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1. From classical to quantum integrability

Based on AT, arXiv:1606.02946

and on

• Babelon, Bernard, Talon, “Introduction to classical integrable systems” Cambridge U. Press, 2003

• Faddeev, Takhtajan, “Hamiltonian methods in the theory of solitons”, Springer, 1987

• Dunajski, “Integrable systems”, U. of Cambridge lecture notes, 2012 [available online]

• Beisert, “Introduction to integrability”, ETH lecture notes, 2017 [available online]

• Bombardelli et al., “An integrability primer for the gauge-gravity correspondence: an introduction”, 2016,
arxiv:1606.02945



The Chronicles

• Exact solutions to Newton’s equations hard to come by

Kepler problem exactly solved by Newton himself

• 1800s Liouville integrability for Hamilt. systems −→ quadratures.

• 1900s systematic method of the classical inverse scattering

Gardner, Green, Kruskal and Miura in 1967 solved Korteweg-deVries (KdV) equation of fluid mechanics

• Quantum mechanical version of the inverse scattering method 1970s
by Leningrad – St. Petersburg school

connection to Drinfeld and Jimbo’s theory of quantum groups

→ single math. framework for integrable QFT (Zamolodchikov2) and
lattice spin systems (Baxter).

• Nowadays integrability in different areas of maths and math-phys



L. Faddeev once wrote in 1996...

“One can ask, what is good in 1 + 1 models, when our spacetime is 3 + 1 dimensional. There are several particular
answers to this question.

1. The toy models in 1 + 1 dimension can teach us about the realistic field-theoretical models in a
nonperturbative way. Indeed such phenomena as renormalisation, asymptotic freedom, dimensional
transmutation (i.e. the appearance of mass via the regularisation parameters) hold in integrable models
and can be described exactly.

2. There are numerous physical applications of the 1 + 1 dimensional models in the condensed matter physics.

3. The formalism of integrable models showed several times to be useful in the modern string theory, in which
the world-sheet is 2 dimensional anyhow. In particular the conformal field theory models are special
massless limits of integrable models.

4. The theory of integrable models teaches us about new phenomena, which were not appreciated in the
previous developments of Quantum Field Theory, especially in connection with the mass spectrum.

5. I cannot help mentioning that working with the integrable models is a delightful pastime. They proved also
to be very successful tool for the educational purposes.

These reasons were sufficient for me to continue to work in this domain for the last 25 years (including 10 years of
classical solitonic systems) and teach quite a few followers, often referred to as Leningrad - St. Petersburg school.”



Liouville’s theorem

Consider Hamilt. system with 2d-dim. phase space and H = H(qµ, pµ)

(qµ, pµ) µ = 1, ..., d

Poisson brackets

{qµ, qν} = {pµ, pν} = 0 {qµ, pν} = δµν ∀ µ, ν = 1, ..., d

Liouville integrable if ∃ d indep. integrals of motion Fν(qµ, pµ) globally defined

and in involution:

{Fµ,Fν} = 0 ∀ µ, ν = 1, ..., d

• pointwise linear independence of the set of gradients ∇Fµ

• we take the Hamiltonian to be F1

Theorem (Liouville)

E.o.m.s of a Liouville-integrable system can be solved “by quadratures”

“finite number of algebraic operations and integrations of known functions”



Upshot: ∃ canonical transf.

ω = dpµ ∧ dxµ = dIµ ∧ dθµ

canonical 2-form

s.t. - all new momenta Iµ are integrals of motion and H = H(Iµ)

- time-evolution of new coordinates is simply linear

dθµ
dt

=
∂H

∂Iµ
= constant in time

→ solution by straightforward integration (performing one quadrature)

Typically mfld of const. Iµ is d-torus (Liouville-Arnold theorem) param. by θµ ∈ [0, 2π)

Motion occurs on such torus Action-Angle variables



Typical example: harmonic oscillator

H =
1

2
(p2 + q2) conserved

The appropriate coordinate θ depends linearly on time:

q =
√

2E cos θ =
√

2E cos(t + φ)

for an initial phase φ and energy E = r .

Action-angle variables are the polar coordinates in the (x , y) = (q, p) plane

All time-ind. Hamiltonian systems with 2d phase space are Liouv. integrable



One can have more than d integrals of motion (not all in involution)

−→ superintegrable system

Maximally superintegrable system −→ 2d − 1 integrals of motion

Closed orbits - e.g. Kepler problem

But how can we find such integrals of motion?

Let us focus on algebraic methods −→



Lax pairs

Suppose ∃ matrices L,M (Lax pair) s.t. e.o.m.s equivalent to:

dL

dt
= [M, L]

These (not all indep.) quantites are all conserved:

In ≡ trLn dIn
dt

=
n−1∑
i=0

tr Li [M, L]Ln−1+i = 0 ∀ n

Lax pair not unique:

