Introduction to Localization (lecture 2)

Stefano Cremonesi

Durham University

Bicocca-Surrey School "Prospects in Strings, Fields and Related Topics" University of Milano-Bicocca, 21/9/2018

SUSY on curved space and Localisation

We will see how the idea of localisation applies to the path integral of a supersymmetric quantum field theory on a compact curved manifold \mathcal{M} .

- Compact space provides IR cutoff, making path integral better defined
- Supersymmetric localisation reduces it to a finite-dimensional integral

$$Z_{\mathcal{M}}[J] = \left\langle e^{-\int J\mathcal{O}} \right\rangle = \int [\mathcal{D}X] \ e^{-S[X] - \int J\mathcal{O}}$$

J is a supersymmetric source, coupled to a supersymmetric observable \mathcal{O} . The dependence on \mathcal{M} is hidden in S[X] and the notion of supersymmetry.

Plan,

Rigid SUSY on curved space

Supersymmetric localisation

3 Example: 3d $\mathcal{N}=2$ gauge theories on S_b^3

Rigid SUSY on curved space

The problem of defining rigid SUSY on curved space

Supersymmetric QFT on flat space $(\mathbb{R}^d, g_{\mu\nu}^{(0)} = \eta_{\mu\nu})$:

Flat space SUSY algebra

→ SUSY transformations $\delta^{(0)}X$

ullet $\mathcal{L}^{(0)}$ SUSY Lagrangian

1

Supersymmetric QFT on curved space $(\mathcal{M}_d, g_{\mu\nu})$:

Curved space SUSY algebra

→ SUSY transformations δX

• L SUSY Lagrangian

 $\rightarrow \delta \mathcal{L} = \nabla_{\mu} (\dots)^{\mu}$

?

We would like to know:

- For which flat space SUSY algebras and $(\mathcal{M}_d, g_{\mu\nu})$ this is possible
- ② What are δX and $\mathcal{L}(X, \partial_{\mu} X)$

Approach 1: Trial and error

$$\delta = \delta^{(0)} \Big|_{\substack{\eta \to g \\ \partial \to \nabla}} + \sum_{n \ge 1} \frac{1}{r^n} \delta^{(n)}$$

$$\mathcal{L} = \mathcal{L}^{(0)} \Big|_{\substack{\eta \to g \\ \partial \to \nabla}} + \sum_{n \ge 1} \frac{1}{r^n} \mathcal{L}^{(n)}$$

until SUSY algebra closes and $\delta \mathcal{L} = \nabla_{\mu} (\dots)^{\mu}$.

Drawbacks:

- No guarantee it will work
- Case by case
- When it succeeds, expansions stop at n = 1 and n = 2 resp. Why?

see also [Karlhede, Roček 1988; Johansen 1995; Adams, Jockers, Kumar, Lapan 2011]

- Nonlinearly couple supersymmetric FT to an *off-shell* supersymmetric background for supergravity multiplet $(g_{\mu\nu}, \psi_{\mu\alpha}, aux)$.
- Rigid limit of supergravity: gravity multiplet becomes non-dynamical.
- Only require that the background is supersymmetric:

Generalised Killing spinor equations

$$\psi_{\mu\alpha} = 0 , \qquad \delta_{\zeta}\psi_{\mu\alpha} = 0$$

Advantages:

- Model independent: only input is flat space SUSY algebra.
- $\delta_{SuGra}|_{bg} X_{SFT} = \delta X_{SFT}, \quad \mathcal{L}_{SFT+SuGra}|_{bg} = \mathcal{L}_{SFT}$.
- 1/r expansion above due to auxiliary fields.
- Supersymmetric backgrounds bg = $(\mathcal{M}_d, g_{\mu\nu}, aux, \zeta)$ can be classified.

3d $\mathcal{N}=2$ SUSY with $U(1)_R$ symmetry

SUSY algebra on
$$\mathbb{R}^3$$
:

$$\begin{split} \{Q_{\alpha}, \widetilde{Q}_{\beta}\} &= 2\gamma_{\alpha\beta}^{\mu} P_{\mu} + 2i\epsilon_{\alpha\beta} Z \\ \{Q_{\alpha}, Q_{\beta}\} &= 0 & \{\widetilde{Q}_{\alpha}, \widetilde{Q}_{\beta}\} = 0 \\ [R, Q_{\alpha}] &= -Q_{\alpha} & [R, \widetilde{Q}_{\alpha}] = +\widetilde{Q}_{\alpha} \\ [Z, Q_{\alpha}] &= [Z, \widetilde{Q}_{\alpha}] = [Z, R] = 0 \end{split}$$

