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Motivation
Goal: calculate scattering amplitudes on plane-wave
space-time backgrounds.
Our motivation:
I Simplicity of CHY formulae for tree amplitudes suggests

simplification for fully nonlinear expression of theories.
I Ambitwistor strings are valid on curved backgrounds [Adamo,

Casali, Skinner; AC & Nekovar] and provide route to nonlinear version.
I We have ambitwistor string formulae for up to three points

for YM and gravity on plane waves background [Adamo, Casali, M &

Nekovar 1708.09249] but neede data to check against.
Conventional motivation:
I A first step towards interacting perturbative QFT on curved

backgrounds with external particles.
I Plane waves give universal features of gravitational waves

via Penrose limit.
I Computable: Plane waves satisfy Huygens for scalar wave

equation, with separable Hamilton-Jacobi and linear fields.
I Test Gravity scattering = Double copy of Yang-Mills.



Yang-Mills amplitudes & colour-kinematic duality
Scatter n particles, momentum kµ, polarization εµ

Aµ(x) = εµeik ·x ta , k2 = 0 , k · ε = 0 , ta ∈ Lie G.

I Suppose that YM amplitude A(ki , εi , ti), i = 1, . . . ,n arises
from trivalent Feynman diagrams

A =
∑

Γ

NΓ(ki , εi)CΓ(ti)
DΓ

, Γ ∈ { trivalent diagrams, n legs} .

I NΓ = kinematic factors: polynomials in ki , linear in each εi .
I DΓ =

∏
propagators e∈Γ(

∑
i∈e ki)

2 = denominators.
I CΓ(ti) =colour factor = contract structure contants at each

vertex together along propagators and with ti at i th leg.

Definition
The NΓ are said to BCJ numerators if NΓ satisfy identities when
CΓ does via Jacobi identities: CΓ̃ = CΓ + CΓ′ ⇒ NΓ̃ = NΓ + NΓ′ .
Possible at tree-level and up to 4-loops, but not canonical.



Gravity as double copy of Yang-Mills
Zvi Bern, J J Carrasco, H Johansson, 2008

Scatter n gravity plane waves

hµν = ε(µεν)e
ik ·x

Given BCJ numerators NΓ, the gravity tree-amplitude/loop
integrand can be obtained as a double copy of YM amplitude

M(ki , εi , εi) =
∑

Γ

NΓ(ki , εi)NΓ(ki , εi)

DΓ

I First conjectured from string amplitude formulae and KLT
relations between YM and gravity amplitudes.

I Proved up to 4-loops.
I There are many extensions to supersymmetric theories.
I Genuine tool for constructing gravity amplitudes.
I No nonperturbative or space-time explanation.



The three point amplitude

At three points, there is just one trivalent diagram

A = (ε1 · ε2ε3 · (k1 − k2)+ 	)fabc ta
1 tb

2 tc
3 = N�(εi , ki)C�(ti)

For gravity
M = N�(εi , ki)N�(εi , ki) ,

but very nontrivial: graviton 3-vertex is much more complicated.
Can we extend to curved backgrounds?
I How do we define momentum eigenstates?
I What are momenta and polarization vectors?
I How can we relate Yang-Mills and Gravity?



Sandwich plane waves
The Brinkman form in d-dimensions of the metric is

ds2 = dudv − Hdu2 − dxadxa , a = 1, ..,d − 2 .

with H = H(u)abxaxb, Ha
a := Habδ

ab = 0 for vacuum.

out

in

u v

Figure: The sandwich plane wave with xa-directions suppressed,
Hab(u) 6= 0 only in the shaded region with flat in- and out-regions.

I Hab = curvature, supported for u ∈ [0,1] (shaded).
I These coordinates are global, but:
I Space-time not globally hyperbolic! (Penrose).



Plane wave symmetries

ds2 = dudv − Hab(u)xaxbdu2 − dxadxa

I Symmetry group = 2d − 3-dimensional Heisenberg group
transitive on u = const ., centre ∂v .

I ea(u) with

ëa = Habeb , · =
d
du

gives Killing vectors ea∂xa − ėaxa∂v .
I Choose d − 2-dimensional abelian subgroup

Di = ea
i ∂xa − ėa

i xa∂v , i = 1 . . . d − 2 ,

commuting⇔ ėa
[iej]a = 0.

I Let ei
a be inverse matrix, ei

aeib = δab.



