be used in a next approach)
- Open-loop gain: 87dB
- Open-loop -3dB frequency: ~550 kHz for transistor capacitances = 1pF (commercial transistors may have lower capacitance values)
- Three differential gain stages and one common drain output stage (voltage buffer)

Conclusions

- SiPM model is operational on SPICE
 - · Simulated for up to 48 SiPM in parallel (ganging)
 - · Implemented using script
- New proposal based on MOSFET
 - · Simulated with SiPM model
 - · Preliminary simulation tests show reasonable results
- · SiPM devices have arrived for testing
- · Next steps:
 - · components are been selected for purchase
 - Prototyping

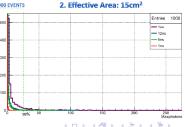
Electronics Parameters determination

Introduction

Goal: Find the maximum number of true photons with different time windows and guantum efficiency.

ELECTRONICS SIMULATION

Maritza Delgado


Nov. 5 , 2018

- Data generated by module SPCounter_module.cc, based on SimPhotonCounter_module.cc.
- Sample: Beam Neutrinos prodgenie_nu_dune10kt_1x2x6_323_20171227T183346_merged1.root
- The first step was to identify the maximum number of true photons by each Optical Detector per event from PhotonsLite.

1.Scale factor

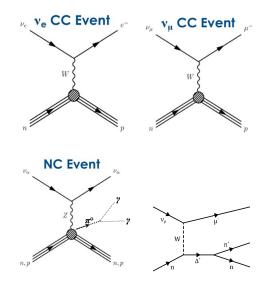
The scale factor was determinated using the effective detector areas and QE 1000 EVENTS 2. Effective Area: 15cm² values.

23/25

UK LA activities

≣ ∽ < (~ 24/25

∃ ► < ∃ ►</p>


Summary

- **1** LBL experiments are ideal tools to test the neutrino physics
- BNF/DUNE has become a global international collaboration
- OUNE has a broad and rich physics program including CP violation probes, mass ordering determination, precision neutrino oscillation measurements. SN neutrinos and BSM searches
- OUNE prototypes functional and taking data
- Strong participation of LA in the Single PD module
- Looking forward for first DUNE far Detector data in 2024

Backup Slides

<ロト < 部 ト < 臣 ト < 臣 ト 王 の Q @ 25/25

Neutrino-Nucleon Interactions

・ロット 4回ット 4回ット 4回ット 4日ッ

25/25