L −→ g L g−1 M −→ g M g−1 +
dg

dt
g−1

We regard L and M as elements of some matrix algebra g. Define

X1 ≡ X ⊗ 1, X2 ≡ 1⊗ X ∈ g⊗ g

Harmonic osc. example

L,M may depend on ”spectral” parameter λ



Theorem
The eigenvalues of L are in involution iff ∃ r12 ∈ g⊗ g s.t

{L1, L2} = [r12, L1]− [r21, L2]

r21 = Π ◦ r12 Π permutation operator on g⊗ g

Jacobi identity requires

[L1, [r12, r13] + [r12, r23] + [r13, r23] + {L2, r13} − {L3, r12}] + cyclic = 0

Harmonic osc. example

If r12 constant indep. on dynamical variables →

[r12, r13] + [r12, r23] + [r13, r23] = 0 is sufficient condition

Classical Yang-Baxter equation (CYBE)

If we require antisymmetry

r12 = −r21

then r12 called constant “classical r -matrix” Borel example −→



Field-theory Lax pair

Suppose ∃ L,M s.t Euler-Lagrange equations are equiv. to

∂L

∂t
− ∂M

∂x
= [M, L]

Such field theories are ‘classically integrable” harder to assess nr. of d.o.f.

Define monodromy matrix

T (λ) = P exp

[∫ b

a

L(x , t, λ)dx

]
←−

∂t T =

∫ b

a
dx P exp

[ ∫ b

x
L(x′, t, λ)dx′

] [
∂t L(x, t, λ)

]
P exp

[ ∫ x

a
L(x′, t, λ)dx′

]

=

∫ b

a
dx P exp

[ ∫ b

x
L(x′, t, λ)dx′

] (
∂M

dx
+ [M, L]

)
P exp

[ ∫ x

a
L(x′, t, λ)dx′

]

=

∫ b

a
dx ∂x

(
P exp

[ ∫ b

x
L(x′, t, λ)dx′

]
M P exp

[ ∫ x

a
L(x′, t, λ)dx′

])
= M(b) T − T M(a)

Periodic b.c.

∂t T = [M(a),T ]



This implies that the trace of T , called the transfer matrix

t ≡ trT

is conserved for all λ spectral parameter

By Taylor-expanding in λ → family of conserved charges

Suppose ∃ r -matrix s.t.

{L1(x , t, λ), L2(y , t, µ)} = [r12(λ− µ), L1(x , t, λ) + L2(y , t, µ)] δ(x − y)

with the r -matrix r12(λ− µ) indep. of the fields and antisymmetric

Theorem (Sklyanin Exchange Relations)

{T1(λ),T2(µ)} = [r12(λ− µ),T1(λ)T2(µ)]

This means

[t(λ), t(µ)] = 0 by applying tr ⊗ tr

All charges are in involution (by Taylor expansion)

The Poisson brackets are called “ultra-local” - no derivatives of Dirac delta



Example: Sklyanin’s treatment of Non-linear Schrödinger equation
[Sklyanin, “Quantum version of the method of inverse scattering problem”, 1980]

Non-relativistic 1 + 1 dimensional field theory with Hamiltonian

H =

∫ ∞
−∞

dx

( ∣∣∣∣ ∂ψ
∂x

∣∣∣∣2 + κ|ψ|4
)
, ψ(x) ∈ C assume κ > 0

{ψ(x), ψ∗(y)} = iδ(x − y) i
∂ψ

∂t
= {H, ψ} = −

∂2ψ

∂x2
+ 2κ|ψ|2ψ (hence the name)

Lax pair

L =

(
−i u

2
iκψ∗

−iψ i u
2

)
M =

(
i u2

2
+ iκ|ψ|2 κ ∂ψ

∗

∂x
− iκuψ∗

∂ψ
∂x

+ iuψ −i u2

2
− iκ|ψ|2

)
Monodromy matrix

T (u) =

(
a(u) κ b∗(u)
b(u) a∗(u)

)
take u real and then anal. cont. + call extrema s± for no confusion

a(u) = e
−i u

2
(s+−s−)

[
1 +
∞∑

n=1

κ
n
∫

s+>ξn>ηn>ξn−1...>η1>s−
dξ1...dξn dη1...dηn

e iu(ξ1+...+ξn−η1−...−ηn)
ψ
∗(ξ1)...ψ∗(ξn)ψ(η1)...ψ(ηn)

]

b(u) = −i e
i u

2
(s++s−)

∞∑
n=0

κ
n
∫

s+>ηn+1>ξn>ηn>ξn−1...>η1>s−
dξ1...dξn dη1...dηn+1

e iu(ξ1+...+ξn−η1−...−ηn+1)
ψ
∗(ξ1)...ψ∗(ξn)ψ(η1)...ψ(ηn+1)



Taking s± → ±∞ we have local charges

I1 =

∫ ∞
−∞

dx |ψ|2 I2 =
i

2

∫ ∞
−∞

dx

(
∂ψ∗

∂x
ψ − ψ∗ ∂ψ

∂x

)

I3 = H Im =

∫ ∞
−∞

dx ψ∗χm χm+1 = −i dχm

dx
+ κψ∗

m−1∑
s=1

χsχm−s

Upon quantisation, the first charge corresponds to the particle number, the
second one to the momentum, the third one to the Hamiltonian

Sklyanin shows ∃ r s.t.

