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SUSY on curved space and Localisation

We will see how the idea of localisation applies to the path integral of a
supersymmetric quantum field theory on a compact curved manifold M.

@ Compact space provides IR cutoff, making path integral better defined

@ Supersymmetric localisation reduces it to a finite-dimensional integral

ZplJ] = <e—flo> _ /[DX] oS- [ IO J

J is a supersymmetric source, coupled to a supersymmetric observable O.

The dependence on M is hidden in S[X] and the notion of supersymmetry.
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@ Rigid SUSY on curved space
@ Supersymmetric localisation

© Example: 3d N = 2 gauge theories on S}
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Rigid SUSY on curved space
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The problem of defining rigid SUSY on curved space

Supersymmetric QFT on flat space (R, gﬁoﬁ = )

@ Flat space SUSY algebra = SUSY transformations 6 x
@ £© SUSY Lagrangian 2 500 =p,(... )

Supersymmetric QFT on curved space (Mg, g,..):
@ Curved space SUSY algebra =» SUSY transformations §X
@ £ SUSY Lagrangian > IL=V,(. )

We would like to know:
@ For which flat space SUSY algebras and (Mg, g,...) this is possible
@ What are 6X and £(X,9,X)
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Approach 1: Trial and error

1
5 =60 E ' — 5
|§7:§ * — "

1
£=rL0 |§H§ +y ﬁd")
n>1

until SUSY algebra closes and £ = V(... ).

Drawbacks:
- No guarantee it will work
- Case by case
- When it succeeds, expansions stop at n = 1 and n = 2 resp. Why?
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Approach 2: Background supergravity  irestccia, seiverg 2011]

see also [Karlhede, Roc¢ek 1988; Johansen 1995; Adams, Jockers, Kumar, Lapan 2011]

@ Nonlinearly couple supersymmetric FT to an off-shell supersymmetric
background for supergravity multiplet (g.., Yua, aux).

@ Rigid limit of supergravity: gravity multiplet becomes non-dynamical.

@ Only require that the background is supersymmetric:

Generalised Killing spinor equations

'(/Jua :07 5§¢uo¢ =0

Advantages:
- Model independent: only input is flat space SUSY algebra.
- OsuGralvg Xser = 0Xsery,  Lser+suGralve = Lsrr -
- 1/r expansion above due to auxiliary fields.
- Supersymmetric backgrounds bg = (Mg, g,.., aux, ¢) can be classified.
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3d NV = 2 SUSY with U(1)z symmetry

SUSY algebra on R’: {Qa, 08} = 29/ 5Pyu + 2i€apZ
{Qa; 05} =0 {0a, 05} =0
[R7 Qa] S _Qa [R7 éa] = +éa

[Z,0a] = [,04) = [Z,R] = 0

[Dumitrescu, Seiberg 2011]

Supercurrent R-multiplet: TRV gre gRe jE‘R) jf‘z) ie"P0,J(z)

New min’l SUGRA multiplet: 4., Yua zZW A, C, B,

3d version of [Sohnius, West 1981/82]

v l v
Cu +— V¥ = —ie""?9,C, B, +— H= Ee“ ?9,Bvp

in v 1 llaz, = 9 3 9
sLhin — _H [ = ES“l/)u + ES‘% JF]?R) (A, — EVM) JFJth)CM +JoH J

min ——
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3d NV = 2 SUSY with U(1)z symmetry on M;

[Klare, Tomasiello, Zaffaroni 2012; Closset, Dumitrescu, Festuccia, Komargodski 2012]

Ocpa, 651@” in the rigid limit can be inferred from linear theory, diffeo + local
R invariance and dimensional analysis, without knowing the full SuGra.

St = 2V — iAu)C + HYuC + 20V + V"1 C + ()
(5212;# =2(V, + iAM)E"_ H'Yug_ 2iVﬂz— E“VPVVWPE+ ),

(Generalised) Killing spinor equations

. H . 1 .
(Vp —iAu)¢ = *E'YNC —iVuC — EE#VPV ¢

. = H = g =~ 1 v =
(Vp+iAu)¢ = —EV/LC +iVuC + EEM’/PV ¥¢ .

Supersymmetric background:
(M3, 8w, Ay, Vi, H) allowing solutions (¢, ¢) # 0 of GKSE.
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Curved space supersymmetry algebra

{8¢, 0z () = —2i (E% + ¢z — rH)) D(r2)
{0¢,0n}bre) =0 {05, it b(rey) = 0

where L is a fully covariant Lie derivative along the Killing vector K* = ¢+*(,

E%ga(m) = (K“Du + %(DuKV)SW’) P(rz)
Dup(rz) = (Vu —ir(A, — %Vu) - iZCM)‘P(r,z)

the totally covariant derivative of a field ¢,,;) of R-charge r and Z-charge z.

