Introduction to Classical and Quantum Integrability

Alessandro Torrielli

University of Surrey, UK

Bicocca-Surrey school

Prospects in Fields, Strings and Related Topics

Summary

1. From classical to quantum - The non-linear Schrödinger eq.
2. Classical and quantum R-matrices. Exact S-matrices
3. Bethe-ansatz and thermodynamics. Massless flows
4. Quantisation of the Kadomtsev-Petviashvili (KP) equation with K. Kozlowski and E. Sklyanin

1. From classical to quantum integrability

Based on AT, arXiv:1606.02946
and on

- Babelon, Bernard, Talon, "Introduction to classical integrable systems" Cambridge U. Press, 2003
- Faddeev, Takhtajan, "Hamiltonian methods in the theory of solitons", Springer, 1987
- Dunajski, "Integrable systems", U. of Cambridge lecture notes, 2012 [available online]
- Beisert, "Introduction to integrability", ETH lecture notes, 2017 [available online]
- Bombardelli et al., "An integrability primer for the gauge-gravity correspondence: an introduction", 2016, arxiv:1606.02945

The Chronicles

- Exact solutions to Newton's equations hard to come by

Kepler problem exactly solved by Newton himself

- 1800s Liouville integrability for Hamilt. systems \longrightarrow quadratures.
- 1900s systematic method of the classical inverse scattering

Gardner, Green, Kruskal and Miura in 1967 solved Korteweg-deVries (KdV) equation of fluid mechanics

- Quantum mechanical version of the inverse scattering method 1970s by Leningrad - St. Petersburg school
connection to Drinfeld and Jimbo's theory of quantum groups
\rightarrow single math. framework for integrable QFT (Zamolodchikov ${ }^{2}$) and lattice spin systems (Baxter).
- Nowadays integrability in different areas of maths and math-phys

L. Faddeev once wrote in $1996 . .$.

"One can ask, what is good in $1+1$ models, when our spacetime is $3+1$ dimensional. There are several particular answers to this question.

1. The toy models in $1+1$ dimension can teach us about the realistic field-theoretical models in a nonperturbative way. Indeed such phenomena as renormalisation, asymptotic freedom, dimensional transmutation (i.e. the appearance of mass via the regularisation parameters) hold in integrable models and can be described exactly.
2. There are numerous physical applications of the $1+1$ dimensional models in the condensed matter physics.
3. The formalism of integrable models showed several times to be useful in the modern string theory, in which the world-sheet is 2 dimensional anyhow. In particular the conformal field theory models are special massless limits of integrable models.
4. The theory of integrable models teaches us about new phenomena, which were not appreciated in the previous developments of Quantum Field Theory, especially in connection with the mass spectrum.
5. I cannot help mentioning that working with the integrable models is a delightful pastime. They proved also to be very successful tool for the educational purposes.

These reasons were sufficient for me to continue to work in this domain for the last 25 years (including 10 years of classical solitonic systems) and teach quite a few followers, often referred to as Leningrad - St. Petersburg school."

Liouville's theorem

Consider Hamilt. system with $2 d$-dim. phase space and $H=H\left(q_{\mu}, p_{\mu}\right)$

$$
\left(q_{\mu}, p_{\mu}\right) \quad \mu=1, \ldots, d
$$

Poisson brackets

$$
\left\{q_{\mu}, q_{\nu}\right\}=\left\{p_{\mu}, p_{\nu}\right\}=0 \quad\left\{q_{\mu}, p_{\nu}\right\}=\delta_{\mu \nu} \quad \forall \mu, \nu=1, \ldots, d
$$

Liouville integrable if $\exists d$ indep. integrals of motion $F_{\nu}\left(q_{\mu}, p_{\mu}\right)$ globally defined and in involution:

$$
\left\{F_{\mu}, F_{\nu}\right\}=0 \quad \forall \mu, \nu=1, \ldots, d
$$

- pointwise linear independence of the set of gradients ∇F_{μ}
- we take the Hamiltonian to be F_{1}

Theorem (Liouville)
E.o.m.s of a Liouville-integrable system can be solved "by quadratures"

Upshot: \exists canonical transf.

$$
\omega=d p_{\mu} \wedge d x^{\mu}=d I_{\mu} \wedge d \theta^{\mu}
$$

s.t. - all new momenta I_{μ} are integrals of motion and $H=H\left(I_{\mu}\right)$

- time-evolution of new coordinates is simply linear

$$
\frac{d \theta_{\mu}}{d t}=\frac{\partial H}{\partial I_{\mu}}=\text { constant in time }
$$

\rightarrow solution by straightforward integration (performing one quadrature)

Typically mfld of const. I_{μ} is d-torus (Liouville-Arnold theorem) param. by $\theta_{\mu} \in[0,2 \pi)$
Motion occurs on such torus
Action-Angle variables

Typical example: harmonic oscillator

$$
H=\frac{1}{2}\left(p^{2}+q^{2}\right) \quad \text { conserved }
$$

The appropriate coordinate θ depends linearly on time:

$$
q=\sqrt{2 E} \cos \theta=\sqrt{2 E} \cos (t+\phi)
$$

for an initial phase ϕ and energy $E=r$.
Action-angle variables are the polar coordinates in the $(x, y)=(q, p)$ plane

One can have more than d integrals of motion (not all in involution)
\longrightarrow superintegrable system
Maximally superintegrable system $\longrightarrow 2 d-1$ integrals of motion
Closed orbits - e.g. Kepler problem

But how can we find such integrals of motion?

Let us focus on algebraic methods \longrightarrow

Lax pairs

Suppose \exists matrices L, M (Lax pair) s.t. e.o.m.s equivalent to:

$$
\frac{d L}{d t}=[M, L]
$$

These (not all indep.) quantites are all conserved:

$$
I_{n} \equiv \operatorname{tr} L^{n} \quad \frac{d I_{n}}{d t}=\sum_{i=0}^{n-1} \operatorname{tr} L^{i}[M, L] L^{n-1+i}=0 \quad \forall n
$$

Lax pair not unique:

$$
L \longrightarrow g L g^{-1} \quad M \longrightarrow g M g^{-1}+\frac{d g}{d t} g^{-1}
$$

We regard L and M as elements of some matrix algebra \mathfrak{g}. Define

$$
X_{1} \equiv X \otimes 1, \quad X_{2} \equiv 1 \otimes X \quad \in \mathfrak{g} \otimes \mathfrak{g}
$$

L, M may depend on "spectral" parameter λ

Theorem

The eigenvalues of L are in involution iff $\exists r_{12} \in \mathfrak{g} \otimes \mathfrak{g}$ s.t

$$
\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]-\left[r_{21}, L_{2}\right]
$$

$r_{21}=\Pi \circ r_{12} \quad \Pi$ permutation operator on $\mathfrak{g} \otimes \mathfrak{g}$
Jacobi identity requires

$$
\left[L_{1},\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]+\left\{L_{2}, r_{13}\right\}-\left\{L_{3}, r_{12}\right\}\right]+\text { cyclic }=0
$$

Harmonic osc. example
If r_{12} constant indep. on dynamical variables \rightarrow

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0 \quad \text { is sufficient condition }
$$

Classical Yang-Baxter equation (CYBE)
If we require antisymmetry

$$
r_{12}=-r_{21}
$$

then r_{12} called constant "classical r-matrix"