[Dumitrescu, Seiberg 2011]

Supercurrent
$$R$$
-multiplet:

$$T^{\mu\nu} \quad S^{\mu\alpha} \quad \widetilde{S}^{\mu\alpha} \quad j^{\mu}_{(R)} \quad j^{\mu}_{(Z)} \quad i\epsilon^{\mu\nu\rho}\partial_{\rho}J_{(Z)}$$

$$S^{\mu\alpha}$$

$$j_{(R)}^{\mu}$$

$$h_{\mu\nu}$$
 $\psi_{\mu\alpha}$ $\widetilde{\psi}_{\mu\alpha}$ A_{μ} C_{μ} $B_{\mu\nu}$

$$A_{\mu}$$

$$B_{\mu\nu}$$

3d version of [Sohnius, West 1981/82]

$$C_{\mu} \longleftrightarrow V^{\mu} = -i\epsilon^{\mu\nu\rho}\partial_{\mu}C_{\rho}$$

$$B_{\mu
u} \longleftrightarrow H = rac{i}{2} \epsilon^{\mu
u
ho} \partial_{\mu} B_{
u
ho}$$

$$\delta \mathcal{L}_{min}^{lin} = -T^{\mu
u} h_{\mu
u} - rac{1}{2} S^{\mu} \psi_{\mu} + rac{1}{2} \widetilde{S}^{\mu} \widetilde{\psi}_{\mu} + j^{\mu}_{(R)} (A_{\mu} - rac{3}{2} V_{\mu}) + j^{\mu}_{(Z)} C_{\mu} + J_{(Z)} H$$

3d $\mathcal{N}=2$ SUSY with $U(1)_R$ symmetry on \mathcal{M}_3

[Klare, Tomasiello, Zaffaroni 2012; Closset, Dumitrescu, Festuccia, Komargodski 2012]

 $\delta_\zeta\psi_{\mu\alpha}$, $\delta_{\widetilde\zeta}\psi_{\mu\alpha}$ in the rigid limit can be inferred from linear theory, diffeo + local R invariance and dimensional analysis, without knowing the full SuGra.

$$\begin{split} &\delta_{\zeta}\psi_{\mu} = 2(\nabla_{\mu} - iA_{\mu})\zeta + H\gamma_{\mu}\zeta + 2iV_{\mu}\zeta + \epsilon_{\mu\nu\rho}V^{\nu}\gamma^{\rho}\zeta + (\dots) \\ &\delta_{\widetilde{\zeta}}\widetilde{\psi}_{\mu} = 2(\nabla_{\mu} + iA_{\mu})\widetilde{\zeta} + H\gamma_{\mu}\widetilde{\zeta} - 2iV_{\mu}\widetilde{\zeta} - \epsilon_{\mu\nu\rho}V^{\nu}\gamma^{\rho}\widetilde{\zeta} + (\dots) \;, \end{split}$$

(Generalised) Killing spinor equations

$$\begin{split} &(\nabla_{\mu}-iA_{\mu})\zeta=-\frac{H}{2}\gamma_{\mu}\zeta-iV_{\mu}\zeta-\frac{1}{2}\epsilon_{\mu\nu\rho}V^{\nu}\gamma^{\rho}\zeta\\ &(\nabla_{\mu}+iA_{\mu})\widetilde{\zeta}=-\frac{H}{2}\gamma_{\mu}\widetilde{\zeta}+iV_{\mu}\widetilde{\zeta}+\frac{1}{2}\epsilon_{\mu\nu\rho}V^{\nu}\gamma^{\rho}\widetilde{\zeta}\;. \end{split}$$

Supersymmetric background:

 $(\mathcal{M}_3, g_{\mu\nu}, A_{\mu}, V_{\mu}, H)$ allowing solutions $(\zeta, \widetilde{\zeta}) \neq 0$ of GKSE.