Momentum eigenstates on plane waves: I. Gravity
I Choose d − 1 commuting symmetries (∂v ,Di) ;

Separable Hamilton-Jacobi soln, momenta (k+, ki)

φk = k+(v +
1

2
σabxaxb) + kiei

axa +
kikjF ij(u)

2k+
,

where F ij(u) =
∫ u ei

aejadu′ and σab = ėi
aebi ‘shear’.

I Then

Φk = |e|−
1
2 eiφk , |e| = det(ea

i ) solves 2Φk = 0.

I Such a field has a ‘curved’ momentum

KµdXµ := dφk = k+dv + (σabxb + kiei
a)dxa + (. . .)du

Memory:
As u → −∞, set ea

i = δa
i so Kµ = (k+, ka, kaka/2k+) const.

As u → +∞, ea
i (u) = ba

i + uca
i , b, c = const ., and σab 6= 0;

so wave fronts φk = const . become curved.



Higher spins
I We have d − 2 covariantly constant spin raising operators

Ra = duδab∂xb + dxa∂v , ∇µRa = 0 .

I Gives linear gauge field on background

A =
εaRa

k+
Φk = εµdXµΦk ,

with curved polarization εµ, K µεµ = 0,

εµdXµ = εadxa + εa
(

kiei
a

k+
+ σabxb

)
du

I Linear gravity on background

hµνdXµdX ν =
εaRa(εbRbΦk )

k2
+

=

(
(ε · dX )2 − i

k+
εaεbσ

abdu2
)

Φk

Note potential obstruction to double copy.



Tails and Huygens

Theorem (Friedlander 1970s)
The only space-times that admit clean cut solutions to the wave
equation are conformal to plane waves (or flat space).

I Φ = |e|−1/2δ(φk ) is clean cut solution to wave equation.
I Analogous spin-1 solution is

a = |e|−1/2εaRa(φk Θ(φk ))

so

F = da = δ(φk )|e|−
1
2 εaRaφk∧dφk +Θ(φk )|e|−

1
2 εaσ0

abdxa∧du

i.e., there is backscattering with a tail.
I Similar spin-2 solution has longer tail.



Momentum eigenstates on plane waves: II. Yang-Mills
Use same coordinates on flat space-time with gauge potential

A = Ȧa(u)xadu , F = Ȧa(u)dxa ∧ du .

Again, take sandwich wave with Supp(Ȧa) ⊂ u ∈ [0,1].
Momentum eigenstate charge e:

Φk = ei
(

k+v+(ka+eAa)xa+ f (u)
2k+

)
, 2eAΦk = 0 ,

momentum Kµ(u) =
(

k+, ka + eAa(u), ḟ (u)
2k+

)
with

K · K = 0 ; f (u) =

∫ u

−∞
(ka + eAa)(ka + eAa)du′ .

Memory:
Choose Aa = 0 for u < 0, then for u > 1, Aa(u) = const . 6= 0.

Kµ(u) =


(

k+, ka,
kaka

2k+

)
, u < 0 ,(

k+, ka + eAa(1), ḟ (1)
2k+

)
, u > 1 .



Linear YM fields on the background

Let h be Cartan subalgebra of Lie algebra g of gauge group G.
I Let Ȧa(u)xadu take values in h.
I Encode colour ta in charge e =eigenvalue of h× coupling.
I Charged linear YM field aµ satisfies

DµD[µaν] + aµ∂[µeAν] = 0 , Dµ = ∂µ + eAµ.

I Solution a = ε̃aRaΦk = ε̃µdXµΦk , transverse polarization

ε̃µ(u)dXµ = ε̃a

(
dxa +

1
k+

(ka + eAa(u))du
)
, εa = const ..

I Convention: YM background polarization vectors are tilded.



No particle creation or leakage
As u → −∞ take linear fields to become flat space-time
momentum eigenstates, i.e., ea

i = δa
i , and Aa = 0;

I ± frequency determined by sign of k+, doesnt change with
u so no particle creation.

I Inner products are u-independent on both backgrounds:

〈Φk |Φk ′〉 =

∫
u=const .

Φ̄k
∗dΦl−Φl

∗dΦ̄k = 2k+δ(k+−l+)δd−2(ki−li) .

Similarly for spin-1

〈a1|a2〉 =

∫
u=const .

ā1∧∗da2−a2∧∗dā1 = 2ε1·ε2k+δ(k+−l+)δd−2(ki−li)

and spin-2

〈h1|h2〉 = 2(ε1 · ε2)2k+δ(k+ − l+)δd−2(ki − li) .