{T1(λ),T2(µ)} = [r12(λ− µ),T1(λ)T2(µ)]

Action-angle type variables are those for which “the Hamiltonian H can be written as a

quadratic form (and the equations of motion, correspondingly, become linear).” (E. Sklyanin)

−→ Sklyanin’s separation of variables

[classical and quantum - open problems]



Classical r -matrix for NLS

{T1(λ),T2(µ)} = [r12(λ− µ),T1(λ)T2(µ)]

r(λ− µ) = − κ

λ− µ
P

P is the permutation matrix P|u〉 ⊗ |v〉 = |v〉 ⊗ |u〉

Prototypical solution of classical Yang-Baxter equation

[r12(u1 − u2), r13(u1 − u3)] + [r12(u1 − u2), r23(u2 − u3)] + [r13(u1 − u3), r23(u2 − u3)] = 0

As we will now show...

... exact quantisation will be a mere matter of algebra



Belavin-Drinfeld classifications theorems
[Belavin,Drinfeld, 1981] there is no smaller font than this one

Theorem (Belavin Drinfeld I)

Let g be a finite-dimensional simple Lie algebra, and r = r(u1 − u2) ∈ g⊗ g a solution of the (spectral-parameter
dependent) classical Yang-Baxter equation. Furthermore, assume one of the following three equivalent conditions:

• (i) r has at least one pole in the complex plane u ≡ u1 − u2, and there is no Lie subalgebra g′ ⊂ g such
that r ∈ g′ ⊗ g′ for any u,

• (ii) r(u) has a simple pole at the origin, with residue proportional to the tensor Casimir
∑

a ta ⊗ ta , with
ta a basis in g orthonormal with respect to a chosen nondegenerate invariant bilinear form,

• (iii) the determinant of the matrix rab(u) obtained from r(u) =
∑

ab rab(u) ta ⊗ tb does not vanish
identically.

Under these assumptions, r12(u) = −r21(−u) where r21(u) = Π ◦ r12(u) =
∑

ab rab(u) tb ⊗ ta , and r(u) can be
extended meromorphically to the entire u-plane. All the poles of r(u) are simple, and they form a lattice Γ. One
has three possible equivalence classes of solutions: “elliptic” - when Γ is a two-dimensional lattice -,
“trigonometric” - when Γ is a one-dimensional array -, or “rational”- when Γ = {0}-, respectively.

The assumption of difference-form is not too restrictive:

Theorem (Belavin Drinfeld II)

Assume the hypothesis of Belavin-Drinfeld I theorem to hold (appropriately adapted) but r = r(u1, u2) not to be
of difference form, with the classical Yang-Baxter equation being

[r12(u1, u2), r13(u1, u3)] + [r12(u1, u2), r23(u2, u3)] + [r13(u1, u3), r23(u2, u3)] = 0

Now the three statements (i), (ii) and (iii) are no longer equivalent, and we will only retain (ii). Then, there exists
a transformation which reduces r to a difference form. If time −→ proof



Quantisation by “Quantum group”

Completing the classical algebraic structure to a quantum group
↔

going from r to a solution to the quantum Yang-Baxter Equation

R12 R13 R23 = R23 R13 R12, Rij ∼ 1⊗ 1 + i ~ rij +O(~2)

and quantise Sklyanin relations by postulating “RTT” relations

R(u − u′)T̂1(u)T̂2(u′) = T̂2(u′)T̂1(u)R(u − u′) T̂ (u) = T (u) +O(~)

for NLS coincides with normal ordering prescription of ψ, ψ† on finite interval with periodic b.c.

The classical limit is literally

{A,B} = lim
~→0

i [A,B]

~

Integrability manifest: tower of commuting charges by tracing RTT relations

In the NLS case: R(λ− µ) = 1⊗ 1− i~κ
λ−µ P



The three cases of the Belavin-Drinfeld theorem correspond to how a classical

r -matrix (resp. classical Lie bi-algebra) is quantised into (e.g. the small ~ limit

of) one of the possible quantum R-matrices (resp. quantum groups):

• rational −→ quantise to Yangians

• trigonometric −→ quantise to trigonometric quantum groups
(Jimbo-Drinfeld)

• elliptic −→ quantise to elliptic quantum groups (Sklyanin,
Felder)

[Etingof-Kazhdan]

Spin chains follow the pattern: XXX, XXZ, XYZ
or, Heisenberg, 6-vertex model - Sine Gordon, 8-vertex model - Baxter



Example: from rational classical r -matrix to Yangians

r = T a⊗Ta
u1−u2

prototypical solution of CYBE (“Yang’s solution”)

T a generate Lie algebra g - contraction done with Killing form

Seeking more abstract rewriting:

r =
∑∞

n=0 T
a ⊗ Tau

−n−1
1 un

2 if |u1| < |u2| which means

r =
∑∞

n=0 T
a
−n−1 ⊗ Ta,n if we define

T a
n = unT a (*) and keep track of the spaces 1 and 2

These implies that the classical r -matrix is abstractly written in terms of an ∞
dimensional algebra

[T a
n ,T

b
m] = if ab

c T c
m+n “loop” algebra, particular case of Kac-Moody

Moreover, one can prove that r solves CYBE only using algebra comm. rels
of which (*) is merely a particular rep

[Exercise for the reader: proof of this statement]

Mathematicians then tell us that loop algebra quantise to Yangians in the sense
of quantum groups, with Sklyanin’s R for the NLS as R-matrix! circle is closed



MESSAGE we are learning here:

ALGEBRA is universal → REPS are various physical realisations

It pays off to look for universal structures behind our formulae

“The same equations have the same solutions” - R. Feynman



What is the “quantum” R-matrix mathematically?