Field-theory Lax pair

Suppose $\exists L, M$ s.t Euler-Lagrange equations are equiv. to

$$
\frac{\partial L}{\partial t}-\frac{\partial M}{\partial x}=[M, L]
$$

Such field theories are 'classically integrable"
Define monodromy matrix

$$
\begin{aligned}
& T(\lambda)=P \exp \left[\int_{a}^{b} L(x, t, \lambda) d x\right] \\
\partial_{t} T= & \int_{a}^{b} d x P \exp \left[\int_{x}^{b} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right]\left[\partial_{t} L(x, t, \lambda)\right] P \exp \left[\int_{a}^{x} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right] \\
= & \int_{a}^{b} d x P \exp \left[\int_{x}^{b} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right]\left(\frac{\partial M}{d x}+[M, L]\right) P \exp \left[\int_{a}^{x} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right] \\
= & \int_{a}^{b} d x \partial_{x}\left(P \exp \left[\int_{x}^{b} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right] M P \exp \left[\int_{a}^{x} L\left(x^{\prime}, t, \lambda\right) d x^{\prime}\right]\right) \\
= & M(b) T-T M(a)
\end{aligned}
$$

Periodic b.c.

$$
\partial_{t} T=[M(a), T]
$$

This implies that the trace of T, called the transfer matrix

$$
\mathfrak{t} \equiv \operatorname{tr} T
$$

is conserved for all λ spectral parameter
By Taylor-expanding in $\lambda \rightarrow$ family of conserved charges
Suppose $\exists r$-matrix s.t.

$$
\left\{L_{1}(x, t, \lambda), L_{2}(y, t, \mu)\right\}=\left[r_{12}(\lambda-\mu), L_{1}(x, t, \lambda)+L_{2}(y, t, \mu)\right] \delta(x-y)
$$

with the r-matrix $r_{12}(\lambda-\mu)$ indep. of the fields and antisymmetric
Theorem (Sklyanin Exchange Relations)

$$
\left\{T_{1}(\lambda), T_{2}(\mu)\right\}=\left[r_{12}(\lambda-\mu), T_{1}(\lambda) T_{2}(\mu)\right]
$$

This means

$$
[\mathfrak{t}(\lambda), \mathfrak{t}(\mu)]=0 \quad \text { by applying } \operatorname{tr} \otimes t r
$$

All charges are in involution (by Taylor expansion)
The Poisson brackets are called "ultra-local" - no derivatives of Dirac delta

Example: Sklyanin's treatment of Non-linear Schrödinger equation

[Sklyanin, "Quantum version of the method of inverse scattering problem", 1980]
Non-relativistic $1+1$ dimensional field theory with Hamiltonian

$$
\begin{gathered}
H=\int_{-\infty}^{\infty} d x\left(\left|\frac{\partial \psi}{\partial x}\right|^{2}+\kappa|\psi|^{4}\right), \quad \psi(x) \in \mathbb{C} \quad \text { assume } \kappa>0 \\
\left\{\psi(x), \psi^{*}(y)\right\}=i \delta(x-y) \quad i \frac{\partial \psi}{\partial t}=\{H, \psi\}=-\frac{\partial^{2} \psi}{\partial x^{2}}+2 \kappa|\psi|^{2} \psi \quad \text { (hence the name) }
\end{gathered}
$$

Lax pair

$$
L=\left(\begin{array}{cc}
-i \frac{u}{2} & i \kappa \psi^{*} \\
-i \psi & i \frac{u}{2}
\end{array}\right) \quad M=\left(\begin{array}{cc}
i \frac{u^{2}}{2}+i \kappa|\psi|^{2} & \kappa \frac{\partial \psi^{*}}{\partial x_{2}}-i \kappa u \psi^{*} \\
\frac{\partial \psi}{\partial x}+i u \psi & -i \frac{L^{2}}{2}-i \kappa|\psi|^{2}
\end{array}\right)
$$

Monodromy matrix

$$
\begin{aligned}
& T(u)=\left(\begin{array}{cc}
a(u) & \kappa b^{*}(u) \\
b(u) & a^{*}(u)
\end{array}\right) \text { take } u \text { real and then anal. cont. + call extrema } s_{ \pm} \text {for no confusion } \\
& a(u)=e^{-i \frac{u}{2}\left(s_{+}-s_{-}\right)}\left[1+\sum_{n=1}^{\infty} \kappa^{n} \int_{s_{+}>\xi_{n}>\eta_{n}>\xi_{n-1} \ldots>\eta_{1}>s_{-}} d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n}\right. \\
& \left.e^{i u\left(\xi_{1}+\ldots+\xi_{n}-\eta_{1}-\ldots-\eta_{n}\right)} \psi^{*}\left(\xi_{1}\right) \ldots \psi^{*}\left(\xi_{n}\right) \psi\left(\eta_{1}\right) \ldots \psi\left(\eta_{n}\right)\right] \\
& b(u)=-i e^{i \frac{u}{2}\left(s_{+}+s_{-}\right)} \sum_{n=0}^{\infty} \kappa^{n} \int_{s_{+}>\eta_{n+1}>\xi_{n}>\eta_{n}>\xi_{n-1} \ldots>\eta_{1}>s_{-}} d \xi_{1} \ldots d \xi_{n} d \eta_{1} \ldots d \eta_{n+1} \\
& e^{i u\left(\xi_{1}+\ldots+\xi_{n}-\eta_{1}-\ldots-\eta_{n+1}\right)} \psi^{*}\left(\xi_{1}\right) \ldots \psi^{*}\left(\xi_{n}\right) \psi\left(\eta_{1}\right) \ldots \psi\left(\eta_{n+1}\right)
\end{aligned}
$$

Taking $s_{ \pm} \rightarrow \pm \infty$ we have local charges

$$
\begin{aligned}
& \mathfrak{I}_{1}=\int_{-\infty}^{\infty} d x|\psi|^{2} \quad \mathfrak{I}_{2}=\frac{i}{2} \int_{-\infty}^{\infty} d x\left(\frac{\partial \psi^{*}}{\partial x} \psi-\psi^{*} \frac{\partial \psi}{\partial x}\right) \\
& \mathfrak{I}_{3}=H \quad \mathfrak{I}_{m}=\int_{-\infty}^{\infty} d x \psi^{*} \chi_{m} \quad \chi_{m+1}=-i \frac{d \chi_{m}}{d x}+\kappa \psi^{*} \sum_{s=1}^{m-1} \chi_{s} \chi_{m-s}
\end{aligned}
$$

Upon quantisation, the first charge corresponds to the particle number, the second one to the momentum, the third one to the Hamiltonian

Sklyanin shows $\exists r$ s.t.

$$
\left\{T_{1}(\lambda), T_{2}(\mu)\right\}=\left[r_{12}(\lambda-\mu), T_{1}(\lambda) T_{2}(\mu)\right]
$$

Action-angle type variables are those for which "the Hamiltonian H can be written as a quadratic form (and the equations of motion, correspondingly, become linear)." (E. Sklyanin)
\longrightarrow Sklyanin's separation of variables
[classical and quantum - open problems]

Classical r-matrix for NLS

$$
\begin{gathered}
\left\{T_{1}(\lambda), T_{2}(\mu)\right\}=\left[r_{12}(\lambda-\mu), T_{1}(\lambda) T_{2}(\mu)\right] \\
r(\lambda-\mu)=-\frac{\kappa}{\lambda-\mu} P
\end{gathered}
$$

P is the permutation matrix

$$
P|u\rangle \otimes|v\rangle=|v\rangle \otimes|u\rangle
$$

Prototypical solution of classical Yang-Baxter equation

$$
\left[r_{12}\left(u_{1}-u_{2}\right), r_{13}\left(u_{1}-u_{3}\right)\right]+\left[r_{12}\left(u_{1}-u_{2}\right), r_{23}\left(u_{2}-u_{3}\right)\right]+\left[r_{13}\left(u_{1}-u_{3}\right), r_{23}\left(u_{2}-u_{3}\right)\right]=0
$$