Curved space supersymmetry algebra

$$\begin{split} &\{\delta_{\zeta},\delta_{\widetilde{\zeta}}\}\phi_{(r,z)} = -2i\left(\mathcal{L}_{K}' + \zeta\widetilde{\zeta}(z-rH)\right)\phi_{(r,z)} \\ &\{\delta_{\zeta},\delta_{\eta}\}\phi_{(r,z)} = 0 & \{\delta_{\widetilde{\zeta}},\delta_{\widetilde{\eta}}\}\phi_{(r,z)} = 0 \end{split}$$

where $\mathcal{L}_{\mathit{K}}'$ is a fully covariant Lie derivative along the Killing vector $\mathit{K}^{\mu} = \zeta \gamma^{\mu} \widetilde{\zeta}$,

$$\begin{split} \mathcal{L}_{K}'\varphi_{(r,z)} &= \left(K^{\mu}D_{\mu} + \frac{i}{2}(D_{\mu}K_{\nu})S^{\mu\nu}\right)\varphi_{(r,z)} ,\\ D_{\mu}\varphi_{(r,z)} &= \left(\nabla_{\mu} - ir(A_{\mu} - \frac{1}{2}V_{\mu}) - izC_{\mu}\right)\varphi_{(r,z)} \end{split}$$

the totally covariant derivative of a field $\varphi_{(r,z)}$ of R-charge r and Z-charge z.

The representation of this SUSY algebra on a general multiplet is known.

We will be mostly interested in vector and chiral multiplets.

Vector multiplet V

SUSY transformations:

$$\begin{split} \delta a_{\mu} &= -i \big(\zeta \gamma_{\mu} \widetilde{\lambda} + \widetilde{\zeta} \gamma_{\mu} \lambda \big) \\ \delta \sigma &= -\zeta \widetilde{\lambda} + \widetilde{\zeta} \lambda \\ \delta \lambda &= +\zeta \left(D + i \mathbf{H} \sigma \right) - \frac{i}{2} \varepsilon^{\mu\nu\rho} \gamma_{\rho} \zeta f_{\mu\nu} - \gamma^{\mu} \zeta \left(i D_{\mu} \sigma - \mathbf{V}_{\mu} \sigma \right) \\ \delta \widetilde{\lambda} &= -\widetilde{\zeta} \left(D + i \mathbf{H} \sigma \right) - \frac{i}{2} \varepsilon^{\mu\nu\rho} \gamma_{\rho} \widetilde{\zeta} f_{\mu\nu} + \gamma^{\mu} \widetilde{\zeta} \left(i D_{\mu} \sigma + \mathbf{V}_{\mu} \sigma \right) \\ \delta D &= D_{\mu} \left(\zeta \gamma^{\mu} \widetilde{\lambda} - \widetilde{\zeta} \gamma^{\mu} \lambda \right) - i \mathbf{V}_{\mu} \left(\zeta \gamma^{\mu} \widetilde{\lambda} + \widetilde{\zeta} \gamma^{\mu} \lambda \right) - \mathbf{H} \left(\zeta \widetilde{\lambda} - \widetilde{\zeta} \lambda \right) \end{split}$$

SUSY Lagrangians:

$$\begin{split} \mathcal{L}_{YM} &= \frac{1}{g_{YM}^2} \operatorname{Tr} \Big(\frac{1}{2} f_{\mu\nu} f^{\mu\nu} + D_{\mu} \sigma D^{\mu} \sigma + (D + i H \sigma)^2 + i \sigma \varepsilon^{\mu\nu\rho} V_{\mu} f_{\nu\rho} - V^{\mu} V_{\mu} \sigma^2 \\ &\qquad \qquad - 2 i \widetilde{\lambda} \gamma^{\mu} (D_{\mu} + \frac{i}{2} V_{\mu}) \lambda - 2 i \widetilde{\lambda} [\sigma, \lambda] + i H \widetilde{\lambda} \lambda \Big) \\ \mathcal{L}_{CS} &= i \frac{k}{4\pi} \operatorname{Tr} \left(\varepsilon^{\mu\nu\rho} (a_{\mu} \partial_{\nu} a_{\rho} + i \frac{2}{3} a_{\mu} a_{\nu} a_{\rho}) + 2 D \sigma + 2 \widetilde{\lambda} \lambda \right) \\ \mathcal{L}_{FI} &= -i \frac{\xi}{2\pi} \operatorname{Tr} \left(D - i H \sigma - i V^{\mu} a_{\mu} \right) \end{split}$$

Chiral multiplet $\Phi_{(r,z)}$

SUSY transformations:

$$\begin{split} \delta\phi &= \sqrt{2}\zeta\psi \\ \delta\psi &= \sqrt{2}\zeta F - \sqrt{2}i\left(z - \sigma - r\mathbf{H}\right)\widetilde{\zeta}\phi - \sqrt{2}i\gamma^{\mu}\widetilde{\zeta}D_{\mu}\phi \\ \delta F &= \sqrt{2}i\left(z - \sigma - (r - 2)\mathbf{H}\right)\widetilde{\zeta}\psi + 2i\widetilde{\zeta}\widetilde{\lambda}\phi \end{split}$$