Algebraic setting −→ Hopf algebras

R : V1 ⊗ V2 −→ V1 ⊗ V2 R is called universal R-matrix

Vi carries a representation of algebra A - endowed with multiplication and unit

We will assume A to be a Lie (super-)algebra rather its universal envelop

Additional structure: coproduct

∆ : A −→ A⊗ A

[∆(a),∆(b)] = ∆([a, b]) (homomorphism)

even ∆(a)∆(b) = ∆(ab), a, b,∈ A



Universal R-matrix renders Hopf algebra “quasi-co-commutative”

(P∆)R = R ∆

P (graded) permutation P∆ ‘opposite’ coproduct ∆op (‘out’)



Lie algebras normally have ‘trivial’ coproduct (“co-commutative”)

∆op(Q) = ∆(Q) = Q ⊗ 1 + 1⊗ Q ∀Q ∈ A

non trivial → quantum groups

Hopf algebra: coproduct + extra algebraic structures
e.g. antipode, counit + list of axioms

If time −→ Hopf algebra axioms

The Yangian is an ∞-dim non-abelian Hopf algebra

{books } [Chari-Pressley ’94; Kassel ’95; Etingof-Schiffmann ’98]



(Σ⊗ 1)R = R−1 = (1⊗ Σ−1)R quasi-triangular - Drinfeld’s theorem

R12R13R23 = R23R13R12 Yang-Baxter

(∆⊗ 1)R = R13 R23 ; (1⊗ ∆)R = R13 R12 bootstrap



Example: Uq

[
(sl(2)

]
[h, e±] = ±2e± [e+, e−] = qh−q−h

q−q−1

∆(h) = h ⊗ 1 + 1⊗ h ∆(e±) = e± ⊗ q
h
2 + q−

h
2 ⊗ e±

R = q
h⊗h

2

∑
n≥0

(1− q−2)n

[n]!
q

n(n−1)
2

(
q

h
2 e+

)n
⊗
(
q−

h
2 e−

)n

[n]! = [n][n − 1]... [n] = qn−q−n

q−q−1

In the fundamental rep

h =

(
1 0
0 −1

)
e+ =

(
0 1
0 0

)
e− =

(
0 0
1 0

)
R becomes 4× 4 matrix

Compute antipode



How does this help us finding the exact quantum spectrum?



Algebraic Bethe ansatz
compactify with periodic b.c. [Faddeev “How algebraic Bethe...”, 1996; Levkovich-Maslyuk, arXiv:1606.02950]

Entries of T → quantum operators T (u) =

(
A(u) κB†(u)
B(u) A†(u)

)
normal ordering prescription

RTT relations imply in particular

A(u)B†(v) =

(
1 +

iκ

u − v

)
B†(v)A(u)− iκ

u − v
B†(u)A(v)

[B(u),B(v)] = 0

The operator B† looks like creation op.: postulate ∃ vacuum

|0〉 s.t B(u)|0〉 = 0 “no particles”

one can see A(u)|0〉 = e
−i L

2 |0〉

−→ vacuum is eigenstate of A + A† - the transfer matrix (trace)

Then, |u1, ..., uM〉 = B†(u1)...B†(uM )|0〉 eigenstate of A + A† iff Bethe eq.s

In turn, transfer matrix contains Hamiltonian - but also all commuting charges simultaneously diag. on these states



States look like magnons: e.g. M = 2

∫
dx1dx2

[
θ(x2 < x1) + S(u1 − u2) θ(x1 < x2)

]
e iu1x1+iu2x2 ψ†(x1)ψ†(x2)|0〉

S = u−v+iκ
u−v−iκ

with u, v satisfying certain algebraic condition −→

Using field comm rels, directly proven to be energy eigenstate

[ψ(x), ψ†(y)] = δ(x − y) Energy = u2
1 + u2

2

Similarly, directly resumming perturbation theory
Lippman-Schwinger-type eq. for 2-body wave function

[see Thacker ’81]

Point is:

perturb. you create with ψ†, but exact eigenstates you create with B†



What algebraic condition?

States are M travelling particles subject to Bethe Equations
exactly as Bethe would have written in 1931 on physical grounds - now called coordinate BA

S-matrix S = u−v+iκ
u−v−iκ momentum p = u

M-body eff. Schrödinger problem isom. to collection of M-particle Bose gas with delta-function potential



The key algebraic steps are then taken and applied mutatis mutandis in general

The R-matrix actually encodes everything

or, following onto Zamolodchikov’s footsteps...