As we will now show...
... exact quantisation will be a mere matter of algebra

Belavin-Drinfeld classifications theorems

there is no smaller font than this one

Theorem (Belavin Drinfeld I)

Let \mathfrak{g} be a finite-dimensional simple Lie algebra, and $r=r\left(u_{1}-u_{2}\right) \in \mathfrak{g} \otimes \mathfrak{g}$ a solution of the (spectral-parameter dependent) classical Yang-Baxter equation. Furthermore, assume one of the following three equivalent conditions:

- (i) r has at least one pole in the complex plane $u \equiv u_{1}-u_{2}$, and there is no Lie subalgebra $\mathfrak{g}^{\prime} \subset \mathfrak{g}$ such that $r \in \mathfrak{g}^{\prime} \otimes \mathfrak{g}^{\prime}$ for any u,
- (ii) $r(u)$ has a simple pole at the origin, with residue proportional to the tensor Casimir $\sum_{a} t_{a} \otimes t_{a}$, with t_{a} a basis in \mathfrak{g} orthonormal with respect to a chosen nondegenerate invariant bilinear form,
- (iii) the determinant of the matrix $r_{a b}(u)$ obtained from $r(u)=\sum_{a b} r_{a b}(u) t_{a} \otimes t_{b}$ does not vanish identically.
Under these assumptions, $r_{12}(u)=-r_{21}(-u)$ where $r_{21}(u)=\Pi \circ r_{12}(u)=\sum_{a b} r_{a b}(u) t_{b} \otimes t_{a}$, and $r(u)$ can be extended meromorphically to the entire u-plane. All the poles of $r(u)$ are simple, and they form a lattice Γ. One has three possible equivalence classes of solutions: "elliptic" - when Γ is a two-dimensional lattice -, "trigonometric" - when Γ is a one-dimensional array -, or "rational"- when $\Gamma=\{0\}$-, respectively.

The assumption of difference-form is not too restrictive:

Theorem (Belavin Drinfeld II)

Assume the hypothesis of Belavin-Drinfeld I theorem to hold (appropriately adapted) but $r=r\left(u_{1}, u_{2}\right)$ not to be of difference form, with the classical Yang-Baxter equation being

$$
\left[r_{12}\left(u_{1}, u_{2}\right), r_{13}\left(u_{1}, u_{3}\right)\right]+\left[r_{12}\left(u_{1}, u_{2}\right), r_{23}\left(u_{2}, u_{3}\right)\right]+\left[r_{13}\left(u_{1}, u_{3}\right), r_{23}\left(u_{2}, u_{3}\right)\right]=0
$$

Now the three statements (i), (ii) and (iii) are no longer equivalent, and we will only retain (ii). Then, there exists a transformation which reduces r to a difference form.

Quantisation by "Quantum group"

Completing the classical algebraic structure to a quantum group \leftrightarrow
going from r to a solution to the quantum Yang-Baxter Equation

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}, \quad R_{i j} \sim 1 \otimes 1+i \hbar r_{i j}+\mathcal{O}\left(\hbar^{2}\right)
$$

and quantise Sklyanin relations by postulating "RTT" relations

$$
R\left(u-u^{\prime}\right) \widehat{T}_{1}(u) \widehat{T}_{2}\left(u^{\prime}\right)=\widehat{T}_{2}\left(u^{\prime}\right) \widehat{T}_{1}(u) R\left(u-u^{\prime}\right) \quad \widehat{T}(u)=T(u)+\mathcal{O}(\hbar)
$$

for NLS coincides with normal ordering prescription of ψ, ψ^{\dagger} on finite interval with periodic b.c.
The classical limit is literally

$$
\{A, B\}=\lim _{\hbar \rightarrow 0} \frac{i[A, B]}{\hbar}
$$

Integrability manifest: tower of commuting charges by tracing RTT relations
In the NLS case: $\quad R(\lambda-\mu)=1 \otimes 1-\frac{i \hbar \kappa}{\lambda-\mu} P$

The three cases of the Belavin-Drinfeld theorem correspond to how a classical r-matrix (resp. classical Lie bi-algebra) is quantised into (e.g. the small \hbar limit of) one of the possible quantum R-matrices (resp. quantum groups):

- rational \longrightarrow quantise to Yangians
- trigonometric \longrightarrow quantise to trigonometric quantum groups (Jimbo-Drinfeld)
- elliptic \longrightarrow quantise to elliptic quantum groups (Sklyanin, Felder)
[Etingof-Kazhdan]
Spin chains follow the pattern: $X X X, X X Z, X Y Z$
or, Heisenberg, 6-vertex model - Sine Gordon, 8-vertex model - Baxter

Example: from rational classical r-matrix to Yangians

$r=\frac{T^{a} \otimes T_{3}}{u_{1}-u_{2}}$ prototypical solution of CYBE
("Yang's solution")
T^{a} generate Lie algebra \mathfrak{g} - contraction done with Killing form
Seeking more abstract rewriting:
$r=\sum_{n=0}^{\infty} T^{a} \otimes T_{a} u_{1}^{-n-1} u_{2}^{n} \quad$ if $\left|u_{1}\right|<\left|u_{2}\right|$
which means
$r=\sum_{n=0}^{\infty} T_{-n-1}^{a} \otimes T_{a, n}$
$T_{n}^{a}=u^{n} T^{a} \quad(*)$ and keep track of the spaces 1 and 2

These implies that the classical r-matrix is abstractly written in terms of an ∞ dimensional algebra
$\left[T_{n}^{a}, T_{m}^{b}\right]=i f_{c}^{a b} T_{m+n}^{c}$
Moreover, one can prove that r solves CYBE only using algebra comm. rels
of which $\left({ }^{*}\right)$ is merely a particular rep
[Exercise for the reader: proof of this statement]
Mathematicians then tell us that loop algebra quantise to Yangians in the sense of quantum groups, with Sklyanin's R for the NLS as R-matrix! circle is closed

MESSAGE we are learning here:
ALGEBRA is universal \rightarrow REPS are various physical realisations

It pays off to look for universal structures behind our formulae

What is the "quantum" R-matrix mathematically?

Algebraic setting \longrightarrow Hopf algebras

$$
R: V_{1} \otimes V_{2} \longrightarrow V_{1} \otimes V_{2} \quad \mathrm{R} \text { is called universal } \mathrm{R} \text {-matrix }
$$

V_{i} carries a representation of algebra $A \quad$ - endowed with multiplication and unit

We will assume A to be a Lie (super-)algebra

Additional structure: coproduct

$$
\Delta: A \longrightarrow A \otimes A
$$

$[\Delta(a), \Delta(b)]=\Delta([a, b])$ (homomorphism)

$$
\text { even } \Delta(a) \Delta(b)=\Delta(a b), \quad a, b, \in A
$$

$$
(P \Delta) R=R \Delta
$$

P (graded) permutation
$P \Delta$ 'opposite' coproduct $\Delta^{O P}$ ('out')

Lie algebras normally have 'trivial' coproduct

$$
\Delta^{o p}(Q)=\Delta(Q)=Q \otimes 1+1 \otimes Q \quad \forall Q \in A
$$

non trivial \rightarrow quantum groups
Hopf algebra: coproduct + extra algebraic structures e.g. antipode, counit + list of axioms

If time \longrightarrow Hopf algebra axioms

The Yangian is an ∞-dim non-abelian Hopf algebra
\{books \} [Chari-Pressley '94; Kassel '95; Etingof-Schiffmann '98]