SUSY Lagrangians:

$$\begin{split} \mathcal{L}_{\textit{mat}} &= D^{\mu} \widetilde{\phi} D_{\mu} \phi - i \widetilde{\psi} \gamma^{\mu} D_{\mu} \psi - \widetilde{F} F - i \widetilde{\phi} V^{\mu} D_{\mu} \phi \\ &+ \widetilde{\phi} \Big(- i (D + i \mathbf{H} \sigma) + (z - \sigma - r \mathbf{H})^2 + 2 \mathbf{H} (z - \sigma) + \frac{r}{2} \big(\frac{1}{2} \mathbf{R} + V^{\mu} V_{\mu} - \mathbf{H}^2 \big) \Big) \phi \\ &+ i \widetilde{\psi} \Big(z - \sigma - \big(r - \frac{1}{2} \big) \mathbf{H} \Big) \psi - \frac{1}{2} \widetilde{\psi} \gamma^{\mu} V_{\mu} \psi + \sqrt{2} i \big(\widetilde{\phi} \lambda \psi + \phi \widetilde{\lambda} \widetilde{\psi} \big) \\ \mathcal{L}_{W} &= F_{W(\Phi)} + \widetilde{F}_{\widetilde{W}(\widetilde{\Phi})} = \left(F \frac{\partial W}{\partial \phi} + \psi \psi \frac{\partial^2 W}{\partial \phi^2} \right) + \left(\widetilde{F} \frac{\partial \widetilde{W}}{\partial \widetilde{\phi}} + \widetilde{\psi} \widetilde{\psi} \frac{\partial^2 \widetilde{W}}{\partial \widetilde{\phi}^2} \right) \end{split}$$

Compact supersymmetric backgrounds

1 supercharge ζ : \mathcal{M}_3 has a transversely holomorphic foliation

Coordinates (τ, z, \bar{z}) : $\tau' = \tau + t(z, \bar{z})$, z' = f(z).

Metric:
$$ds^2 = (d\tau + h(\tau, z, \bar{z})dz + \bar{h}(\tau, z, \bar{z})d\bar{z})^2 + c(\tau, z, \bar{z})^2 dz d\bar{z}$$

 ζ determines all background fields, up to invariance of GKSE.

2 supercharges ζ , $\widetilde{\zeta}$: \mathcal{M}_3 is a Seifert manifold $(S^1 \hookrightarrow M_3 \to \Sigma)$

Metric: $ds^2 = \Omega(z,\bar{z})^2 (d\psi + h(z,\bar{z})dz + \bar{h}(z,\bar{z})d\bar{z})^2 + c(z,\bar{z})^2 dz d\bar{z}$

4 supercharges $\zeta_1, \zeta_2, \widetilde{\zeta}_1, \widetilde{\zeta}_2$:

- \circ T^3
- ullet Round $S^2 imes S^1$ with $H=0, A=V=\pm rac{i}{R_{
 m cl}} d au$ [Imamura, S. Yokoyama 2011]
- (Squashed) S^3 with $SU(2) \times U(1)$ isometry: [Imamura, D. Yokoyama 2011]

$$ds^2 = R^2 \left((\mu^1)^2 + (\mu^2)^2 + h^2 (\mu^3)^2 \right) , \quad H = \frac{ih}{R} , \quad A = V = 2\sqrt{h^2 - 1}\mu^3$$

$$b^2|z_1|^2 + b^{-2}|z_2|^2 = R^2$$

$$z_1 = Rb^{-1}\sin\vartheta \ e^{i\varphi_1}$$
$$z_2 = Rb\cos\vartheta \ e^{i\varphi_2}$$

$$S^3$$
 topology $U(1)^2$ isometry

Background:

$$ds^{2} = R^{2} \left(b^{2} \sin^{2} \vartheta \, d\varphi_{1}^{2} + b^{-2} \cos^{2} \vartheta \, d\varphi_{2}^{2} + f(\vartheta)^{2} d\vartheta^{2} \right)$$

$$H = -\frac{i}{Rf(\vartheta)} , \quad 2A = \left(1 - \frac{b}{f(\vartheta)} \right) d\varphi_{1} + \left(1 - \frac{b^{-1}}{f(\vartheta)} \right) d\varphi_{2}$$

$$f(\vartheta) = \left(b^{-2} \sin^{2} \vartheta + b^{2} \cos^{2} \vartheta \right)^{1/2}$$

$$\zeta = \frac{1}{\sqrt{2}} \left(\frac{e^{\frac{i}{2}(\varphi_{1} + \varphi_{2} + \vartheta)}}{e^{\frac{i}{2}(\varphi_{1} + \varphi_{2} - \vartheta)}} \right) , \quad \widetilde{\zeta} = \frac{1}{\sqrt{2}} \left(-e^{-\frac{i}{2}(\varphi_{1} + \varphi_{2} - \vartheta)} \right)$$