The representation of this SUSY algebra on a general multiplet is known.

We will be mostly interested in vector and chiral multiplets.
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Vector multiplet V

SUSY transformations:
da, = 71.(4-’7#;{ + Z’Yu)‘)
S0 =—CA+CA
A =+( (D +iHo) — %5wp’Yp<fW -¢ (iDpo —V,.0)
oA = _Z(D +ito) — %5wp7psz + 7“5(!’1%0 + Vy0)
8D = Dy (CY* X — Cv*A) — iV, (CY* A+ Cy*A) — H(CA — CN)
SUSY Lagrangians:
Lyy = % Tr(%flw " + D,oD"o + (D + iHU)2 + i PV, fup — V" Vuaz
&

Ym

— 20" (D + V)X = 2iN[0, A + iHX,\)

k 2 ~
Les = iﬂ Tr (s‘“’p(auﬁyap + igaua,,ap) +2Do + 2/\)\)

Lrr = —i% Tr (D — iHo — iV"a,)
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Chiral multiplet @,

SUSY transformations:
8¢ = V2(y
5 = V2CF —\2i(z — 0 — rH) (p — V2iy" (D¢
SF =\2i(z— 0 — (r — 2)H) &b + 2iCAd

SUSY Lagrangians:
mat = QSDMQZS lw’V#DMdJ — ?F — igVHDM(ﬁ
1

—|—¢>(—i(D—i—iHo)—l—(z—a—rH)z—l—ZH(z—U)—i—%(ER—l—V“Vu—HZ))qﬁ
—|—n/)(z—c7— (r— 7) )w— 71/)7#V;41/1+\fl(¢)\1/1+¢A1/))

_ W
ﬁwZFW(@)—FFW(:I;): ( 88‘;/+w¢8¢2/) ( (Zg+¢¢g¢2)
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Compact supersymmetric backgrounds

1 supercharge ¢: M3 has a transversely holomorphic foliation

Coordinates (7,z,7): '=1+1z2), Z=f(@).

Metric: ds® = (dr + h(r,2,2)dz + h(7,2,2)d2)* + c(7, 2,2) dedz

¢ determines all background fields, up to invariance of GKSE.

2 supercharges ¢, <~: Ms is a Seifert manifold  (S! — Mz — X))

Metric: ds* = Q(z,2)*(d¥ + h(z,2)dz + h(z,2)dz)* + c(z,7) dzdz

4 supercharges (i, (2, C1, G

o7

@ Round $> x S' withH=0,A=V = iﬁd’r [Imamura, S. Yokoyama 2011]
S

@ (Squashed) $* with SU(2) x U(1) isometry: [Imamura, D. Yokoyama 2011]

af = R (P + (2P +RG0Y) . H="D a=v=2vi -1

<
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The 3d eII|p50|d 513) [Hama, Hosomichi, Lee 2011]

$* topology
U(1)* isometry

71 = Rb~'sin® ' ‘ O O O
70 = Rbcos ¥ €¥? O O O >

P|z|* + b7z = R?

ds? = R (b2 sin® 9 dy? + b2 cos® 9 di? + f(ﬂ)zdﬂz)

He——1 2A:(1—L>d (1717—71)51
Background: Rf (9) 7@) ! * @)

F(9) = (b~ sin® 9 + b* cos® ¥)'/?

1 e%(v1+v2+19) ~ 1 _e*%(w%ﬂz*ﬂ)
C= 75 \eborreaa | 0 T B\ dereno
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Supersymmetric localisation
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The path integral of a supersymmetric QFT

Consider a supersymmetric QFT with fields X € F:

@ Supercharge O: Q*=H
@ Action S[X]: oS[X] =0
@ Supersymmetric observable O: 20 =0

We wish to compute

(0) = /F (DX] O &= J

Note that [Witten 1988]
(QU') = / [DX] (QO")e K = / DX] Q (O/efsm) —o0,
F F

therefore expectation values only depend on the Q-cohomology class:

(O + QO') =(0) J
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Localisation argument 1 [Witten 1991]

Assume the QFT has a symmetry group G which acts freely on field space F.
For a G-invariant operator O,

0) = / [DX] 0 e =Vol(G) - | [Dx] 0 e,
F F/G

If G is generated by a fermionic charge Q, then Vol(G) o [df 1 = 0.

