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Motivation
Goal: calculate scattering amplitudes on plane-wave
space-time backgrounds.
Our motivation:

» Simplicity of CHY formulae for tree amplitudes suggests
simplification for fully nonlinear expression of theories.

» Ambitwistor strings are valid on curved backgrounds (adamo,
Casali, Skinner; AC & Nekovar] @Nd provide route to nonlinear version.

» We have ambitwistor string formulae for up to three points
for YM and gravity on plane waves background (adamo, casai, M &
Nekovar 1708.09249] DUt Neede data to check against.

Conventional motivation:

» A first step towards interacting perturbative QFT on curved
backgrounds with external particles.

» Plane waves give universal features of gravitational waves
via Penrose limit.

» Computable: Plane waves satisfy Huygens for scalar wave
equation, with separable Hamilton-Jacobi and linear fields.

» Test Gravity scattering = Double copy of Yang-Mills.



Yang-Mills amplitudes & colour-kinematic duality
Scatter n particles, momentum k,, polarization ¢,

Aux)=ee™t8 K2=0, k-e=0, t?clieG.

» Suppose that YM amplitude A(k;,¢;, t;), i =1,...,narises
from trivalent Feynman diagrams

I € { trivalent diagrams, n legs} .

A= Z Nr(kivgir)cr(ti) 7
=

» Nr = kinematic factors: polynomials in k;, linear in each e;.

> Dr = 1—[Propagat‘ors eer(Zice ki)? = denominators.
» Cr(t)) =colour factor = contract structure contants at each
vertex together along propagators and with f; at ith leg.

Definition

The Nr are said to BCJ numerators if Nr satisfy identities when
Cr does via Jacobi identities: Cg = Cr + Cr» = Ni = Nr + Np.
Possible at tree-level and up to 4-loops, but not canonical.



Gravity as double copy of Yang-Mills

Zvi Bern, J J Carrasco, H Johansson, 2008
Scatter n gravity plane waves

h/U/ = 6(#61,)6”(')(
Given BCJ numerators N, the gravity tree-amplitude/loop
integrand can be obtained as a double copy of YM amplitude

Nr(k;, /) Nr (K, €;
M(ki,fhﬁi) — Z F( | Elgrr( ! l)
r

v

First conjectured from string amplitude formulae and KLT
relations between YM and gravity amplitudes.

Proved up to 4-loops.

v

v

There are many extensions to supersymmetric theories.

v

Genuine tool for constructing gravity amplitudes.

v

No nonperturbative or space-time explanation.



The three point amplitude

At three points, there is just one trivalent diagram
A = (e1 - eaez - (K — ko) + O)Fapc 2215 = Ni(e, ki) Cu(t)

For gravity
M = Ny(ei, ki)Nu(eis Ki) 5
but very nontrivial: graviton 3-vertex is much more complicated.
Can we extend to curved backgrounds?
» How do we define momentum eigenstates?
» What are momenta and polarization vectors?
» How can we relate Yang-Mills and Gravity?



Sandwich plane waves
The Brinkman form in d-dimensions of the metric is

ds? = dudv — Hdu? — dxadx?, a=1,..,d—-2.

with H = H(u) apx3x®, H2 := Hgp62° = 0 for vacuum.

ANVA

Figure: The sandwich plane wave with x2-directions suppressed,
Hap(U) # 0 only in the shaded region with flat in- and out-regions.

» Hgp = curvature, supported for u € [0, 1] (shaded).
» These coordinates are global, but:
» Space-time not globally hyperbolic! (Penrose).



Plane wave symmetries
ds® = dudv — Hap(u)x3xPdu? — dxadx?

» Symmetry group = 2d — 3-dimensional Heisenberg group
transitive on u = const., centre 0,.

» e?(u) with
éa = Habeba =
gives Killing vectors e2dya — €2x40),.
» Choose d — 2-dimensional abelian subgroup

D/:e?axa—éfXaav, I:.IC1_27

commuting < éﬁej]a =0.

