### Amplitudes on plane waves

#### L.J.Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

SAGEX kickoff meeting, Sept 4-7 2018

Joint work with Adamo, Casali & Nekovar 2017-8, arxiv:1706.08925, 1708.09249, 1809.????.



#### Motivation

Goal: calculate scattering amplitudes on plane-wave space-time backgrounds.

#### Our motivation:

- Simplicity of CHY formulae for tree amplitudes suggests simplification for fully nonlinear expression of theories.
- Ambitwistor strings are valid on curved backgrounds [Adamo, Casali, Skinner; AC & Nekovar] and provide route to nonlinear version.
- We have ambitwistor string formulae for up to three points for YM and gravity on plane waves background [Adamo, Casali, M & Nekovar 1708.09249] but neede data to check against.

#### Conventional motivation:

- A first step towards interacting perturbative QFT on curved backgrounds with external particles.
- Plane waves give universal features of gravitational waves via Penrose limit.
- ► Computable: Plane waves satisfy Huygens for scalar wave equation, with separable Hamilton-Jacobi and linear fields.
- Test Gravity scattering = Double copy of Yang-Mills.



# Yang-Mills amplitudes & colour-kinematic duality

Scatter n particles, momentum  $k_{\mu}$ , polarization  $\epsilon_{\mu}$ 

$$\label{eq:Amu} \textit{A}_{\mu}(\textit{x}) = \epsilon_{\mu} e^{\textit{i}\textit{k}\cdot\textit{x}} \textit{t}^{\textit{a}} \,, \qquad \textit{k}^{2} = 0 \,, \quad \textit{k} \cdot \epsilon = 0 \,, \quad \textit{t}^{\textit{a}} \in \text{Lie G}.$$

▶ Suppose that YM amplitude  $A(k_i, \epsilon_i, t_i)$ , i = 1, ..., n arises from trivalent Feynman diagrams

$$\mathcal{A} = \sum_{\Gamma} \frac{\textit{N}_{\Gamma}(\textit{k}_{\textit{i}}, \epsilon_{\textit{i}})\textit{C}_{\Gamma}(\textit{t}_{\textit{i}})}{\textit{D}_{\Gamma}} \,, \qquad \Gamma \in \{ \text{ trivalent diagrams, n legs} \} \,.$$

- ▶  $N_{\Gamma}$  = *kinematic factors*: polynomials in  $k_i$ , linear in each  $\epsilon_i$ .
- ▶  $D_{\Gamma} = \prod_{\text{propagators } e \in \Gamma} (\sum_{i \in e} k_i)^2 = \text{denominators}.$
- ▶  $C_{\Gamma}(t_i)$  = colour factor = contract structure contants at each vertex together along propagators and with  $t_i$  at ith leg.

#### **Definition**

The  $N_{\Gamma}$  are said to BCJ numerators if  $N_{\Gamma}$  satisfy identities when  $C_{\Gamma}$  does via Jacobi identities:  $C_{\tilde{\Gamma}} = C_{\Gamma} + C_{\Gamma'} \Rightarrow N_{\tilde{\Gamma}} = N_{\Gamma} + N_{\Gamma'}$ .

Possible at tree-level and up to 4-loops, but not canonical.



# Gravity as double copy of Yang-Mills

Zvi Bern, J J Carrasco, H Johansson, 2008

Scatter *n* gravity plane waves

$$h_{\mu\nu} = \epsilon_{(\mu}\epsilon_{\nu)} e^{i\mathbf{k}\cdot\mathbf{x}}$$

Given BCJ numerators  $N_{\Gamma}$ , the gravity tree-amplitude/loop integrand can be obtained as a *double copy* of YM amplitude

$$\mathcal{M}(k_i, \epsilon_i, \epsilon_i) = \sum_{\Gamma} \frac{N_{\Gamma}(k_i, \epsilon_i) N_{\Gamma}(k_i, \epsilon_i)}{D_{\Gamma}}$$

- First conjectured from string amplitude formulae and KLT relations between YM and gravity amplitudes.
- Proved up to 4-loops.
- There are many extensions to supersymmetric theories.
- Genuine tool for constructing gravity amplitudes.
- ► No nonperturbative or space-time explanation.