A supercharge QO does not act freely. Fixed points form the

BPS locus Fo = {[X] € F | fermions = 0, Q(fermions) = 0} . J

If Fo.c is an infinitesimal tubular neighbourhood of Fg of size ¢,

(0) = lim < /F [DX] © ¢S 4 /F [DX]OeS[X]> =lim [ [DX] O e S

\Fo.e Q. Fo,e

Hence the path integral over field space F localises to the BPS locus Fo.
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Localisation argument 2 [Witten 1988]

We can exploit the fact that the expectation value of a Q-closed observable O
only depends on its Q-cohomology class [O]. Change representative:

(0) = (0 V) = / [DX] 0=V vy YIX] st QPV[X] =0.
F

We will assume that ReQV[X]|,.s is positive semi-definite and consider ¢ > 0.

(O) = lim [DX] O e~ SXI—rQVIX] J
t——+oo F

@ 1 — +oo: integral dominated by the saddle points of the

Localising action Siwe[X] = QV[X] , )
0Sic[X
Localisation locus Fioe = {Xo € ]-'|’7H‘ =0} J
0X lx,

Stefano Cremonesi Introduction to Localization (lecture 2)



Exact semiclassical approximation in fia. = 1/t, around saddles Xy of Si.:

1
X =Xo+ —=0X
NG

SIX] + tSic[X] T S[Xo] + = JI 6 Sioc [X]

0x?

Integrating out the transverse fluctuations 6X, one obtains

Localisation formula

1
(0) = / [DXo] Olx, el —— T -
Fioc ’ Sdet %
L 0 d
E.g., for the standard choice (here ¥ = {fermions}) [Pestun 2007]
Vp = (Q\I/, \Il) - Sloc'bos = (Q\I/, Q\Il) > 0 ) J

the path integral over F localizes to Fi,c = Fo, the BPS locus.
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The 1-loop determinant Z,_;,,,

. _ 1/2
Z1_100p = Sdet [6 SIOU[XO}] _ (det Kferm> 7 J

6X8 det Khox

where the kinetic operators for bosonic and fermionic fluctuations Kjos, Kferm
are some modified Laplace and Dirac operators.

General observations:
@ Computing their spectrum can be difficult.
@ Many cancellations because SUSY pairs bosons and fermions.
@ One can localise to fixed points of Q2 in spacetime.

The computation is best done by organising fields cohomologically
(i.e. in multiplets of Q) and applying index theorems. [Pestun 2007]
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@ Reorganise fields in Q-multiplets {X} = {¢, ¥/ = Q¢, ¥, ¢’ = Qv}:
Qp=1v', QW=0%.
Qp=¢', Q¢ =0Q%.

For simplicity, Vi = (¢, Q¢) + (v, Qv)
osomem 20Tl Quy = (0, ¢) + (6, Q%) + (¢, ¢') — (4, Q')

. detqp Q2 12
Zlflvap - det¢ Q2

@ Ii there is a differential operator D that commutes with Q2

D: T(E) — T(E) DI I(E) — T(E)
w w w W
¢ ¥ G ¢
then

1/2 .
Zi — (detcokerDQ2> / + unpaired ¢
e detyer p Q2 ’ + unpaired ¢
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The 1-loop determinant can be deduced from the Q*-equivariant index of D

2 .
) - trcokerD(eQ ) = Zdj ehj
Jj

2 2
Ind(D;eQ )= trkerp(eQ

as 12
2
Z oo = deteokerD Qz _ H h;dj/Z )
detker D Q I

If D is transversally elliptic, which ensures that d; are finite, the equivariant
index can be computed by the Atiyah-Bott fixed point formula  e.g. [Atiyah 1974]

2

Q? Q
trg — trg
IHd(D;eQZ) — E Ey(p) € bl(P)f
pleQ% p=p detTM(P)(l - )

This reduces the computation of Z;_,, to determining the local action of Q?
around fixed points in field space F and in spacetime M.
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Localisation of 3d N/ = 2 gauge theories on S;

[Hama, Hosomichi, Lee 2011], building on [Kapustin, Willett, Yaakov '09; Jafferis '10; HHL *10]

Z[V] = / [DV][D][DI] e_(SYM[V]+SCS[V]+SFI[V]+Smal[¢157V7v}+sw[¢7&;])J

V: background vector multiplet (global symmetry)

@ Localising supercharge: Q=d¢+ 0z

@ Localising action: Se=QVp, Vr= > (QU,V¥)
TN, 0}

@ Localisation locus Fo: D= —iHo, a,=0, o =const.