$(\Sigma \otimes 1) R=R^{-1}=\left(1 \otimes \Sigma^{-1}\right) R \quad$ quasi-triangular - Drinfeld's theorem

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \quad \text { Yang-Baxter }
$$

$(\Delta \otimes 1) R=R_{13} R_{23} ; \quad(1 \otimes \Delta) R=R_{13} R_{12} \quad$ bootstrap

Example: $U_{q}[(s /(2)]$

$$
\left[h, e^{ \pm}\right]= \pm 2 e^{ \pm} \quad\left[e^{+}, e^{-}\right]=\frac{q^{h}-q^{-h}}{q-q^{-1}}
$$

$$
\begin{gathered}
\Delta(h)=h \otimes 1+1 \otimes h \quad \Delta\left(e^{ \pm}\right)=e^{ \pm} \otimes q^{\frac{h}{2}}+q^{-\frac{h}{2}} \otimes e^{ \pm} \\
R=q^{\frac{n \otimes h}{2}} \sum_{n \geq 0} \frac{\left(1-q^{-2}\right)^{n}}{[n]!} q^{\frac{n(n-1)}{2}}\left(q^{\frac{h}{2}} e^{+}\right)^{n} \otimes\left(q^{-\frac{h}{2}} e^{-}\right)^{n} \\
{[n]!=[n][n-1] \cdots \quad[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}}
\end{gathered}
$$

In the fundamental rep
$h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad e^{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad e^{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \quad \underline{R \text { becomes } 4 \times 4 \text { matrix }}$
Compute antipode

How does this help us finding the exact quantum spectrum?

Algebraic Bethe ansatz

compactify with periodic b.c. [Faddeev "How algebraic Bethe...", 1996; Levkovich-Maslyuk, arXiv:1606.02950]
Entries of $T \rightarrow$ quantum operators $\quad T(u)=\left(\begin{array}{cc}A(u) & \kappa B^{\dagger}(u) \\ B(u) & A^{\dagger}(u)\end{array}\right)$
normal ordering prescription
RTT relations imply in particular

$$
\begin{aligned}
& A(u) B^{\dagger}(v)=\left(1+\frac{i \kappa}{u-v}\right) B^{\dagger}(v) A(u)-\frac{i \kappa}{u-v} B^{\dagger}(u) A(v) \\
& {[B(u), B(v)]=0}
\end{aligned}
$$

The operator B^{\dagger} looks like creation op.: postulate \exists vacuum

$$
\begin{array}{r}
|0\rangle \text { s.t } B(u)|0\rangle=0 \quad \text { "no particles" } \\
\text { one can see } A(u)|0\rangle=e^{-i \frac{L}{2}}|0\rangle
\end{array}
$$

\longrightarrow vacuum is eigenstate of $A+A^{\dagger}$ - the transfer matrix (trace)
Then, $\left|u_{1}, \ldots, u_{M}\right\rangle=B^{\dagger}\left(u_{1}\right) \ldots B^{\dagger}\left(u_{M}\right)|0\rangle$ eigenstate of $A+A^{\dagger}$ iff Bethe eq.s

States look like magnons: e.g. $M=2$

$$
\begin{array}{r}
\int d x_{1} d x_{2}\left[\theta\left(x_{2}<x_{1}\right)+S\left(u_{1}-u_{2}\right) \theta\left(x_{1}<x_{2}\right)\right] e^{i u_{1} x_{1}+i u_{2} x_{2}} \psi^{\dagger}\left(x_{1}\right) \psi^{\dagger}\left(x_{2}\right)|0\rangle \\
S=\frac{u-v+i \kappa}{u-v-i \kappa} \text { with } u, v \text { satisfying certain algebraic condition } \longrightarrow
\end{array}
$$

Using field comm rels, directly proven to be energy eigenstate

$$
\left[\psi(x), \psi^{\dagger}(y)\right]=\delta(x-y) \quad \text { Energy }=u_{1}^{2}+u_{2}^{2}
$$

Similarly, directly resumming perturbation theory

Point is:
perturb. you create with ψ^{\dagger}, but exact eigenstates you create with B^{\dagger}

States are M travelling particles subject to Bethe Equations

exactly as Bethe would have written in 1931 on physical grounds - now called coordinate $B A$

$$
S_{k j}=S\left(p_{k} p_{j}\right)
$$

S-matrix

$$
S=\frac{u-v+i \kappa}{u-v-i \kappa}
$$

momentum
$p=u$

The key algebraic steps are then taken and applied mutatis mutandis in general

The R-matrix actually encodes everything

or, following onto Zamolodchikov's footsteps...
...the last vestiges of the S-matrix program
before QFT ever was

EXACT S-MATRICES

$$
\text { \{for reviews\} [P. Dorey '98; Bombardelli '15] }
$$

2D integrable massive S-matrices

- No particle production/annihilation
- Equality of initial and final sets of momenta
- Factorisation: $S_{M \longrightarrow M}=\prod S_{2 \longrightarrow 2}$
(all info in 2-body processes)

See how the Bethe equations are particle-preserving and factorised \longleftarrow

Extrapolate from relativistic case

$$
S_{2 \longrightarrow 2}=S\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right) \equiv S(\mathrm{u}) \quad\left[E_{i}=m_{i} \cosh \mathrm{u}_{i}, p_{i}=m_{i} \sinh \mathrm{u}_{i}\right]
$$

Unitarity

$$
S_{12}(u) S_{21}(-u)=1
$$

Crossing symmetry $\quad S_{12}(\mathrm{u})=S_{S_{21}}(i \pi-\mathrm{u})$

Yang-Baxter Equation (YBE) $\quad S_{12} S_{13} S_{23}=S_{23} S_{13} S_{12}$

- S-matrix real analytic: $S\left(s^{*}\right)=S^{*}(s)$

Mandelstam $s=2 m^{2}(1+\cosh u) \quad$ for equal masses

- S-matrix simple poles \leftrightarrow bound states

They occur at imaginary spatial momentum \leftrightarrow wave function decays at spatial infinity

$$
0<s<4 m^{2} \quad \leftrightarrow \quad \mathrm{u}=i \vartheta \quad \leftrightarrow \quad p=m \sinh \mathrm{u}=i m \sin \vartheta
$$

Bootstrap

$$
S_{B 3}(\mathrm{u})=\sum_{c}\left|R_{c}\right|^{-\frac{1}{2}} P_{c} S_{23}\left(u-i u_{12}^{B}\right) S_{13}\left(u+i u_{12}^{B}\right) \sum_{b}\left|R_{b}\right|^{\frac{1}{2}} P_{b}
$$

if residue of S -matrix at the pole is $\quad \sum_{a} R_{a} P_{a}$
[from Karowski '79]
E.g. $R=\frac{u}{u-1}\left(1 \otimes 1-\frac{P}{u}\right)$ with $P=$ permutation: only pole at $u=1$ with residue $1-P$

DRESSING FACTOR

$$
S(\mathrm{u})=\Phi(\mathrm{u}) \widehat{S}(\mathrm{u})
$$

$\widehat{S}(u)$ acts as 1 on highest weight state

- Dressing factor $\Phi(\mathrm{u})$ not fixed by symmetry, matrix $\widehat{S}(\mathrm{u})$ yes
- Dressing factor $\Phi(\mathrm{u})$ constrained by crossing $s_{12}(\mathrm{u})=s_{12}^{-1}(\mathrm{u}-i \pi)$
- Dressing factor $\Phi(\mathrm{u})$ essential for pole structure