## The three point amplitude

At three points, there is just one trivalent diagram

$$\mathcal{A} = (\epsilon_1 \cdot \epsilon_2 \epsilon_3 \cdot (k_1 - k_2) + \circlearrowleft) f_{abc} t_1^a t_2^b t_3^c = N_{\lambda}(\epsilon_i, k_i) C_{\lambda}(t_i)$$

For gravity

$$\mathcal{M} = N_{\perp}(\epsilon_i, k_i) N_{\perp}(\epsilon_i, k_i)$$
,

but very nontrivial: graviton 3-vertex is much more complicated.

Can we extend to curved backgrounds?

- How do we define momentum eigenstates?
- What are momenta and polarization vectors?
- How can we relate Yang-Mills and Gravity?

### Sandwich plane waves

The Brinkman form in *d*-dimensions of the metric is

$$ds^2 = dudv - Hdu^2 - dx_a dx^a$$
,  $a = 1, ..., d - 2$ .

with  $H = H(u)_{ab}x^ax^b$ ,  $H_a^a := H_{ab}\delta^{ab} = 0$  for vacuum.

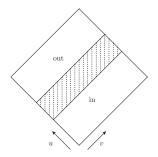


Figure: The sandwich plane wave with  $x^a$ -directions suppressed,  $H_{ab}(u) \neq 0$  only in the shaded region with flat in- and out-regions.

- ▶  $H_{ab}$  = curvature, supported for  $u \in [0, 1]$  (shaded).
- ► These coordinates are global, but:
- ► Space-time *not* globally hyperbolic! (Penrose).



# Plane wave symmetries

$$ds^2 = dudv - H_{ab}(u)x^ax^bdu^2 - dx_adx^a$$

- ▶ Symmetry group = 2d 3-dimensional Heisenberg group transitive on u = const., centre  $\partial_v$ .
- $ightharpoonup e^a(u)$  with

$$\ddot{e}_a = H_{ab}e^b$$
,  $\cdot = \frac{d}{du}$ 

gives Killing vectors  $e^a \partial_{x^a} - \dot{e}^a x^a \partial_v$ .

▶ Choose d – 2-dimensional abelian subgroup

$$D_i = e_i^a \partial_{x^a} - \dot{e}_i^a x_a \partial_v, \qquad i = 1 \dots d - 2,$$

commuting  $\Leftrightarrow \dot{e}^a_{[i}e_{j]a} = 0$ .

▶ Let  $e_a^i$  be inverse matrix,  $e_a^i e_{ib} = \delta_{ab}$ .



# Momentum eigenstates on plane waves: I. Gravity

► Choose d-1 commuting symmetries  $(\partial_{\nu}, D_i) \sim$ Separable Hamilton-Jacobi soln, momenta  $(k_+, k_i)$ 

$$\phi_k = k_+ (v + \frac{1}{2}\sigma_{ab}x^ax^b) + k_ie_a^ix^a + \frac{k_ik_jF^{ij}(u)}{2k_+},$$

where  $F^{ij}(u) = \int^u e^i_a e^{ja} du'$  and  $\sigma_{ab} = \dot{e}^i_a e_{bi}$  'shear'.

Then

$$\Phi_k = |e|^{-\frac{1}{2}} \mathrm{e}^{i\phi_k}, \quad |e| = \det(e_i^a) \quad \text{solves} \quad \Box \Phi_k = 0.$$

Such a field has a 'curved' momentum

$$K_{\mu}dX^{\mu}:=d\phi_{k}=k_{+}dv+(\sigma_{ab}x^{b}+k_{i}e_{a}^{i})dx^{a}+(\ldots)du$$

#### Memory:

As  $u \to -\infty$ , set  $e_i^a = \delta_i^a$  so  $K_\mu = (k_+, k_a, k_a k^a/2k_+)$  const. As  $u \to +\infty$ ,  $e_i^a(u) = b_i^a + uc_i^a$ , b, c = const., and  $\sigma_{ab} \neq 0$ ; so wave fronts  $\phi_k = const.$  become curved.