p=¢p=F=F=0

@ Classical action: S[Xo] = —ikm tr(Ro)* + 2mi(£R) tr(Ro)

[SYM; Smala Sw are Q'eXaCt] Zilass = eikw tr(Ro')? ~2i(&R) r(Ro')
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@ Diagonalise o = o'H;: V= [I a(Ro)?
aEA L

[ee] 1 .
@ t-oopdetof o, 7%, = [ (m+1)b+ (n+1)b~" +iRzc

= "TW(R
g mb + nb=—' — iRz¢c n(Rec)
b b .
Rzc = Rz +i +2 r, z=p(o)+p(@)
: _ .
@ 1-loop det of V: Z =] 4smh(7rb0‘(R‘7))1:m?(7Tb a(Ra))
acA L a( J)

Coulomb branch localisation formula

(R=1)

k(G)
= 1 =
ng(U;k,€7 r) = W/ H dUi chasx(0'§'£7k) Zlfloop(0'7o-7r) .
i=1

This result generalizes to any background with $° topology: » € C is the
modulus of the transversely holomorphic foliation on $°.
[Closset, Dumitrescu, Festuccia, Komargodski 2013; Alday, Martelli, Rishmond, Sparks 2013]
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An alternative: Higgs branch localisation

[Benini, SC ’12] in 2d; [Fujitsuka, Honda, Yoshida '13; Benini, Peelaers *13] in 3d; ...

Localising action: Sioe = Q (Ve + Vriiges)
VHiggs = /d3xftr( CA (¢ ¢))
(6,0) = o"¢h - ¢, = > 7
o i€Cartan(g)

When the “fake Fl parameter” §A—> oo (in an appropriate direction):
@ Coulomb branch saddles are suppressed
@ Higgs branch saddles controlled by M (plus zero size vortices) dominate.

Higgs branch localisation formula

Z= Z chaa_s Zl —loop Z(NP) Z(SP)

Higgs vacua

proving the factorisation of Z observed in [Pasquetti *11], [Beem, Dimofte, Pasquetti '12].
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Bonus tracks: two applications
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Partition function and field theory dualities

The partition function Z(V; \) computed exactly by localisation allows
detailed tests of field theory dualities. If theory A is dual to theory B, then

ZO(FW; @y = 2 (GO, ) |

with a duality map

V‘EA) _ Zb Cabv}SB)

A@W :f()\(B)) )

These tests have been performed for a variety of theories:
[Dolan, Osborn '08; Spiridonov, Vartanov '08-'12; Kapustin, Willett, Yaakov '10; Willett, Yaakov '11;
Benini, Closset, SC '11; Benini, SC '12; Doroud, Gomis, Le Floch, Lee '12; .. .]
@ Identities between integrals of special functions
@ Useful to determine the duality map

@ Can be extended to supersymmetric operators
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The free energy of 3d NV = 2 SCFTs

A particularly interesting quantity for a 3d CFT:

Free energy F = —log Zg |finite J

3d analogue of ¢ and a central charges: it counts degrees of freedom.

@ It can be computed exactly using localisation for " > 2 theories.

@ Using the large-N limit of the matrix model for Zg, it was shown that
M2-brane theories have F o N*/2. [Drukker, Marifio, Putrov 2010]

@ F-maximisation: the A/ = 2 superconformal R-symmetry
R(t) =Ro+ Y 10"
a
maximizes Re(F(t)).  [Jafferis 2010; Closset, Dumitrescu, Festuccia, Seiberg 2012]

@ F-theorem: F decreases along RG-flows. [Jafferis, Klebanov, Pufu, Safdi 2011]
[Casini, Huerta 2012]
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Conclusions
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@ Localisation has led to many exact results for broad classes of
supersymmetric QFTs on curved manifolds of various dimensions.

@ What about 4d N = 1?

- xS v
S-S xT* /
-5 X
@ | have overlooked many interesting results: (Sorry!)

- “Superconformal” indices:  Zy-—1,g = Tr (—1)Fe=# 1051 =8  vaF
- Twisted partition functions

Localisation on manifolds with boundaries

Inclusion of order/disorder operators

- Even localisation of supersymmetric quantum theories of gravity!
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Localisation will remain an important tool in the future:

@ Very concrete approach to make exact calculations in SUSY QFT.

@ Probes generic (strongly coupled) regimes of parameter/moduli space.

@ Allows to address fundamental questions in QFT and String Theory.

@ Many open questions, likely new directions are waiting to be explored.
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Thank you for your attention!
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