Supersymmetric localisation

The path integral of a supersymmetric QFT

Consider a supersymmetric QFT with fields $X \in \mathcal{F}$:

• Supercharge Q:

$$Q^2 = \mathcal{H}$$

• Action S[X]:

$$QS[X]=0$$

Supersymmetric observable 𝒪:

$$QO = 0$$

We wish to compute

$$\langle \mathcal{O} \rangle = \int_{\mathcal{F}} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]}$$

Note that

[Witten 1988]

$$\langle \mathcal{QO}' \rangle = \int_{\mathcal{F}} [\mathcal{D}X] \; (\mathcal{QO}') e^{-S[X]} = \int_{\mathcal{F}} [\mathcal{D}X] \; \mathcal{Q} \left(\mathcal{O}' e^{-S[X]} \right) = 0 \; ,$$

therefore expectation values only depend on the Q-cohomology class:

$$\langle \mathcal{O} + \mathcal{Q} \mathcal{O}' \rangle = \langle \mathcal{O} \rangle$$

Assume the QFT has a symmetry group G which acts *freely* on field space \mathcal{F} . For a G-invariant operator \mathcal{O} ,

$$\langle \mathcal{O} \rangle = \int_{\mathcal{F}} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]} = \operatorname{Vol}(G) \cdot \int_{\mathcal{F}/G} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]} \ .$$

If G is generated by a fermionic charge Q, then $Vol(G) \propto \int d\theta \ 1 = 0$.

A supercharge Q does not act freely. Fixed points form the

BPS locus

$$\mathcal{F}_{\mathcal{Q}} = \{ [X] \in \mathcal{F} \mid \text{fermions} = 0, \ \mathcal{Q}(\text{fermions}) = 0 \}$$
.

If $\mathcal{F}_{\mathcal{Q},\varepsilon}$ is an infinitesimal tubular neighbourhood of $\mathcal{F}_{\mathcal{Q}}$ of size ε ,

$$\langle \mathcal{O} \rangle = \lim_{\varepsilon \to 0} \left(\int_{\mathcal{F} \setminus \mathcal{F}_{\mathcal{Q}, \varepsilon}} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]} + \int_{\mathcal{F}_{\mathcal{Q}, \varepsilon}} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]} \right) = \lim_{\varepsilon \to 0} \int_{\mathcal{F}_{\mathcal{Q}, \varepsilon}} [\mathcal{D}X] \ \mathcal{O} \ e^{-S[X]}$$

Hence the path integral over field space $\mathcal F$ localises to the BPS locus $\mathcal F_{\mathcal Q}$.

We can exploit the fact that the expectation value of a \mathcal{Q} -closed observable \mathcal{O} only depends on its \mathcal{Q} -cohomology class $[\mathcal{O}]$. Change representative:

$$\langle \mathcal{O} \rangle = \langle \mathcal{O} e^{-tQ\mathcal{V}[X]} \rangle = \int_{\mathcal{F}} [\mathcal{D}X] \ \mathcal{O} e^{-S[X] - tQ\mathcal{V}[X]} \qquad \forall \ t, \ \mathcal{V}[X] \ \text{s.t.} \ \mathcal{Q}^2 \mathcal{V}[X] = 0 \ .$$

We will assume that $\text{Re}\mathcal{QV}[X]|_{bos}$ is positive semi-definite and consider $t \geq 0$.

$$\langle \mathcal{O} \rangle = \lim_{t \to +\infty} \int_{\mathcal{F}} [\mathcal{D}X] \mathcal{O} e^{-S[X] - tQ\mathcal{V}[X]}$$
.

• $t \to +\infty$: integral dominated by the saddle points of the

Localising action

$$S_{loc}[X] = \mathcal{QV}[X]$$
,

Localisation locus

$$\mathcal{F}_{loc} = \left\{ X_0 \in \mathcal{F} \middle| rac{\delta S_{loc}[X]}{\delta X} \middle|_{X_0} = 0 \right\}$$
 .