### Higher spins

▶ We have d - 2 covariantly constant spin raising operators

$$R^a = du \delta^{ab} \partial_{x^b} + dx^a \partial_v \,, \qquad 
abla_\mu R^a = 0 \,.$$

Gives linear gauge field on background

$$A = \frac{\epsilon_a R^a}{k_{\perp}} \Phi_k = \varepsilon_{\mu} dX^{\mu} \Phi_k$$

with curved polarization  $\varepsilon_{\mu}$ ,  $K^{\mu}\varepsilon_{\mu}=0$ ,

$$arepsilon_{\mu}dX^{\mu}=\epsilon_{a}dx^{a}+\epsilon^{a}\left(rac{k_{i}e_{a}^{i}}{k_{+}}+\sigma_{ab}x^{b}
ight)du$$

Linear gravity on background

$$h_{\mu\nu}dX^{\mu}dX^{\nu} = \frac{\epsilon_{a}R^{a}(\epsilon_{b}R^{b}\Phi_{k})}{k_{\perp}^{2}} = \left((\varepsilon \cdot dX)^{2} - \frac{i}{k_{+}}\epsilon_{a}\epsilon_{b}\sigma^{ab}du^{2}\right)\Phi_{k}$$

Note potential obstruction to double copy.



## Tails and Huygens

#### Theorem (Friedlander 1970s)

The only space-times that admit clean cut solutions to the wave equation are conformal to plane waves (or flat space).

- $\Phi = |e|^{-1/2} \delta(\phi_k)$  is clean cut solution to wave equation.
- Analogous spin-1 solution is

$$a = |e|^{-1/2} \epsilon_a R^a(\phi_k \Theta(\phi_k))$$

SO

$$F = da = \delta(\phi_k)|e|^{-\frac{1}{2}}\epsilon_a R^a \phi_k \wedge d\phi_k + \Theta(\phi_k)|e|^{-\frac{1}{2}}\epsilon^a \sigma^0_{ab} dx^a \wedge du$$

i.e., there is backscattering with a tail.

Similar spin-2 solution has longer tail.



# Momentum eigenstates on plane waves: II. Yang-Mills

Use same coordinates on flat space-time with gauge potential

$$A = \dot{A}_a(u)x^a du$$
,  $F = \dot{A}_a(u)dx^a \wedge du$ .

Again, take sandwich wave with  $Supp(A_a) \subset u \in [0, 1]$ . Momentum eigenstate charge e:

$$\Phi_k = e^{i\left(k_+v + (k_a + eA_a)x^a + \frac{f(u)}{2k_+}\right)}, \qquad \Box_{eA}\Phi_k = 0\,,$$

momentum  $K_{\mu}(u)=\left(k_{+},k_{a}+e\emph{A}_{a}(u),rac{\dot{f}(u)}{2k_{+}}
ight)$  with

$$K \cdot K = 0 \quad \rightsquigarrow \quad f(u) = \int_{-\infty}^{u} (k_a + eA_a)(k^a + eA^a)du'$$
.

#### Memory:

Choose  $A_a = 0$  for u < 0, then for u > 1,  $A_a(u) = const. \neq 0$ .

$$\mathcal{K}_{\mu}(u) = egin{cases} \left(k_{+}, k_{a}, rac{k_{a}k^{a}}{2k_{+}}
ight), & u < 0\,, \ \left(k_{+}, k_{a} + e\mathcal{A}_{a}(1), rac{\dot{f}(1)}{2k_{+}}
ight), & u > 1\,. \end{cases}$$



## Linear YM fields on the background

Let  $\mathfrak{h}$  be Cartan subalgebra of Lie algebra  $\mathfrak{g}$  of gauge group G.

- ▶ Let  $\dot{A}_a(u)x^adu$  take values in  $\mathfrak{h}$ .
- ▶ Encode colour  $t^a$  in charge e =eigenvalue of  $\mathfrak{h} \times$  coupling.
- ▶ Charged linear YM field  $a_{\mu}$  satisfies

$$D^{\mu}D_{[\mu}a_{\nu]}+a^{\mu}\partial_{[\mu}eA_{\nu]}=0\,,\qquad D_{\mu}=\partial_{\mu}+eA_{\mu}.$$

▶ Solution  $a = \tilde{\epsilon}_a R^a \Phi_k = \tilde{\epsilon}_\mu dX^\mu \Phi_k$ , transverse polarization

$$ilde{arepsilon}_{\mu}(u)dX^{\mu}= ilde{\epsilon}_{a}\left(dx^{a}+rac{1}{k_{+}}(k^{a}+eA^{a}(u))du
ight),\quad \epsilon_{a}=const..$$

Convention: YM background polarization vectors are tilded.