Ex: Sine-Gordon at special value of coupling $\beta^{2}=\frac{16 \pi}{3} \longrightarrow$ repulsive regime: ∞ poles but none in physical region

$$
\Phi(u)=\prod_{\ell=1}^{\infty} \frac{\Gamma^{2}(\ell-\tau) \Gamma\left(\frac{1}{2}+\ell+\tau\right) \Gamma\left(-\frac{1}{2}+\ell+\tau\right)}{\Gamma^{2}(\ell+\tau) \Gamma\left(\frac{1}{2}+\ell-\tau\right) \Gamma\left(-\frac{1}{2}+\ell-\tau\right)} \quad \tau \equiv \frac{u}{2 \pi i}
$$

even though S is tanh and sech, and crossing implies $\Phi(u) \Phi(u+i \pi)=i \tanh \frac{u}{2}$

Universal R-matrix is abstract object which generates all S -matrices by projecting into irreps
$R \quad \longrightarrow$ fundam \otimes fundam $\quad S_{\text {fund } 1, \text { fund } 2}$
$\longrightarrow_{\text {b.state } \otimes \text { b.state }} \quad S_{\text {bound } 1, \text { bound } 2}$
$\longrightarrow{ }_{\text {inf.dim } \otimes i n f . d i m ~} \quad S_{\text {inf.1,inf. } 2}$
Inclusive of (minimal) dressing factors

The universal R-matrix for a class of (super-)algebras and their subalgebras controls both the monodromy-matrix exchange relations and generates the physical S-matrices

The universal R-matrix is dictated by the (usually infinite-dimensional) quantum-group symmetry of the problem, and can be written using the generators of the associated quantum group

The procedure to find the universal R-matrix is based on Drinfeld's double and the associated Drinfeld's theorem, and explicit formulas have been given by Khoroshkin and Tolstoy

Indeed algebraic Bethe ansatz solves integrable spin-chains as well

Insert exercise on supersymmetric chain - if time permits

Research in string theory and AdS/CFT uses integrability \longrightarrow adapting the standard framework to the more exotic environments

- incredibly rich representation theory
- non-standard quantum groups
- rich set of new boundary conditions
[Beisert et al. arXiv:1012.3982]
but we always go back to Faddeev, Zamolodchikov, etc. - and to all those nice papers with no archive version

Relation to CFT

\longrightarrow massless integrability

Bazhanov-Lukyanov-Zamolodchikov; Fendley-Saleur-Zamolodchikov

MASSLESS INTEGRABILITY: relativistic

[Zamolodchikov-Zamolodchikov '92, Fendley-Saleur-Zamolodchikov '93]

$$
E=m \cosh u \quad p=m \sinh u \quad E^{2}-p^{2}=m^{2}
$$

Lorentz boost $u \rightarrow u+b$: the two branches are connected

SEND $\quad m \rightarrow 0$

$$
E=\frac{m}{2}\left(e^{u}+e^{-u}\right) \quad p=\frac{m}{2}\left(e^{u}-e^{-u}\right)
$$

$$
u=u_{0}+\nu
$$

$\frac{m}{2} e^{\left|u_{0}\right|}=M=$ finite $\quad u_{0} \rightarrow \pm \infty \quad$ (boost to $|v|=c$)
ν fixed
Two branches of $E=\sqrt{p^{2}}$

- right moving $u_{0} \rightarrow+\infty$

$$
E=M e^{\nu_{+}} \quad p=M e^{\nu_{+}} \quad E=p \quad \nu_{+} \in(-\infty, \infty)
$$

- left moving $u_{0} \rightarrow-\infty$

$$
E=M e^{-\nu_{-}} \quad p=-M e^{-\nu_{-}} \quad E=-p \quad \nu_{-} \in(-\infty, \infty)
$$

- "Perturbative" intuition for left-left (right-right) scattering fails
- Left vs right: standard framework of integrability needs adaptation
- Still, \exists notion of Yang-Baxter: the 4 limiting S-matrices are solutions

Analyticity: Massive case $\quad s=2 m^{2}[1+\cosh u] \quad u \equiv u_{1}-u_{2}$
imaginary spatial momentum
wave function decays at spatial infinity
simple poles - bound states
review [P. Dorey '98]

Switching branch cuts (if allowed): consider $\ell r, r \ell$ [Zamolodchikov '91]

$S(s)=S_{1}(s) \quad$ if $\Im s>0, \quad S(s)=S_{2}(s) \quad$ if $\Im s<0$

Braiding Unitarity: $S_{1}(s) S_{2}(s)=1 \quad$ Crossing: $\quad S_{1}(s)=S_{2}\left(4 m^{2}-s\right)$
Now send $m \rightarrow 0$: shrinking of bound-state region

$$
S_{1}(s)=S_{2}(-s) \quad S_{i}(s) S_{i}(-s)=1 \text { (crossing-unitarity) } \quad \forall i=1,2
$$

Two touching sheets with algebraic condition. No bound states

Interpolating massless flows

Left-right, right-left S-matrices do depend on M :

$$
\left|u_{0}\right| \rightarrow-\log m+\log 2 M
$$

$$
u_{1}-u_{2}=\left|u_{0}\right|+\nu_{1,+}-\left(-\left|u_{0}\right|+\nu_{2,-}\right)=2\left|u_{0}\right|+\nu_{1,+}-\nu_{2,-}
$$

Left-left and right-right S-matrices do not (formally retain standard features):

$$
u_{1}-u_{2}=\left|u_{0}\right|+\nu_{1,+}-\left(\left|u_{0}\right|+\nu_{2,+}\right)=\nu_{1,+}-\nu_{2,+}
$$

$M \rightarrow \infty(M R$ in TBA $) \longrightarrow$ IR fixed-point CFT via $\ell \ell$ and r r S-matrices

$$
\text { Massive integrable } \longrightarrow \text { Massless non scale-invariant } \longrightarrow \text { IR CFT }
$$

cf. Bazhanov-Lukyanov-Zamolodchikov: characterising CFT as integrable FT

Thermodynamic Bethe ansatz in a nutshell

Put theory on a torus
spatial circle radius R - time circle radius L
at large L, partition function $Z \sim e^{-E(R) L}$
where $E(R)$ is the ground state energy on a finite circle
Relativistic invariance (double Wick rot): same theory on spatial L, time R Partition function is the same, but now at large space with periodic time
\longrightarrow can use S-matrix and Bethe equations
$Z=\operatorname{tr} e^{-R H}$ temperature $\beta \sim \frac{1}{R}$

Minimising free energy with the Bethe eq as constraint gives TBA equations solution gives original ground state energy $E(R)$

Dialing dimensionless param $M R$ moves along flow. Towards IR $E(R) \sim-\frac{\pi c}{6 R}$ with c CFT central charge

Example of massless flow: Tricritical to critical Ising

$S_{1}(s)=\frac{i M^{2}-s}{i M^{2}+s} \quad S_{2}(s)=S_{1}(-s)=\frac{1}{S_{1}(s)}$ respectively, crossing and br. unit.
$S_{1}\left(s^{*}\right)=S_{2}^{*}(s)$ real analyticity (assume M is real)

No poles in physical region (massless particles form no bound states)
Physical unitarity: S is a pure phase for real momenta

$$
\begin{aligned}
& E_{1}=p_{1}=\frac{M}{e_{1}^{\theta}} \quad E_{2}=-p_{2}=\frac{M}{2} e_{2}^{\theta} \quad s=M^{2} e^{\theta} \quad \theta=\theta_{1}-\theta_{2} \quad \text { (rel inv - diff form) } \\
& S=\frac{i-e^{\theta}}{i+e^{\theta}}=-\tanh \left[\frac{\theta}{2}-i \frac{\pi}{4}\right] \quad S(\theta)=\frac{1}{S(\theta+i \pi)}=\frac{1}{S(-\theta)}
\end{aligned}
$$