Exact semiclassical approximation in $\hbar_{aux} = 1/t$, around saddles X_0 of S_{loc} :

$$X = X_0 + \frac{1}{\sqrt{t}} \delta X$$

$$S[X] + tS_{loc}[X] \xrightarrow[t \to +\infty]{} S[X_0] + \frac{1}{2} \iint \frac{\delta^2 S_{loc}[X]}{\delta X^2} \Big|_{X_0} (\delta X)^2$$

Integrating out the transverse fluctuations δX , one obtains

Localisation formula

$$\langle \mathcal{O} \rangle = \int_{\mathcal{F}_{loc}} [\mathcal{D} X_0] \; \mathcal{O}|_{X_0} \; e^{-S[X_0]} \frac{1}{\mathrm{Sdet}\left[\frac{\delta^2 S_{loc}[X_0]}{\delta X_0^2}\right]} \; .$$

E.g., for the standard choice (here $\Psi = \{\text{fermions}\}\)$ [Pestun 2007]

$$\mathcal{V}_P = (\mathcal{Q}\Psi, \Psi) \quad \Longrightarrow \quad \mathit{S}_{loc}|_{bos} = (\mathcal{Q}\Psi, \mathcal{Q}\Psi) \geq 0 \; ,$$

the path integral over \mathcal{F} localizes to $\mathcal{F}_{loc} = \mathcal{F}_{\mathcal{Q}}$, the BPS locus.

The 1-loop determinant Z_{1-loop}

$$Z_{1-loop} = \operatorname{Sdet}\left[\frac{\delta^2 S_{loc}[X_0]}{\delta X_0^2}\right] = \left(\frac{\det K_{ferm}}{\det K_{bos}}\right)^{1/2},$$

where the kinetic operators for bosonic and fermionic fluctuations K_{bos} , K_{ferm} are some modified Laplace and Dirac operators.

General observations:

- Computing their spectrum can be difficult.
- Many cancellations because SUSY pairs bosons and fermions.
- One can localise to fixed points of Q^2 in spacetime.

The computation is best done by organising fields cohomologically (i.e. in multiplets of \mathcal{Q}) and applying index theorems. [Pestun 2007]

1 Reorganise fields in \mathcal{Q} -multiplets $\{X\} = \{\phi, \ \psi' = \mathcal{Q}\phi, \ \psi, \ \phi' = \mathcal{Q}\psi\}$:

$$\begin{split} \mathcal{Q}\phi &= \psi' \;, \qquad \mathcal{Q}\psi' = \mathcal{Q}^2\phi \;. \\ \mathcal{Q}\psi &= \phi' \;, \qquad \mathcal{Q}\phi' \,= \mathcal{Q}^2\psi \;. \end{split}$$

For simplicity, $\mathcal{V}_H = (\phi, \mathcal{Q}\phi) + (\psi, \mathcal{Q}\psi)$ [Hosomichi 2015] $\mathcal{Q}\mathcal{V}_H = (\psi', \psi') + (\phi, \mathcal{Q}^2\phi) + (\phi', \phi') - (\psi, \mathcal{Q}^2\psi)$

$$Z_{1-loop} = \left(rac{\det_{\psi}\mathcal{Q}^2}{\det_{\phi}\mathcal{Q}^2}
ight)^{1/2}$$

② If there is a differential operator \mathcal{D} that commutes with \mathcal{Q}^2 ,

$$\mathcal{D}: \quad \Gamma(E_0) \quad o \quad \Gamma(E_1) \qquad \qquad \mathcal{D}^\dagger: \quad \Gamma(E_1) \quad o \quad \Gamma(E_0) \ \phi \qquad \qquad \psi \qquad \qquad \phi$$

then

$$Z_{1-loop} = \left(\frac{\det_{\operatorname{coker}\mathcal{D}}\mathcal{Q}^2}{\det_{\ker\mathcal{D}}\mathcal{Q}^2}\right)^{1/2} \;. \qquad \begin{array}{l} \leftarrow \text{ unpaired } \psi \\ \leftarrow \text{ unpaired } \phi \end{array}$$

The 1-loop determinant can be deduced from the Q^2 -equivariant index of \mathcal{D}

$$\operatorname{Ind}(\mathcal{D}; e^{\mathcal{Q}^2}) := \operatorname{tr}_{\ker \mathcal{D}}(e^{\mathcal{Q}^2}) - \operatorname{tr}_{\operatorname{coker} \mathcal{D}}(e^{\mathcal{Q}^2}) = \sum_{i} d_i e^{h_i}$$

as

$$Z_{1-loop} = \left(rac{\det_{\operatorname{coker}\mathcal{D}} \mathcal{Q}^2}{\det_{\ker \mathcal{D}} \mathcal{Q}^2}
ight)^{1/2} = \prod_j h_j^{-d_j/2} \ .$$