# No particle creation or leakage

As  $u \to -\infty$  take linear fields to become flat space-time momentum eigenstates, i.e.,  $e_i^a = \delta_i^a$ , and  $A_a = 0$ ;

- $\pm$  frequency determined by sign of  $k_+$ , doesnt change with u so no particle creation.
- ▶ Inner products are *u*-independent on both backgrounds:

$$\langle \Phi_k | \Phi_{k'} \rangle = \int_{u=const.} \bar{\Phi}_k^* d\Phi_l - \Phi_l^* d\bar{\Phi}_k = 2k_+ \delta(k_+ - l_+) \delta^{d-2}(k_i - l_i).$$

Similarly for spin-1

and spin-2

$$\langle h_1 | h_2 \rangle = 2(\epsilon_1 \cdot \epsilon_2)^2 k_+ \delta(k_+ - l_+) \delta^{d-2}(k_i - l_i).$$

Failure of global hyperbolicity does not lead to leakage: failure is in too high co-dimension in space of null geodesics (i.e., those parallel to  $\partial_{\nu}$ ).

## Three particle gravity amplitude

Insert linear fields into 3-vertex taken from action. In our gauge this reduces to

$$\mathcal{M}_3 = \frac{\kappa}{4} \int d^d X \; (h_1^{\mu\nu} \partial_\mu h_{2\rho\sigma} \partial_\nu h_3^{\rho\sigma} - 2 h_1^{\rho\nu} \partial_\mu h_{2\rho\sigma} \partial_\nu h_3^{\mu\sigma}) + \textit{perms}$$

This gives with our states, after some manipulation

$$\frac{\kappa}{2} \delta^{d-1} \left( \sum_{r=1}^{3} k_r \right) \int \frac{du}{\sqrt{\det e_i^a}} \exp \left( \sum_{r=1}^{s} \frac{F^{ij} k_{ri} k_{rj}}{2k_{r0}} \right)$$

$$\left[ (\varepsilon_1 \cdot \varepsilon_2 \left( K_1 - K - 2 \right) \cdot \varepsilon_3 + \circlearrowleft)^2 - i k_{1+} k_{2+} k_{3+} \sigma^{ab} \mathcal{C}_a \mathcal{C}_b \right]$$

where

$$C_a := \varepsilon_1 \cdot \varepsilon_2 \frac{\epsilon_{3a}}{k_{3+}} + \circlearrowleft$$

The first term is square of YM 3-pt amplitude on gravity plane wave, so tail term  $\sigma^{ab}C_aC_b$  seems to obstruct double copy.



### Three-point YM amplitude

Three point vertex on background now obtained from cubic part of action  $\int_M a_{[\mu} a_{\nu]} D^{\mu} a^{\nu} d^4 X$  which gives

$$\mathcal{A}_{3} = \int du (\tilde{\varepsilon}_{1} \cdot \tilde{\varepsilon}_{2} \, \tilde{\varepsilon}_{3} \cdot (K_{1} - K_{2}) + \circlearrowleft) \exp \left( i \sum_{r=1}^{3} \frac{f_{r}(u)}{2k_{r0}} \right) C_{\lambda}(t_{i})$$

in terms of flat quantities, the integrand is

$$\tilde{\epsilon}_1 \cdot \tilde{\epsilon}_2 \, \tilde{\epsilon}_3^a \left( \left( \frac{k_{1+}}{k_{2+}} k_{2a} - k_{1a} \right) + A_a \left( e_1 - e_2 \frac{k_{1+}}{k_{2+}} \right) \right) + \circlearrowleft =: F + C$$

with the second term providing background 'tail' dependence on  $A_a$ .

### Double copy replacement principle

We can establish correspondence between integrands with following rules

1. Flip charges  $e_r \rightarrow -e_r$  in  $A_3 = F + C$  to obtain conjugate  $\tilde{A} = F - C$  so

$$|\mathcal{A}_3|^2 := \mathcal{A}_3 \tilde{\mathcal{A}}_3 = F^2 - C^2$$

with  $F = F(k_r, \tilde{\epsilon})$  and  $C = Ck_r, \tilde{\epsilon}_r, A)$ .

2. In F and C replace  $k_{ra}$  by  $k_i e_a^i$  and drop  $\sim$ 's on  $\epsilon$ 's yielding  $F(k_{ri}e_a^i, \epsilon_r)$  and  $C(k_{ri}e_a^i, \epsilon_r, A)$ .