- TBA reveals
$M R \rightarrow 0 \quad C_{U V}=\frac{7}{10} \quad$ (tricritical Ising model)
$M R \rightarrow \infty \quad c_{\mathbb{R}}=\frac{1}{2} \quad$ (critical Ising model)
$c_{U V}>c_{\mathbb{R}}$ (Zamolodchikov's theorem)
IR theory: free 2D Majorana fermion $\quad(s$-matrix $\rightarrow 1$ at $M \rightarrow \infty)$

$$
S_{\text {eff }}=\frac{1}{2 \pi} \int d^{2} \times(\psi \bar{\partial} \psi+\bar{\psi} \partial \bar{\psi})-\frac{1}{\pi^{2} M^{2}} \int d^{2} \times(\psi \partial \psi)(\bar{\psi} \bar{\partial} \bar{\psi})+\ldots
$$

Yangian interlude - if time permits

Principal chiral model prelude - if time permits

Quantisation of the Kadomtsev-Petviashvili Equation

with Karol Kozlowski (Lyon) and Evgeny Sklyanin (York)
based on Teor. Mat. Fiz. 192 (2017) 259-1607.07685

Why this section?

- (First and foremost: chance to plug in some of my work...)
- The KP equation is a universal integrable system of crucial importance
- Practise what we have learnt on a difficult problem
- Having a go at 3D integrability
- Tell you the things which I have religiously learnt from my collaborators
- Great deal of questions we need young people to tell us the answer to
- Convince you all to start working on it

Classical KP equation

- Konopelchenko, "Introduction to multidimensional integrable equations...", Springer, 1993
- Biondini, Pelinovsky, "Kadomtsev-Petviashvili equation", Scholarpedia, 2008

Kadomtsev-Petviashvili equation

[Kadomtsev, B. B., Petviashvili, V. I. (1970), Sov. Phys. Dokl. 15 (1970) 539]
Non-linear PDE in $2+1 D$
$u=u(X, Y, t)$ perturbation profile of long waves with

- small amplitude
- weak dependence on Y (transverse) vs. X (longitudinal) coordinate w.r.t direction of motion

$$
\partial_{X}\left(\partial_{t} u+u \partial_{X} u+\epsilon^{2} \partial_{X X X} u\right)+\lambda \partial_{Y Y} u=0
$$

Parameters: $\quad \epsilon \in \mathbb{R} \quad \lambda= \pm 1$

Partial Chronology

- '67 Gardner-Green-Kruskal-Miura \longrightarrow Inverse scattering for KdV
- '70 K-P \longrightarrow Long ion-acoustic waves in plasmas Adding transverse dynamics to KdV and studying stability of solitons
- '74 Dryuma \longrightarrow Lax-pair formulation
- '74 Zakharov-Shabat \longrightarrow Inverse scattering for KP

Rich set of soliton solutions found

- '79 Ablowitz-Segur \longrightarrow Application to water waves
- '86 Fokas-Santini \longrightarrow Bi-Hamiltonian structure

Comments

- Although classically possible \longrightarrow we do not rescale away ϵ^{2}

Quantisation introduces \hbar which couples to dimensionful constants

- Two types:
- $\lambda=-1 \quad$ KP-I \quad high surface tension - positive dispersion
\longrightarrow Lump solitons
- $\lambda=1 \quad$ KP-II small surface tension - negative dispersion
\longrightarrow Resonant multi-solitons and Web structures
- Both types have Line solitons $\longrightarrow \mathrm{KdV}$ solitons with no Y-dep.
- KP-I Line solitons unstable
- KP-II Line solitons stable
- Perfect balance of non-linearity and dispersion \longrightarrow Integrable
- Universal integrable eq. \longrightarrow Universal quantum integrable system?

Preparing for Quantisation

Construct a theory of particles which reduces to KP when $\hbar \rightarrow 0$
New var. $\quad u=2 \beta \lambda \phi \quad X=-\lambda \sigma \quad Y=x \quad \gamma=-\lambda \epsilon^{2}$
Equation becomes

$$
\phi_{t \sigma}-\phi_{x x}-2 \beta\left(\phi \phi_{\sigma}\right)_{\sigma}+\gamma \phi_{\sigma \sigma \sigma}=0
$$

Assume: $\quad \beta>0 \quad$ (if not, $\phi \rightarrow-\phi$) \longrightarrow Unitary transf. in quantum case

Trick: Kaluza-Klein compactification of the ocean! Preserves integrability (but upsets God...)
$x \in \mathbb{R} \quad \sigma \in[0,2 \pi]$ periodic b.c. \longrightarrow reduces to $1+1 \mathrm{D}$ problem (for now)
$1+1 \mathrm{D}$ integrable field theory with KK tower
Assume $\phi \rightarrow 0 \quad$ suff. fast as $x \rightarrow \pm \infty \quad$ and $\quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi d \sigma=0$
First few conserved charges

$$
\begin{array}{ll}
\sigma-\text { transl } & h_{0} \equiv \mathcal{M}=\frac{1}{2} \phi^{2} \quad M=\int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x \mathcal{M} \\
x-\text { transl } & h_{1} \equiv \mathcal{P}=\frac{1}{2}\left(\partial_{\sigma}^{-1} \phi\right) \partial_{x} \phi \quad P=\int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x \mathcal{P} \\
t-\text { transl } & h_{2} \equiv \mathcal{H}=\frac{1}{2}\left(\partial_{\sigma}^{-2} \phi\right) \partial_{x}^{2} \phi+\frac{\beta}{3} \phi^{3}+\frac{\gamma}{2}\left(\partial_{\sigma} \phi\right)^{2}
\end{array}
$$

'84 Case: higher charges $\quad h_{p}=\frac{1}{2}\left(\partial_{\sigma}^{-p} \phi\right) \partial_{x}^{p} \phi+\mathcal{O}(\beta)+\mathcal{O}(\gamma) \quad p \in \mathbb{N}$

Notice: $\quad \partial_{\sigma}^{-1} \equiv \frac{1}{2} \int_{0}^{\sigma} \frac{d \sigma}{2 \pi}-\frac{1}{2} \int_{\sigma}^{2 \pi} \frac{d \sigma}{2 \pi}$

Poisson structure

KP equation recovered by $\partial_{t} \phi=\{\phi, H\}$ followed by ∂_{σ} to cancel some ∂_{σ}^{-1}
with Poisson brackets ('86 Lipovskii)

$$
\{\phi(\sigma, x), \phi(\tilde{\sigma}, y)\}=2 \pi \delta(x-y) \delta^{\prime}(\sigma-\tilde{\sigma})
$$

Non-ultralocal in $\sigma \in(0,2 \pi) \quad$ Known problem for integrability

- Galilei symmetry $\quad x \rightarrow x+2 v t \quad \sigma \rightarrow \sigma+v x+v^{2} t$
\longrightarrow boost: $\quad \int_{0}^{\sigma} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x x h_{0} \quad$ s.t. $\quad\left\{B, H_{p}\right\}=p H_{p-1}$ where $\quad H_{p}=\int_{0}^{\sigma} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x h_{p}$