I Failure of global hyperbolicity does not lead to leakage:
failure is in too high co-dimension in space of null
geodesics (i.e., those parallel to ∂v ).



Three particle gravity amplitude
Insert linear fields into 3-vertex taken from action. In our gauge
this reduces to

M3 =
κ

4

∫
ddX (hµν1 ∂µh2ρσ∂νhρσ3 − 2hρν1 ∂µh2ρσ∂νhµσ3 ) + perms

This gives with our states, after some manipulation

κ

2
δd−1

(
3∑

r=1

kr

)∫
du√
det ea

i
exp

(
s∑

r=1

F ijkrikrj

2kr0

)
[(ε1 · ε2 (K1 − K − 2) · ε3+ 	)2 − ik1+k2+k3+σ

abCaCb]

where
Ca := ε1 · ε2

ε3a

k3+
+ 	

The first term is square of YM 3-pt amplitude on gravity plane
wave, so tail term σabCaCb seems to obstruct double copy.



Three-point YM amplitude

Three point vertex on background now obtained from cubic part
of action

∫
M a[µaν]Dµaνd4X which gives

A3 =

∫
du(ε̃1 · ε̃2 ε̃3 · (K1 − K2)+ 	) exp

(
i

3∑
r=1

fr (u)

2kr0

)
C�(ti)

in terms of flat quantities, the integrand is

ε̃1 · ε̃2 ε̃a3
((

k1+

k2+
k2a − k1a

)
+ Aa

(
e1 − e2

k1+

k2+

))
+ 	=: F + C

with the second term providing background ‘tail’ dependence
on Aa.



Double copy replacement principle
We can establish correspondence between integrands with
following rules

1. Flip charges er → −er in A3 = F + C to obtain conjugate
Ã = F − C so

|A3|2 := A3Ã3 = F 2 − C2

with F = F (kr , ε̃) and C = Ckr , ε̃r ,A).
2. In F and C replace kra by kiei

a and drop ∼’s on ε’s yielding
F (kriei

a, εr ) and C(kriei
a, εr ,A).

3.

Replace er esAaAb →

{
ikr0σ

ab r = s,
i(kr0 + ks0)σab r 6= s .

This now yields a double copy relationship between the
integrands that incorporates tail terms.



Four point amplitudes: YM
Work in progress w/Adamo, Casali, Nekovar

I Construct scalar Feynman propagator as

GF (X ,X ′) =

∫
ddk

k2 + iε
exp i(φ̃k (X )− φ̃k (X ′))

where φ̃k is now solution to massive Hamilton-Jacobi

φ̃k = k+v + (ka + eAa)xa +
1

2k+

∫ u
ds[k2 + (k + eA(s))2]

with k2 = k+k− − kaka 6= 0.
I For spin-1 solve (2eA + k2)aµ + 2ieF ν

µaν = 0 with

GF
µν =

∫
ddk

k2 + iε
Pµν(u,u′, k+)ei(φk (X)−φk (X ′))

Pµν =

0 0 1
0 −δac α∆Aa

1 −α∆Ac
α2

2 ∆A2

 , ∆A = A(u)−A(u′), α =
ie
k+

Gravity similar, but much more complicated.



BCJ at four points

YM diagrams are 3 exchanges in s, t and u channels and
contact 4-vertex.
I BCJ form requires opening up 4-vertex into 3-exchange

diagrams using Cs → sCs/s etc..
I Then 3-channels, s, t and u in flat space give

A4 =
NsCs

s
+

NtCt

t
+

NuCu

u

with s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2.
I Jacobi-identity is Cs − Ct + Cu = 0; for BCJ property need

Ns − Nt + Nu = 0 ,

but this is naively obstructed on a plane wave!
I Do propagators double copy? Perhaps need convolution.



Conclusions and further developments
I Explicit Feynman rules on plane waves have been found

for both gravity and YM.
I The original double copy is multiplication in momentum

space, and so is convolution on space-time in general.
I Satisfies nontrivial double copy rules at 3pts but work is in

progress at four points: does obstruction to BCJ find
natural home in curved background double copy principle?

I For Feynman propagators on backgrounds for different
spins convolution must play bigger role.

I Full geometric understanding of double copy in nonlinear
regime is a long way off, but framework gives first steps.

I Provides independent calculation to verify ambitwistor
string computation on plane wave background in
arxiv:1708.09249.

I Ambitwistor strings manifest double copy. Need to extend
this framework to find curved background scattering
equations tht express double copy beyond four points.
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