If \mathcal{D} is transversally elliptic, which ensures that d_j are finite, the equivariant index can be computed by the Atiyah-Bott fixed point formula e.g. [Atiyah 1974]

$$\operatorname{Ind}(\mathcal{D}; e^{\mathcal{Q}^2}) = \sum_{p \mid e^{\mathcal{Q}^2} \cdot p = p} \frac{\operatorname{tr}_{E_0(p)} e^{\mathcal{Q}^2} - \operatorname{tr}_{E_1(p)} e^{\mathcal{Q}^2}}{\det_{T\mathcal{M}(p)} (1 - e^{\mathcal{Q}^2})} \ .$$

This reduces the computation of Z_{1-loop} to determining the local action of Q^2 around fixed points in field space \mathcal{F} and in spacetime \mathcal{M} .

Localisation of $3d \mathcal{N} = 2$ gauge theories on S_b^3

[Hama, Hosomichi, Lee 2011], building on [Kapustin, Willett, Yaakov '09; Jafferis '10; HHL '10]

$$Z[\widehat{V}] = \int [\mathcal{D}V][\mathcal{D}\Phi][\mathcal{D}\widetilde{\Phi}] \, e^{-(S_{YM}[V] + S_{CS}[V] + S_{FI}[V] + S_{mat}[\Phi,\widetilde{\Phi},V,\widehat{V}] + S_W[\Phi,\widetilde{\Phi}])} \, \bigg]$$

 \widehat{V} : background vector multiplet (global symmetry)

Stefano Cremonesi

Localising supercharge:

$$\mathcal{Q} = \delta_{\zeta} + \delta_{\widetilde{\zeta}}$$

Localising action:

$$S_{loc} = \mathcal{Q} \mathcal{V}_{\textit{P}} \; , \qquad \mathcal{V}_{\textit{P}} = \sum_{\Psi \in \{\lambda, \widetilde{\lambda}, \psi, \widetilde{\psi}\}} (\mathcal{Q} \Psi, \Psi)$$

• Localisation locus $\mathcal{F}_{\mathcal{Q}}$:

$$D = -iH\sigma$$
, $a_{\mu} = 0$, $\sigma = \text{const.}$
 $\phi = \widetilde{\phi} = F = \widetilde{F} = 0$

Classical action:

$$[S_{YM}, S_{mat}, S_W \text{ are } Q\text{-exact}]$$

$$S[X_0] = -ik\pi \operatorname{tr}(R\sigma)^2 + 2\pi i(\xi R) \operatorname{tr}(R\sigma)$$
$$Z_{class} = e^{ik\pi \operatorname{tr}(R\sigma)^2 - 2\pi i(\xi R) \operatorname{tr}(R\sigma)}$$

• Diagonalise $\sigma = \sigma^i H_i$:

$$|J| = \prod_{\alpha \in \Delta_+} \alpha (R\sigma)^2$$

 $\begin{array}{ll} \bullet & \text{1-loop det of } \Phi_{(r,z)} \text{:} & Z_{1-loop}^\Phi = \prod_{m,n=0}^\infty \frac{(m+1)b + (n+1)b^{-1} + iRz_{\mathbb{C}}}{mb + nb^{-1} - iRz_{\mathbb{C}}} \text{``} = \text{``} \Gamma_h(Rz_{\mathbb{C}}) \\ \\ Rz_{\mathbb{C}} = Rz + i\frac{b + b^{-1}}{2} r \; , & z = \rho(\sigma) + \widehat{\rho}(\widehat{\sigma}) \end{array}$

$$\bullet \ \, \text{1-loop det of V:} \qquad Z^{V}_{1-loop} = \prod_{\alpha \in \Delta_{+}} \frac{4 \sinh(\pi b \alpha (\textit{R}\sigma)) \sinh(\pi b^{-1} \alpha (\textit{R}\sigma))}{\alpha (\textit{R}\sigma)^{2}}$$

Coulomb branch localisation formula (R = 1)

$$Z_{S_b^3}(\widehat{\sigma}; k, \xi, r) = \frac{1}{|\mathcal{W}_G|} \int \prod_{i=1}^{\text{rk}(G)} d\sigma_i \, Z_{class}(\sigma; \xi, k) \, Z_{1-loop}(\sigma, \widehat{\sigma}, r) \; .$$

This result generalizes to any background with S^3 topology: $b \in \mathbb{C}$ is the modulus of the transversely holomorphic foliation on S^3 .