...the last vestiges of the S-matrix program

before QFT ever was



EXACT S-MATRICES

{for reviews} [P. Dorey ’98; Bombardelli ’15]

2D integrable massive S-matrices

• No particle production/annihilation

• Equality of initial and final sets of momenta

• Factorisation: SM−→M =
∏

S 2−→2

(all info in 2-body processes)

See how the Bethe equations are particle-preserving and factorised ←−



Extrapolate from relativistic case

S 2−→2 = S(u1 − u2) ≡ S(u) [Ei = mi cosh ui , pi = mi sinh ui ]



Crossing symmetry S12(u) = S 2̄1(iπ − u)



Yang-Baxter Equation (YBE) S12 S13 S23 = S23 S13 S12



• S-matrix real analytic: S(s∗) = S∗(s)
Mandelstam s = 2m2(1 + cosh u) for equal masses

• S-matrix simple poles ↔ bound states

They occur at imaginary spatial momentum ↔ wave function
decays at spatial infinity

0 < s < 4m2 ↔ u = iϑ ↔ p = m sinh u = im sinϑ



Bootstrap

SB3(u) =
∑

c |Rc |−
1
2 PcS23(u − iuB

12)S13(u + iuB
12)
∑

b |Rb|
1
2 Pb

if residue of S-matrix at the pole is
∑

a RaPa

[from Karowski ’79]

E.g. R = u
u−1

(
1⊗ 1− P

u

)
with P = permutation: only pole at u = 1 with residue 1− P

−→ projector onto the anti-symmetric rep (= bound state rep)



DRESSING FACTOR

S(u) = Φ(u) Ŝ(u)

Ŝ(u) acts as 1 on highest weight state

• Dressing factor Φ(u) not fixed by symmetry, matrix Ŝ(u) yes

• Dressing factor Φ(u) constrained by crossing S12(u) = S−1
12̄

(u− iπ)

• Dressing factor Φ(u) essential for pole structure

Ex: Sine-Gordon at special value of coupling β2 = 16π
3
−→ repulsive regime: ∞ poles but none in physical region

Φ(u) =
∞∏
`=1

Γ2(`− τ) Γ( 1
2

+ ` + τ) Γ(− 1
2

+ ` + τ)

Γ2(` + τ) Γ( 1
2

+ `− τ) Γ(− 1
2

+ `− τ)
τ ≡

u

2πi

even though S is tanh and sech, and crossing implies Φ(u)Φ(u + iπ) = i tanh u
2



Universal R-matrix is abstract object which
generates all S-matrices by projecting into irreps

R −→fundam⊗ fundam Sfund1,fund2

−→b.state⊗ b.state Sbound1,bound2

−→inf .dim⊗ inf .dim Sinf .1,inf .2

Inclusive of (minimal) dressing factors



The universal R-matrix for a class of (super-)algebras and their
subalgebras controls both the monodromy-matrix exchange
relations and generates the physical S-matrices

The universal R-matrix is dictated by the (usually
infinite-dimensional) quantum-group symmetry of the problem, and
can be written using the generators of the associated quantum
group

The procedure to find the universal R-matrix is based on Drinfeld’s
double and the associated Drinfeld’s theorem, and explicit formulas
have been given by Khoroshkin and Tolstoy

Drinfeld and the St. Petersburg seminar



Indeed algebraic Bethe ansatz solves integrable spin-chains as well

Insert exercise on supersymmetric chain - if time permits

Research in string theory and AdS/CFT uses integrability −→ adapting the
standard framework to the more exotic environments

• incredibly rich representation theory

• non-standard quantum groups

• rich set of new boundary conditions

[Beisert et al. arXiv:1012.3982]

but we always go back to Faddeev, Zamolodchikov, etc. - and to all those nice papers with no archive version



Relation to CFT

−→ massless integrability

Bazhanov-Lukyanov-Zamolodchikov; Fendley-Saleur-Zamolodchikov



MASSLESS INTEGRABILITY: relativistic
[Zamolodchikov-Zamolodchikov ’92, Fendley-Saleur-Zamolodchikov ’93]

E = m cosh u p = m sinh u E 2 − p2 = m2

Lorentz boost u → u + b: the two branches are connected

- 3 - 2 - 1 1 2 3
p

0.5

1.0

1.5

2.0

2.5

3.0

E H p L



SEND m→ 0 E = m
2

(
eu + e−u

)
p = m

2

(
eu − e−u

)
u = u0 + ν

m

2
e |u0| = M = finite u0 → ±∞ (boost to |v | = c)

ν fixed

Two branches of E =
√
p2

• right moving u0 → +∞

E = Meν+ p = Meν+ E = p ν+ ∈ (−∞,∞)

• left moving u0 → −∞

E = Me−ν− p = −Me−ν− E = −p ν− ∈ (−∞,∞)



- 3 - 2 - 1 1 2 3
p

0.5

1.0

1.5

2.0

2.5

3.0

E H p L

• “Perturbative” intuition for left-left (right-right) scattering fails

• Left vs right: standard framework of integrability needs adaptation

• Still, ∃ notion of Yang-Baxter: the 4 limiting S-matrices are solutions



Analyticity: Massive case s = 2m2[1 + cosh u] u ≡ u1 − u2

review [P. Dorey ’98]



Switching branch cuts (if allowed): consider `r , r` [Zamolodchikov ’91]

S(s) = S1(s) if =s > 0, S(s) = S2(s) if =s < 0

Braiding Unitarity: S1(s) S2(s) = 1 Crossing: S1(s) = S2(4m2 − s)