Quantisation

Canonically Quantise

$$
\phi \in \mathbb{R} \quad \longrightarrow \quad \phi^{\dagger}=\phi \quad \longrightarrow \quad \phi=\sum_{n \in \mathbb{Z}} a_{n}(x) e^{-i n \sigma}
$$

with

$$
a_{n}^{\dagger}(x)=a_{-n}(x)
$$

Moreover $\quad a_{0}(x)=0 \quad$ average of ϕ is central w.r.t. P.B. and $=0$

$$
\{., .\} \longrightarrow \frac{[., .]}{i \hbar} \quad \text { followed by } \hbar \rightarrow 1
$$

Redefining the modes

$$
\begin{aligned}
\psi_{n}(x) & \equiv n^{-\frac{1}{2}} a_{n}(x) \quad n=1,2, \ldots \\
{\left[\psi_{m}(x), \psi_{n}^{\dagger}(y)\right] } & =\delta_{m n} \delta(x-y) \quad \text { non-ultralocality reabsorbed }
\end{aligned}
$$

Second Quantisation

Postulate vacuum and creators/annihilators

$$
|0\rangle \quad \text { s.t. } \quad \psi_{m}(x)|0\rangle=0 \quad \forall x \in \mathbb{R} \quad m=1,2, \ldots
$$

Lowest-weigth (Fock) rep. of Heisenberg algebra

$$
\operatorname{span}\left\{\psi_{m_{1}}^{\dagger}\left(x_{1}\right) \ldots \psi_{m_{N}}^{\dagger}\left(x_{N}\right)|0\rangle \mid m_{i} \in \mathbb{N}, x_{i} \in \mathbb{R}, \quad i=1, .2, \ldots, N\right\}
$$

Commuting creators \longrightarrow bosons

Conserved quantities quantised by

- plugin field expansion
- normal order - creators to the left

Conserved Charges

Total Mass

$$
M=\int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x \frac{1}{2} \phi^{2} \quad \longrightarrow \quad \sum_{m=1}^{\infty} m \int_{-\infty}^{\infty} d x \psi_{m}^{\dagger}(x) \psi_{m}(x)
$$

Total Momentum

$$
P=\int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x \frac{1}{2}\left(\partial_{\sigma}^{-1} \phi\right) \partial_{x} \phi \quad \longrightarrow \quad-i \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} d x \psi_{m}^{\dagger}(x) \partial_{x} \psi_{m}(x)
$$

Total Energy

$$
H=\int_{0}^{2 \pi} \frac{d \sigma}{2 \pi} \int_{-\infty}^{\infty} d x\left[\frac{1}{2}\left(\partial_{\sigma}^{-2} \phi\right) \partial_{x}^{2} \phi+\frac{\beta}{3} \phi^{3}+\frac{\gamma}{2}\left(\partial_{\sigma} \phi\right)^{2}\right]
$$

Quantum Hamiltonian

$$
\begin{aligned}
& H=-\sum_{m=1}^{\infty} \frac{1}{m} \int_{-\infty}^{\infty} d x \psi_{m}^{\dagger}(x) \partial_{x}^{2} \psi_{m}(x)+\sum_{m=1}^{\infty} \gamma_{m} \int_{-\infty}^{\infty} d x \psi_{m}^{\dagger}(x) \psi_{m}(x) \\
& +\sum_{m_{1}, m_{2}=1}^{\infty} \beta_{m_{1} m_{2}} \int_{-\infty}^{\infty} d x\left[\psi_{m_{1}+m_{2}}^{\dagger}(x) \psi_{m_{1}}(x) \psi_{m_{2}}(x)+\psi_{m_{1}}^{\dagger}(x) \psi_{m_{2}}^{\dagger}(x) \psi_{m_{1}+m_{2}}(x)\right] \\
& \beta_{m_{1} m_{2}}=\beta \sqrt{m_{1} m_{2}\left(m_{1}+m_{2}\right)} \quad \quad \gamma_{m}=\gamma m^{3} \quad \text { real parameters }
\end{aligned}
$$

Hermitean Hamiltonian composed of

- (Non-relativistic) kinetic term
- (Non-relativistic) zero-point energy
- Total-mass preserving three-particle interactions

Number of particles is not conserved

Comments

Assume $\beta>0$
If not
$U^{\dagger} \psi_{m} U=-\psi_{m} \quad U^{\dagger} \psi_{m}^{\dagger} U=-\psi_{m}^{\dagger} \quad U=\exp \left[i \pi \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} d x \psi_{m}^{\dagger}(x) \psi_{m}(x)\right]$
If $\beta=0 \longrightarrow \quad$ Free particles of mass m and zero-point energy γm^{3}
Two possibilities:

- $\gamma<0 \quad$ KP-I \longrightarrow positive zero-point energy
- $\gamma>0 \quad$ KP-II \longrightarrow Unbounded below, but conservation laws
- $\gamma=0 \quad \longrightarrow \quad$ Dispersionless KP

Boost $\quad \sum_{m=1}^{\infty} m \int_{-\infty}^{\infty} d x x \psi_{m}^{\dagger}(x) \psi_{m}(x)$

Bethe Ansatz and S-matrix

Spectrum of the Hamiltonian

Organise states by total mass

- $M=0$

$$
\left|\Phi_{0}\right\rangle=|0\rangle \quad E_{0}=0
$$

- $M=1$

$$
\left|\Phi_{1}\right\rangle=\left.\left.\int_{-\infty}^{\infty} d x f_{1}\right|_{x} ^{1} \psi_{1}^{\dagger}(x)|0\rangle \quad f_{1}\right|_{x} ^{1} \equiv e^{i p x} \quad E_{1}=p^{2}+\gamma
$$

$\left.f_{1}\right|_{x} ^{1} \quad$ wave function $\quad f_{n r}$ of particles $\left.\right|_{\text {locations }} ^{\text {masses }}$

Mass-2 sector

- $M=2$

$$
\left.\left|\Phi_{2}\right\rangle=\int_{x_{1}<x_{2}} d x_{1} d x_{2} f_{2}\left|x_{1} x_{2} \psi_{1}^{1} \psi_{1}^{\dagger}\left(x_{1}\right) \psi_{2}^{\dagger}\left(x_{2}\right)\right| 0\right\rangle+\left.\int_{-\infty}^{\infty} d x f_{1}\right|_{x} ^{2} \psi_{2}^{\dagger}(x)|0\rangle
$$

Scattering state

$$
\begin{aligned}
& \left.f_{2}\right|_{x_{1} x_{2}} ^{1}=e^{i i_{1} x_{2}+i p_{2} x_{1}}+S\left(p_{1}, p_{2}\right) e^{i p_{1} x_{1}+i p_{2} x_{2}} \\
& \left.f_{1}\right|_{x} ^{2}=R\left(p_{1}, p_{2}\right) e^{i\left(p_{1}+p_{2}\right) \times} \quad E_{2}=p_{1}^{2}+p_{2}^{2}+2 \gamma
\end{aligned}
$$

Two-particle S-matrix
$S\left(p_{1}, p_{2}\right)=S\left(p_{1}-p_{2}\right)=-\frac{P\left(i p_{2}-i p_{1}\right)}{P\left(i p_{1}-i p_{2}\right)}=S^{-1}\left(p_{2}, p_{1}\right) \quad$ Galiliei invar - braiding unitar
$R\left(p_{1}, p_{2}\right)=\frac{4 \sqrt{2} i \beta\left(p_{2}-p_{1}\right)}{\left.P\left(i p_{1}-i p_{2}\right)\right)} \quad P(v)=v^{3}+12 \gamma v-4 \beta^{2}$
no quadratic term!
particular limit of affine Toda $A_{N \rightarrow \infty}$ S-matrix (infinitely many fields)