» Let €/, be inverse matrix, eLep = dap.



Momentum eigenstates on plane waves: |. Gravity

» Choose d — 1 commuting symmetries (9, D;) ~
Separable Hamilton-Jacobi soln, momenta (ky, k;)

. Kk F
bk = k(v + 1U'abxaxb) + k,'egxa + ﬁ 7
2 2ok,

where Fi(u) = [Y eledu’ and o = &l ep; ‘shear’.
» Then
1 .
ok = |e|72e/%, |e| = det(e?) solves Od, = 0.

» Such a field has a ‘curved’ momentum
K, dX" := doy = kpdv + (0apx? + kieh)dx? + (...)du

Memory:

As u — —oo, set €2 = §2 50 K|, = (Ky, ka, kak?/2k) const.
As u — 400, €2(u) = b? + uc?, b, c = const., and o4 # 0;
so wave fronts ¢, = const. become curved.



Higher spins
» We have d — 2 covariantly constant spin raising operators
R? = dué®d,, + dx3,,  V,R®=0.
» Gives linear gauge field on background

EaRa
K

A= 0) =c,dXM Dy,

with curved polarization ¢, Kte,, = 0,

k: i
£, dX* = eadx? + €2 < /’(ia + o—abxb> adu

» Linear gravity on background

caR%(epRPDy)
KE

i

h,dX*dX? = = ((5 -dX)? — p eaebaabdu2> dy
+

Note potential obstruction to double copy.



Tails and Huygens

Theorem (Friedlander 1970s)

The only space-times that admit clean cut solutions to the wave
equation are conformal to plane waves (or flat space).

» & = |e|~"/25(¢k) is clean cut solution to wave equation.
» Analogous spin-1 solution is

a=|e|™"2caR%($kO(x))
SO
1 1
F = da = §(¢k)| €| 2eaR%okNdpk+O(¢k)| €| 2 €300 dxandu

i.e., there is backscattering with a tail.
» Similar spin-2 solution has longer tail.



Momentum eigenstates on plane waves: Il. Yang-Mills
Use same coordinates on flat space-time with gauge potential
A=Ay(u)x%du,  F=Az(u)dx®Adu.

Again, take sandwich wave with Supp(A,) C u € [0, 1].
Momentum eigenstate charge e:

i( Ky v4-(Ka+€Aa) X3+ S
‘Dsz:(+ (fartera) 2k+), Dea®x =0,

momentum K, (u) = (k+, ka + eAa(u), %‘f) with

u
K-K=0 ~ f(u):/ (Ka + eAs)(k? + eA%)dl

Memory:

Choose A; = 0 for u < 0, then for u > 1, Az(u) = const. # 0.
k—‘rukaakka U<0,

Ku(u) = ( ) (1)
(k+,ka+eAa( ),Zk ) u>1.



Linear YM fields on the background

Let h be Cartan subalgebra of Lie algebra g of gauge group G.
Let A,(u)x@du take values in b.

Encode colour t2 in charge e =eigenvalue of hx coupling.
Charged linear YM field a, satisfies

v

v

v

D"Dy,a, + a"o,eA, =0, D, =0,+ eA,.

» Solution a = €,R%¢ = £,dX* Py, transverse polarization

Eu(u)dXH =&, (dxa + kl(ka + eAa(u))du> , €g=const..
+

» Convention: YM background polarization vectors are tilded.



No particle creation or leakage
As u — —oo take linear fields to become flat space-time
momentum eigenstates, i.e., ef = 67, and A; = 0;
» + frequency determined by sign of k, doesnt change with
U so no particle creation.
» Inner products are u-independent on both backgrounds:

(Oklow) = [ By d0- 0y = 2k, ol 1)o7 2(k-1).
u=const.

Similarly for spin-1

(a1]ap) = / 21 Axday—apN\* 031 = 2¢q-epky 6(ky—11 )093 (ki—
u=const.

and spin-2
(hy|ha) = 2(ey - ep)?kyd(ky — 11)692 (ki — 1)) .