Now send m→ 0: shrinking of bound-state region

S1(s) = S2(−s) Si (s)Si (−s) = 1 (crossing-unitarity) ∀ i = 1, 2

Two touching sheets with algebraic condition. No bound states



Interpolating massless flows

Left-right, right-left S-matrices do depend on M: |u0| → − log m + log 2M

u1 − u2 = |u0|+ ν1,+ − (− |u0|+ ν2,−) = 2|u0|+ ν1,+ − ν2,−

Left-left and right-right S-matrices do not (formally retain standard features):

u1 − u2 = |u0|+ ν1,+ − (|u0|+ ν2,+) = ν1,+ − ν2,+

M →∞ (MR in TBA) −→ IR fixed-point CFT via `` and rr S-matrices

Massive integrable −→ Massless non scale-invariant −→ IR CFT

cf. Bazhanov-Lukyanov-Zamolodchikov: characterising CFT as integrable FT





Thermodynamic Bethe ansatz in a nutshell

Put theory on a torus Zamolodchikov 1990

spatial circle radius R - time circle radius L

at large L, partition function Z ∼ e−E(R)L

where E(R) is the ground state energy on a finite circle

Relativistic invariance (double Wick rot): same theory on spatial L, time R

Partition function is the same, but now at large space with periodic time

−→ can use S-matrix and Bethe equations

Z = tr e−RH temperature β ∼ 1
R

Minimising free energy with the Bethe eq as constraint gives TBA equations

solution gives original ground state energy E(R)

Dialing dimensionless param MR moves along flow. Towards IR E(R) ∼ −πc
6R

with c CFT central charge



Example of massless flow: Tricritical to critical Ising Zamolodchikov 1991

S1(s) = iM2−s
iM2+s

S2(s) = S1(−s) = 1
S1(s)

respectively, crossing and br. unit.

S1(s∗) = S∗2 (s) real analyticity (assume M is real)

No poles in physical region (massless particles form no bound states)

Physical unitarity: S is a pure phase for real momenta

E1 = p1 = M
2

eθ1 E2 = −p2 = M
2

eθ2 s = M2eθ θ = θ1 − θ2 (rel inv - diff form)

S = i−eθ

i+eθ
= − tanh

[
θ
2
− i π

4

]
S(θ) = 1

S(θ+iπ)
= 1

S(−θ)

• TBA reveals

MR → 0 cUV = 7
10

(tricritical Ising model)

MR →∞ cIR = 1
2

(critical Ising model)

cUV > cIR (Zamolodchikov’s theorem)

IR theory: free 2D Majorana fermion (S-matrix→ 1 at M →∞)

Seff = 1
2π

∫
d2x(ψ∂̄ψ + ψ̄∂ψ̄)− 1

π2M2

∫
d2x(ψ∂ψ)(ψ̄∂̄ψ̄) + ...



Yangian interlude - if time permits



Principal chiral model prelude - if time permits



Quantisation of the Kadomtsev-Petviashvili Equation

with Karol Kozlowski (Lyon) and Evgeny Sklyanin (York)

based on Teor. Mat. Fiz. 192 (2017) 259 - 1607.07685



Why this section?

• (First and foremost: chance to plug in some of my work...)

• The KP equation is a universal integrable system of crucial importance

• Practise what we have learnt on a difficult problem

• Having a go at 3D integrability “lasciate ogni speranza...”

• Tell you the things which I have religiously learnt from my collaborators

• Great deal of questions we need young people to tell us the answer to

• Convince you all to start working on it



Classical KP equation

• Konopelchenko, “Introduction to multidimensional integrable equations...”, Springer, 1993

• Biondini, Pelinovsky, “Kadomtsev-Petviashvili equation”, Scholarpedia, 2008



Kadomtsev-Petviashvili equation
[Kadomtsev, B. B., Petviashvili, V. I. (1970), Sov. Phys. Dokl. 15 (1970) 539]

Non-linear PDE in 2 + 1D

u = u
(
X ,Y , t

)
perturbation profile of long waves with

• small amplitude

• weak dependence on Y (transverse) vs. X (longitudinal)
coordinate w.r.t direction of motion

∂X

(
∂tu + u ∂Xu + ε2 ∂XXXu

)
+ λ∂YY u = 0

Parameters: ε ∈ R λ = ±1



Partial Chronology

• ’67 Gardner-Green-Kruskal-Miura −→ Inverse scattering for KdV

• ’70 K-P −→ Long ion-acoustic waves in plasmas

Adding transverse dynamics to KdV and studying stability of solitons

• ’74 Dryuma −→ Lax-pair formulation

• ’74 Zakharov-Shabat −→ Inverse scattering for KP

Rich set of soliton solutions found

• ’79 Ablowitz-Segur −→ Application to water waves

• ’86 Fokas-Santini −→ Bi-Hamiltonian structure



Comments

• Although classically possible −→ we do not rescale away ε2

Quantisation introduces ~ which couples to dimensionful constants

• Two types:

• λ = −1 KP-I high surface tension - positive dispersion

−→ Lump solitons

• λ = 1 KP-II small surface tension - negative dispersion

−→ Resonant multi-solitons and Web structures

• Both types have Line solitons −→ KdV solitons with no Y -dep.

• KP-I Line solitons unstable

• KP-II Line solitons stable

• Perfect balance of non-linearity and dispersion −→ Integrable

• Universal integrable eq. −→ Universal quantum integrable system?