General solution

Infinite set of auxiliary Schrödinger problems

$$
\left|\Phi_{M}\right\rangle=\left.\sum_{N=1}^{M} \frac{1}{N!} \sum_{\vec{m} \in \mathbb{N}^{N}} \int_{\mathbb{R}^{N}} d x_{1} \ldots d x_{N} f_{N}\right|_{\vec{x}} ^{\vec{m}} \prod_{j=1}^{N} \psi_{m_{j}}^{\dagger}\left(x_{j}\right)|0\rangle
$$

Solve for wave functions

$$
\left\langle\psi_{m_{1}}^{\dagger}\left(x_{1}\right) \ldots \psi_{m_{N}}^{\dagger}\left(x_{N}\right)\right|\left(H-E_{M}\right)\left|\Phi_{M}\right\rangle=0
$$

turns into coupled PDEs:

$$
\begin{aligned}
& -\sum_{i=1}^{N} \frac{1}{m_{i}} \partial_{x_{i}}^{2} f_{N}| |_{x_{1} \ldots x_{N}}^{m_{1} \ldots m_{N}}+\sum_{i=1}^{N} \gamma_{m_{i}} f_{N}| |_{x_{1} \ldots x_{N}}^{m_{1} \ldots m_{N}} \\
& +\left.2 \sum_{1 \leq i_{1}<i_{2} \leq N} \beta_{m_{i_{1}} m_{i_{2}}} f_{N-1}\right|_{x_{1} \ldots \cup \ldots \cup \ldots x_{N} \ldots} ^{m_{1} \ldots \ldots m_{N}\left(m_{1}+m_{2}\right)} \delta\left(x_{i_{1}}-x_{i_{2}}\right) \quad \text { missing } m_{i_{1}} m_{i_{2}} \\
& +\left.\sum_{k=1}^{N} \sum_{n_{1}, n_{2} \in \mathbb{N}^{+}} \delta_{n_{1}+n_{2}, m_{k}} \beta_{n_{1} n_{2}} f_{N+1}\right|_{x_{1} \ldots \cup \ldots x_{N}} ^{m_{1} \ldots \cup m_{N}} n_{n_{1} n_{2}}^{n_{k}} \quad \text { missing } m_{k} \\
& =E_{M} f_{N}| |_{x_{1} \ldots x_{N}}^{m_{1} \ldots x_{N}} \quad \forall N=1, \ldots, \infty \\
& R\left(p_{1}, p_{2}\right)=\frac{4 \sqrt{2} i \beta\left(p_{2}-p_{1}\right)}{\left.P\left(i p_{1}-i p_{2}\right)\right)} \quad P(v)=v^{3}+12 \gamma v-4 \beta^{2} \quad \text { no quadratic term! }
\end{aligned}
$$

Integrability

- Seemingly impossible \longrightarrow but quantisation should preserve integrability Two-body problem encodes all the info
- We have conjectured a general Bethe Ansatz :
- recursively uses two-body data
- tested with computer algebra up to total mass $M=8$
- The solution is expressed in terms of compositions (bosonic symmetry)
- Need proof of master combinatoric formula
- Treatment of delta-functions

Delta-functions as boundary conditions

E.g. $M=2$

$$
\begin{aligned}
& \left.\left(-\partial_{1}^{2}-\partial_{2}^{2}+2 \gamma\right) f_{2}\right|_{x_{1} x_{2}} ^{11}+\left.2 \sqrt{2} \beta f_{1}\right|_{x_{1}} ^{2} \delta\left(x_{1}-x_{2}\right)=\left.E_{2} f_{2}\right|_{x_{1} x_{2}} ^{1} \\
& \left.\left(-\frac{1}{2} \partial_{x}^{2}+8 \gamma\right) f_{1}\right|_{x} ^{2}+\left.\sqrt{2} \beta f_{2}\right|_{x} ^{1}=\left.E_{2} f_{1}\right|_{x} ^{2}
\end{aligned}
$$

Separate domains

$$
\left.f_{2}\right|_{x_{1} x_{2}} ^{11} \equiv f_{+}\left(x_{1}, x_{2}\right) \Theta\left(x_{1}-x_{2}\right)+f_{-}\left(x_{1}, x_{2}\right) \Theta\left(x_{2}-x_{1}\right)
$$

plug-in and collect terms
from Θ

$$
\left.\left(-\partial_{1}^{2}-\partial_{2}^{2}+2 \gamma\right) f_{2}\right|_{x_{1} x_{2}} ^{1}=\left.E_{2} f_{2}\right|_{x_{1} x_{2}} ^{1} \quad x_{1} \neq x_{2}
$$

from δ^{\prime}

$$
f_{+}(x, x)=f_{-}(x, x)
$$

from δ

$$
\left(-\partial_{1}+\partial_{2}\right) f_{+}(x, x)+\left(\partial_{1}-\partial_{2}\right) f_{-}(x, x)=\left.\sqrt{2} \beta f_{1}\right|_{x} ^{2}
$$

Bose symmetry $\longrightarrow \quad f_{+}\left(x_{1}, x_{2}\right)=f_{-}\left(x_{2}, x_{1}\right) \quad$ hence

$$
2\left(\partial_{1}-\partial_{2}\right) f_{+}(x, x)=\left.\sqrt{2} \beta f_{1}\right|_{x} ^{2}
$$

Examples

"Leading" part

$$
\left.f_{N}\right|_{x_{1} \ldots x_{N}} ^{1 \ldots 1}=\sum_{\sigma \in S_{N}} \prod_{j<k=1}^{N} P\left(i p_{\sigma(k)}-i p_{\sigma(j)}\right) \exp \left[i \sum_{i=1}^{N} p_{\sigma(i)} x_{i}\right]
$$

E.g. $M=3$

$$
\begin{aligned}
\left.f_{3}\right|_{x_{1} x_{2} x_{3}} ^{1} 1 & =\sum_{\sigma \in S_{3}} \prod_{j<k=1}^{3} P\left(i p_{\sigma(k)}-i p_{\sigma(j)}\right) \exp \left[i \sum_{i=1}^{3} p_{\sigma(i)} x_{i}\right] \\
\left.f_{2}\right|_{x_{12} x_{3}} ^{2}= & \frac{i}{\sqrt{2} \beta} \sum_{\sigma \in S_{3}}(-)^{\sigma} \prod_{j<k=1}^{3} P\left(i p_{\sigma(k)}-i p_{\sigma(j)}\right)\left(p_{\sigma(2)}-p_{\sigma(1)}\right) \exp \left[i\left(p_{\sigma(1)}+p_{\sigma(2)}\right) x_{12}+i p_{\sigma(3)} x_{3}\right] \\
\left.f_{1}\right|_{x_{123}} ^{3}= & -\frac{1}{\sqrt{2} \beta \beta_{12}} \sum_{\sigma \in S_{3}}(-)^{\sigma} \prod_{j<k=1}^{3} P\left(i p_{\sigma(k)}-i p_{\sigma(j)}\right)\left[\left(p_{\sigma(3)}-p_{\sigma(2)}\right)\left(p_{\sigma(2)}+p_{\sigma(3)}-2 p_{\sigma(1)}\right)-\right. \\
& \left.\left(p_{\sigma(2)}-p_{\sigma(1)}\right)\left(p_{\sigma(1)}+p_{\sigma(2)}-2 p_{\sigma(3)}\right)\right] \exp \left[i\left(p_{\sigma(1)}+p_{\sigma(2)}+p_{\sigma(3)}\right) x_{123}\right]
\end{aligned}
$$

These are all scattering states for real momenta (continuum spectrum)