» Failure of global hyperbolicity does not lead to leakage:
failure is in too high co-dimension in space of null
geodesics (i.e., those parallel to 0,).



Three particle gravity amplitude

Insert linear fields into 3-vertex taken from action. In our gauge
this reduces to

K 5 . y .
Ms = 4/ddX (" 0,h2ps 0, 157 — 207" 0, 1,00, 157 ) + perms

This gives with our states, after some manipulation

3 S m
K au Flk. Kk,
K 501 K / riKij
2 (; r) \/det &7 =P ( 2kro

r=1

[(e1 -2 (Ky — K —2) - e34+ O)? — ikyy ko k3. 03CaCh)

where .
Cai=c1 62240
k3

The first term is square of YM 3-pt amplitude on gravity plane
wave, so tail term 03°C,C;, seems to obstruct double copy.



Three-point YM amplitude

Three point vertex on background now obtained from cubic part
of action [, a,a,)D"a”d*X which gives

3
As /du <Ep &3 (K1 — K2)+ O) exp(Z )C* ti)

1

in terms of flat quantities, the integrand is

k kit
€1 -€2€§ <<k;ikga—k1a> + Az <e1 — 62k2+>> +0O=:F+C

with the second term providing background ‘tail’ dependence
on A.



Double copy replacement principle
We can establish correspondence between integrands with
following rules

1. Flip charges e, — —er in A3 = F + C to obtain conjugate
A=F—-Cso

| As|? = Az A3 = F? — C?

with F = F(k,,€) and C = Ck;, &, A).

2. In F and C replace kr by kiel, and drop ~’s on ¢'s yielding
F(kriel, er) and C(ki€l, er, A).

3.

ikroaab r=s,

Replace e,e;A2AP
p res {I(kr0+kso)0ab f;éS

This now yields a double copy relationship between the
integrands that incorporates tail terms.



Four point amplitudes: YM
Work in progress w/Adamo, Casali, Nekovar
» Construct scalar Feynman propagator as

d ~ ~
GFX.X) = [ epid(X) ~ Bu(X)

where ¢y is now solution to massive Hamilton-Jacobi
Bre= kv o+ (Ko + AN+ 5 / ds[k? + (K + eA(s))?]
+

with k2 = k. k_ — kak@ # 0.
» For spin-1 solve (Oga + k?)a, + 2ief} a, = 0 with

GF = [ 9K p it k)00 X))
v K2 e M
0 0 1 .
P/“, = (0 —dac OKAAa) , AA= A(U)—A(Ul), a = Z

1 —abA; SAR
Gravity similar, but much more complicated.



BCJ at four points

YM diagrams are 3 exchanges in s, t and u channels and
contact 4-vertex.

» BCJ form requires opening up 4-vertex into 3-exchange
diagrams using Cs — sCs/s efc..

» Then 3-channels, s, t and u in flat space give

_ NsGs N N;Cy . NyCy
S t u
with s = (k1 + k2)2, t= (kg + k3)2, u= (k1 + k3)2.
» Jacobi-identity is Cs — C; + C, = 0; for BCJ property need

Ay

Ns—Nit+ N, =0,

but this is naively obstructed on a plane wave!
» Do propagators double copy? Perhaps need convolution.



Conclusions and further developments

>

Explicit Feynman rules on plane waves have been found
for both gravity and YM.

The original double copy is multiplication in momentum
space, and so is convolution on space-time in general.
Satisfies nontrivial double copy rules at 3pts but work is in
progress at four points: does obstruction to BCJ find
natural home in curved background double copy principle?
For Feynman propagators on backgrounds for different
spins convolution must play bigger role.

Full geometric understanding of double copy in nonlinear
regime is a long way off, but framework gives first steps.
Provides independent calculation to verify ambitwistor
string computation on plane wave background in
arxiv:1708.09249.

Ambitwistor strings manifest double copy. Need to extend
this framework to find curved background scattering
equations tht express double copy beyond four points.
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