Preparing for Quantisation

Construct a theory of particles which reduces to KP when ~→ 0

New var. u = 2βλφ X = −λσ Y = x γ = −λε2

Equation becomes

φtσ − φxx − 2β(φφσ)σ + γφσσσ = 0

Assume: β > 0 (if not, φ→ −φ) −→ Unitary transf. in quantum case

Trick: Kaluza-Klein compactification of the ocean!
Preserves integrability (but upsets God...)

x ∈ R σ ∈ [0, 2π] periodic b.c. −→ reduces to 1+1 D problem (for now)



1 + 1 D integrable field theory with KK tower

Assume φ→ 0 suff. fast as x → ±∞ and 1
2π

∫ 2π

0
φ dσ = 0

First few conserved charges

σ − transl h0 ≡M =
1

2
φ2 M =

∫ 2π

0

dσ

2π

∫ ∞
−∞

dxM

x − transl h1 ≡ P =
1

2

(
∂−1
σ φ

)
∂xφ P =

∫ 2π

0

dσ

2π

∫ ∞
−∞

dx P

t − transl h2 ≡ H =
1

2

(
∂−2
σ φ

)
∂2

xφ+
β

3
φ3 +

γ

2

(
∂σφ

)2

’84 Case: higher charges hp = 1
2

(
∂−p
σ φ

)
∂p

xφ+O(β) +O(γ) p ∈ N

Notice: ∂−1
σ ≡ 1

2

∫ σ
0

dσ
2π
− 1

2

∫ 2π

σ
dσ
2π



Poisson structure

KP equation recovered by ∂tφ = {φ,H} followed by ∂σ
to cancel some ∂−1

σ

with Poisson brackets (’86 Lipovskii)

{φ(σ, x), φ(σ̃, y)} = 2π δ(x − y) δ′(σ − σ̃)

Non-ultralocal in σ ∈ (0, 2π) Known problem for integrability −→

• Galilei symmetry x → x + 2vt σ → σ + vx + v2t

−→ boost:
∫ σ

0
dσ
2π

∫∞
−∞ dx x h0 s.t. {B,Hp} = p Hp−1

where Hp =
∫ σ

0
dσ
2π

∫∞
−∞ dx hp



Quantisation



Canonically Quantise

φ ∈ R −→ φ† = φ −→ φ =
∑
n∈Z

an(x) e−inσ

with

a†n(x) = a−n(x)

Moreover a0(x) = 0 average of φ is central w.r.t. P.B. and = 0

{., .} −→ [.,.]
i~ followed by ~→ 1

Redefining the modes

ψn(x) ≡ n−
1
2 an(x) n = 1, 2, ...

[ψm(x), ψ†n (y)] = δmn δ(x − y) non-ultralocality reabsorbed



Second Quantisation

Postulate vacuum and creators/annihilators

|0〉 s.t. ψm(x)|0〉 = 0 ∀ x ∈ R m = 1, 2, ...

Lowest-weigth (Fock) rep. of Heisenberg algebra

span{ψ†m1
(x1)...ψ†mN

(xN )|0〉 |mi ∈ N, xi ∈ R, i = 1, .2, ...,N}

Commuting creators −→ bosons

Conserved quantities quantised by

• plugin field expansion

• normal order - creators to the left



Conserved Charges

Total Mass

M =

∫ 2π

0

dσ

2π

∫ ∞
−∞

dx
1

2
φ2 −→

∞∑
m=1

m

∫ ∞
−∞

dx ψ†m(x)ψm(x)

Total Momentum

P =

∫ 2π

0

dσ

2π

∫ ∞
−∞

dx
1

2

(
∂−1
σ φ

)
∂xφ −→ − i

∞∑
m=1

∫ ∞
−∞

dx ψ†m(x)∂xψm(x)

Total Energy

H =

∫ 2π

0

dσ

2π

∫ ∞
−∞

dx

[
1

2

(
∂−2
σ φ

)
∂2

xφ+
β

3
φ3 +

γ

2

(
∂σφ

)2
]

−→



Quantum Hamiltonian

−→

H = −
∞∑

m=1

1

m

∫ ∞
−∞

dx ψ†m(x)∂2
xψm(x) +

∞∑
m=1

γm

∫ ∞
−∞

dx ψ†m(x)ψm(x)

+
∞∑

m1,m2=1

βm1m2

∫ ∞
−∞

dx
[
ψ†m1+m2

(x)ψm1 (x)ψm2 (x) + ψ†m1
(x)ψ†m2

(x)ψm1+m2 (x)
]

βm1m2 = β
√

m1m2(m1 + m2) γm = γm3 real parameters

Hermitean Hamiltonian composed of

• (Non-relativistic) kinetic term

• (Non-relativistic) zero-point energy

• Total-mass preserving three-particle interactions

Number of particles is not conserved



Comments

Assume β > 0

If not

U†ψmU = −ψm U†ψ†mU = −ψ†m U = exp

[
iπ
∞∑

m=1

∫ ∞
−∞

dx ψ†m(x)ψm(x)

]
If β = 0 −→ Free particles of mass m and zero-point energy γm3

Two possibilities:

• γ < 0 KP-I −→ positive zero-point energy

• γ > 0 KP-II −→ Unbounded below, but conservation laws

• γ = 0 −→ Dispersionless KP

Boost
∑∞

m=1 m
∫∞
−∞ dx x ψ†m(x)ψm(x)