3.

$$\text{Replace} \qquad e_r e_s A^a A^b \to \begin{cases} i k_{r0} \sigma^{ab} & r = s, \\ i (k_{r0} + k_{s0}) \sigma^{ab} & r \neq s \,. \end{cases}$$

This now yields a double copy relationship between the integrands that incorporates tail terms.



# Four point amplitudes: YM

Work in progress w/Adamo, Casali, Nekovar

Construct scalar Feynman propagator as

$$G^{F}(X,X') = \int \frac{d^{d}k}{k^{2} + i\epsilon} \exp i(\tilde{\phi}_{k}(X) - \tilde{\phi}_{k}(X'))$$

where  $\tilde{\phi}_k$  is now solution to massive Hamilton-Jacobi

$$\tilde{\phi}_k = k_+ v + (\mathbf{k}_a + eA_a)x^a + \frac{1}{2k_+} \int^u ds [k^2 + (\mathbf{k} + eA(s))^2]$$

with  $k^2 = k_+ k_- - k_a k^a \neq 0$ .

► For spin-1 solve  $(\Box_{eA} + k^2)a_{\mu} + 2ieF^{\nu}_{\mu}a_{\nu} = 0$  with

$$G_{\mu\nu}^{F} = \int \frac{d^{d}k}{k^{2} + i\epsilon} P_{\mu\nu}(u, u', k_{+}) e^{i(\phi_{k}(X) - \phi_{k}(X'))}$$

$$P_{\mu\nu} = egin{pmatrix} 0 & 0 & 1 \ 0 & -\delta_{ac} & lpha \Delta A_a \ 1 & -lpha \Delta A_c & rac{lpha^2}{2} \Delta A^2 \end{pmatrix}, \quad \Delta A = A(u) - A(u'), \quad lpha = rac{ie}{k_+}$$

Gravity similar, but much more complicated, and a second similar, but much more complicated.

## BCJ at four points

YM diagrams are 3 exchanges in *s*, *t* and *u* channels and contact 4-vertex.

- ▶ BCJ form requires opening up 4-vertex into 3-exchange diagrams using  $C_s \rightarrow sC_s/s$  etc..
- ► Then 3-channels, s, t and u in flat space give

$$A_4 = \frac{N_s C_s}{s} + \frac{N_t C_t}{t} + \frac{N_u C_u}{u}$$

with 
$$s = (k_1 + k_2)^2$$
,  $t = (k_2 + k_3)^2$ ,  $u = (k_1 + k_3)^2$ .

▶ Jacobi-identity is  $C_s - C_t + C_u = 0$ ; for BCJ property need

$$N_s - N_t + N_u = 0$$
,

but this is naively obstructed on a plane wave!

Do propagators double copy? Perhaps need convolution.



# Conclusions and further developments

- Explicit Feynman rules on plane waves have been found for both gravity and YM.
- ► The original double copy is multiplication in momentum space, and so is convolution on space-time in general.
- Satisfies nontrivial double copy rules at 3pts but work is in progress at four points: does obstruction to BCJ find natural home in curved background double copy principle?
- ► For Feynman propagators on backgrounds for different spins convolution must play bigger role.
- Full geometric understanding of double copy in nonlinear regime is a long way off, but framework gives first steps.
- Provides independent calculation to verify ambitwistor string computation on plane wave background in arxiv:1708.09249.
- Ambitwistor strings manifest double copy. Need to extend this framework to find curved background scattering equations tht express double copy beyond four points.

### The Oxford Group

#### Faculty

- Fernando Alday: Integrability, string dualities, conformal bootstraps.
- Francis Brown: polylogs, zeta values and number theory.
- Andrew Hodges: twistor diagrams etc..
- Also Beem, Candelas, Conlon, De la Ossa, Lukas, Schafer-Nameki, Sparks, Starinetz.

#### Nearby friends and collaborators:

- David Skinner, Ron Reid Edwards, twistors/ambitwistor strings (Cambridge).
- Tomek Lukowski (Hertfordshire).

#### **Postdocs**

- Erik Panzer, Feynman integrals, polylogs and string integrals.
- Carlo Meneghelli: CFTs, conformal bootstraps.
- Eduardo Casali (Davis): ambitwistor strings etc..
- ► Tim Adamo (Imperial): twistor actions, ambitwistor strings, etc..