 $[Closset, Dumitrescu, Festuccia, Komargodski 2013; Alday, Martelli, Richmond, Sparks 201\underline{3}]$

An alternative: Higgs branch localisation

[Benini, SC '12] in 2d; [Fujitsuka, Honda, Yoshida '13; Benini, Peelaers '13] in 3d; ...

Localising action:

$$S'_{loc} = \mathcal{Q}\left(\mathcal{V}_P + \mathcal{V}_{Higgs}
ight) \ \mathcal{V}_{Higgs} = \int d^3x \sqrt{g} \operatorname{tr}\left(rac{\widetilde{\zeta}\lambda - \zeta\widetilde{\lambda}}{2i}M(\phi,\widetilde{\phi})
ight) \ M(\phi,\widetilde{\phi}) = \sum_{lpha} \phi^{lpha}\phi^{\dagger}_{lpha} - \widehat{\xi}\;, \qquad \widehat{\xi} = \sum_{i \in \operatorname{Cartan}(g)} \widehat{\xi}^i h_i$$

When the "fake FI parameter" $\widehat{\xi} \to \infty$ (in an appropriate direction):

- Coulomb branch saddles are suppressed
- ullet Higgs branch saddles controlled by M (plus zero size vortices) dominate.

Higgs branch localisation formula

$$Z = \sum_{ ext{Higgs vacua}} Z_{class} \; Z_{1-loop}' \; Z_{v}^{(NP)} \; Z_{av}^{(SP)}$$

proving the factorisation of Z observed in [Pasquetti '11], [Beem, Dimotte Pasquetti '12].

Bonus tracks: two applications

Partition function and field theory dualities

The partition function $Z_{\mathcal{M}}(\widehat{V};\lambda)$ computed exactly by localisation allows detailed tests of field theory dualities. If theory A is dual to theory B, then

$$Z_{\mathcal{M}}^{(A)}(\widehat{V}^{(A)};\lambda^{(A)}) = Z_{\mathcal{M}}^{(B)}(\widehat{V}^{(B)};\lambda^{(B)})$$

with a duality map

$$\begin{split} \widehat{V}_a^{(A)} &= \sum\nolimits_b c_a{}^b \widehat{V}_b^{(B)} \\ \lambda^{(A)} &= f(\lambda^{(B)}) \; . \end{split}$$

These tests have been performed for a variety of theories:

[Dolan, Osborn '08; Spiridonov, Vartanov '08-'12; Kapustin, Willett, Yaakov '10; Willett, Yaakov '11; Benini, Closset, SC '11; Benini, SC '12; Doroud, Gomis, Le Floch, Lee '12; . . .]

- Identities between integrals of special functions
- Useful to determine the duality map
- Can be extended to supersymmetric operators

The free energy of 3d $\mathcal{N}=2$ SCFTs

A particularly interesting quantity for a 3d CFT:

Free energy

$$F = -\log Z_{S^3}|_{finite}$$

3d analogue of c and a central charges: it counts degrees of freedom.

- It can be computed exactly using localisation for $N \ge 2$ theories.
- Using the large-N limit of the matrix model for Z_{S^3} , it was shown that M2-brane theories have $F \propto N^{3/2}$. [Drukker, Mariño, Putrov 2010]
- F-maximisation: the $\mathcal{N}=2$ superconformal R-symmetry

$$R(t) = R_0 + \sum_a t_a Q^a$$

 $\label{eq:maximizes} \textbf{Re}(F(t)). \hspace{0.5cm} \textbf{[Jafferis 2010; Closset, Dumitrescu, Festuccia, Seiberg 2012]}$

• F-theorem: F decreases along RG-flows. [Jafferis, Klebanov, Pufu, Safdi 2011] [Casini, Huerta 2012]

Conclusions

- Localisation has led to many exact results for broad classes of supersymmetric QFTs on curved manifolds of various dimensions.
- What about 4d $\mathcal{N} = 1$?

- I have overlooked many interesting results: (Sorry!)
 - "Superconformal" indices: $Z_{S^{d-1}\times S^1}={
 m Tr}\;(-1)^Fe^{-eta'\{Q,S\}-eta\sum_a v_aF^a}$
 - Twisted partition functions
 - Localisation on manifolds with boundaries
 - Inclusion of order/disorder operators
 - Even localisation of supersymmetric quantum theories of gravity!

Localisation will remain an important tool in the future:

- Very concrete approach to make exact calculations in SUSY QFT.
- Probes generic (strongly coupled) regimes of parameter/moduli space.
- Allows to address fundamental questions in QFT and String Theory.
- Many open questions, likely new directions are waiting to be explored.

Thank you for your attention!