Bethe Ansatz and S-matrix



Spectrum of the Hamiltonian

Organise states by total mass

• M = 0

|Φ0〉 = |0〉 E0 = 0

• M = 1

|Φ1〉 =

∫ ∞
−∞

dx f1|1x ψ†1 (x)|0〉 f1|1x ≡ e ipx E1 = p2 + γ

f1|1x wave function fnr of particles|
masses
locations



Mass-2 sector

• M = 2

|Φ2〉 =

∫
x1<x2

dx1 dx2 f2|1 1
x1x2

ψ†1 (x1)ψ†2 (x2)|0〉 +

∫ ∞
−∞

dx f1|2x ψ†2 (x)|0〉

Scattering state

f2|1 1
x1x2

= e ip1x2+ip2x1 + S(p1, p2) e ip1x1+ip2x2

f1|2x = R(p1, p2) e i(p1+p2)x E2 = p2
1 + p2

2 + 2γ

Two-particle S-matrix

S(p1, p2) = S(p1 − p2) = −P(ip2 − ip1)

P(ip1 − ip2)
= S−1(p2, p1) Galilei invar - braiding unitar

R(p1, p2) =
4
√

2 iβ (p2 − p1)

P(ip1 − ip2))
P(v) = v 3+12γv−4β2 no quadratic term!

particular limit of affine Toda AN→∞ S-matrix (infinitely many fields)



General solution

Infinite set of auxiliary Schrödinger problems

|ΦM〉 =
M∑

N=1

1

N!

∑
~m∈NN

∫
RN

dx1...dxN fN |~m~x
N∏

j=1

ψ†mj
(xj ) |0〉

Solve for wave functions

〈ψ†m1
(x1)...ψ†mN

(xN )| (H − EM ) |ΦM〉 = 0

turns into coupled PDEs:

−
N∑

i=1

1

mi

∂
2
xi

fN |
m1...mN
x1 ... xN

+
N∑

i=1

γmi
fN |

m1...mN
x1 ... xN

+ 2
∑

1≤i1<i2≤N

βmi1
mi2

fN−1|
m1...∪...∪...mN (m1+m2)
x1 ...∪...∪... xN xi1

δ(xi1
− xi2

) missing mi1
mi2

+
N∑

k=1

∑
n1,n2∈N+

δn1+n2,mk
βn1n2

fN+1|
m1...∪...mN n1 n2
x1 ...∪... xN xk xk

missing mk

= EM fN |
m1...mN
x1 ... xN

∀ N = 1, ...,∞

R(p1, p2) =
4
√

2 iβ (p2 − p1)

P(ip1 − ip2))
P(v) = v3 + 12γv − 4β2 no quadratic term!



Integrability

• Seemingly impossible −→ but quantisation should preserve integrability

Two-body problem encodes all the info

• We have conjectured a general Bethe Ansatz :

• recursively uses two-body data

• tested with computer algebra up to total mass M = 8

• The solution is expressed in terms of compositions (bosonic symmetry)

• Need proof of master combinatoric formula

• Treatment of delta-functions −→



Delta-functions as boundary conditions

E.g. M = 2

(−∂2
1 − ∂2

2 + 2γ) f2|1 1
x1x2

+ 2
√

2β f1|2x1
δ(x1 − x2) = E2 f2|1 1

x1x2(
− 1

2
∂2

x + 8γ
)
f1|2x +

√
2β f2|1 1

x x = E2 f1|2x

Separate domains

f2|1 1
x1x2
≡ f+(x1, x2) Θ(x1 − x2) + f−(x1, x2) Θ(x2 − x1)

plug-in and collect terms

from Θ (−∂2
1 − ∂2

2 + 2γ) f2|1 1
x1x2

= E2 f2|1 1
x1x2

x1 6= x2

from δ’ f+(x , x) = f−(x , x)

from δ (−∂1 + ∂2)f+(x , x) + (∂1 − ∂2)f−(x , x) =
√

2β f1|2x

Bose symmetry −→ f+(x1, x2) = f−(x2, x1) hence

2(∂1 − ∂2)f+(x , x) =
√

2β f1|2x



Examples

“Leading” part

fN |1 ... 1
x1...xN

=
∑
σ∈SN

N∏
j<k=1

P
(
ipσ(k) − ipσ(j)

)
exp

[
i

N∑
i=1

pσ(i)xi

]
E.g. M = 3

f3|
1 1 1
x1x2x3

=
∑
σ∈S3

3∏
j<k=1

P
(

ipσ(k) − ipσ(j)

)
exp

[
i

3∑
i=1

pσ(i)xi

]

f2|
2 1
x12x3

=
i
√

2β

∑
σ∈S3

(−)σ
3∏

j<k=1

P
(

ipσ(k) − ipσ(j)

)
(pσ(2) − pσ(1)) exp

[
i(pσ(1) + pσ(2))x12 + ipσ(3)x3

]

f1|
3
x123

= −
1

√
2β β12

∑
σ∈S3

(−)σ
3∏

j<k=1

P
(

ipσ(k) − ipσ(j)

) [
(pσ(3) − pσ(2))(pσ(2) + pσ(3) − 2pσ(1))−

(pσ(2) − pσ(1))(pσ(1) + pσ(2) − 2pσ(3))
]

exp

[
i(pσ(1) + pσ(2) + pσ(3))x123

]

These are all scattering states for real momenta (continuum spectrum)


