N=4 Super-Yang-Mills Amplitudes and Cosmic Galois Theory

Lance Dixon

1609.00669 with S. Caron-Huot, M. von Hippel, A. McLeod, 18mm.nnnnn also with F. Dulat and G. Papathanasiou

SAGEX Kickoff
September 5, 2018

Hexagon function bootstrap

LD, Drummond, Henn, 1108.4461, 1111.1704;
Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669;

Heptagon: Drummond, Papathanasiou, Spradlin, 1412.3763;
LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976

Use analytical properties of perturbative amplitudes in planar $\mathrm{N}=4$ SYM to determine them directly, without ever peeking inside the loops

Step toward doing this nonperturbatively (no loops to peek inside) for general kinematics

Solving Planar N=4 SYM

Images: A. Sever, N. Arkani-Hamed

Amplitudes = Wilson loops

Spacetime

Dual Spacetime

Momentum Twistor Space

Alday, Maldacena, 0705.0303
Drummond, Korchemsky, Sokatchev, 0707.0243
Brandhuber, Heslop, Travaglini, 0707.1153
Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466;

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

Hodges, 0905.1473
Arkani-Hamed et al, 0907.5418, 1008.2958, 1212.5605

Adamo, Bullimore, Mason, Skinner, 1104.2890

Rich theoretical "data" mine

- Rare to have perturbative results to 6 loops
- Usually high loop order \rightarrow single numbers
- Here we have analytic functions of 3 variables (6 variables in 7-point case)
- Rich Hopf algebraic structure
- Many limits to study (and exploit)

(Near) collinear (OPE) limit

Flux tubes at finite coupling

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788;
Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile n-gon with pentagon transitions.
- Quantum integrability \rightarrow compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = expansion around near collinear limit

Multi-Regge limit

- Amplitude factorizes in Fourier-Mellin space

Bartels, Lipatov, Sabio Vera, 0802.2065, Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186; Pennington, 1209.5357;
Basso, Caron-Huot, Sever, 1407.3766 (analytic continuation from OPE limit);
Broedel, Sprenger, 1512.04963; Lipatov, Prygarin, Schnitzer, 1205.0186;
LD, von Hippel, 1408.1505; Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, Papathanasiou, Verbeek, 1606.08807

Dual conformal invariance

- Wilson n-gon invariant under

$$
x_{i}^{\mu} \rightarrow \frac{x_{i}^{\mu}}{x_{i}^{2}}, \quad x_{i j}^{2} \rightarrow \frac{x_{i j}^{2}}{x_{i}^{2} x_{j}^{2}}
$$

$x_{i j}^{2}=\left(k_{i}+k_{i+1}+\cdots+k_{j-1}\right)^{2}$

- Fixed, up to functions of invariant cross ratios:

$$
u_{i j k l} \equiv \frac{x_{i j}^{2} x_{k l}^{2}}{x_{i k}^{2} x_{j l}^{2}}
$$

- $x_{i, i+1}^{2}=k_{i}^{2}=0 \quad \rightarrow$ no such variables for $n=4,5$

Removing Divergences

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension γ_{K}

- Both removed by dividing by a known function, the BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized amplitude is finite, (dual) conformally invariant.
- BDS-like \rightarrow also maintain important relation due to causality (Steinmann)

BDS-like ansatz

$$
\frac{\mathcal{A}_{6}^{\mathrm{BDS}-\text { like }}}{\mathcal{A}_{6}^{\mathrm{MHV}(0)}}=\exp \left[\sum_{L=1}^{\infty} a^{L}\left(f^{(L)}(\epsilon) \frac{1}{2} \hat{M}_{6}(L \epsilon)+C^{(L)}\right)\right]
$$

where

$$
f^{(L)}(\epsilon)=\frac{1}{4} \gamma_{K}^{(L)}+\epsilon \frac{L}{2} \mathcal{G}_{0}^{(L)}+\epsilon^{2} f_{2}^{(L)}
$$

are constants, and

$$
\begin{aligned}
\hat{M}_{6}(\epsilon) & =M_{6}^{1-\operatorname{loop}}(\epsilon)+Y(u, v, w) \\
& =\sum_{i=1}^{6}\left[-\frac{1}{\epsilon^{2}}\left(1-\epsilon \ln s_{i, i+1}\right)-\ln s_{i, i+1} \ln s_{i+1, i+2}+\frac{1}{2} \ln s_{i, i+1} \ln s_{i+3, i+4}\right]+6 \zeta_{2}
\end{aligned}
$$

$Y(u, v, w)=\operatorname{Li}_{2}(1-u)+\operatorname{Li}_{2}(1-v)+\operatorname{Li}_{2}(1-w)+\frac{1}{2}\left(\ln ^{2} u+\ln ^{2} v+\ln ^{2} w\right)$

- BDS-like ansatz contains all IR poles, but no 3-particle invariants.
- BDS-like removes Y from BDS
- Y is dual conformally invariant part of one-loop amplitude $M_{6}^{1-l o o p}$ containing all 3-particle invariants

6-point BDS-like normalized amplitude

Define

No 3-particle invariants in denominator of \mathcal{E}
\rightarrow Necessary for Steinmann constraints to hold
\rightarrow A unique choice (up to constant)

Basic bootstrap assumption

- MHV: L loop coefficient $\mathcal{E}^{(L)}(u, v, w)$ is a linear combination of weight $2 L$ hexagon functions at any loop order L
- NMHV: BDS-like normalized super-amplitude
has expansion

$$
\hat{\mathcal{P}}_{\mathrm{NMHV}} \equiv \frac{\mathcal{A}_{\mathrm{NMHV}}}{\mathcal{A}_{\mathrm{MHV}}^{\mathrm{BDS}-\text { like }}}
$$

Drummond, Henn, Korchemsky, Sokatchev, 0807.1095; LD, von Hippel, McLeod, 1509.08127

\[

\]

Kinematical playground

Multi-particle factorization $u, w \rightarrow \infty,{ }^{\prime}$
multi-Regge (1,0,0)
u

Iterated integrals

Chen; Goncharov; Brown

- Generalized polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives:

$$
d f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} d \ln s_{k}
$$

$S=$ finite set of rational expressions, "symbol letters", and $f^{s_{k}} \equiv\{n-1,1\}$ component of a "coproduct" Δ $f^{s_{k}}$ are also pure functions, weight $n-1$

- Iterate: $d f^{s_{k}} \Rightarrow f^{s_{j}}, s_{k} \equiv\{n-2,1,1\}$ component
- Symbol $=\{1,1, \ldots, 1\}$ component (maximally iterated)

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Example 1: Harmonic Polylogarithms of one variable (HPLs \{0,1\})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions.
- Gen'lize classical polylogs: $\mathrm{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t), \quad \mathrm{Li}_{1}(t)=-\ln (1-t)$
- Define HPLs by iterated integration:

$$
H_{0, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{t} H_{\vec{w}}(t), \quad H_{1, \vec{w}}(u)=\int_{0}^{u} \frac{d t}{1-t} H_{\vec{w}}(t)
$$

- Or by derivatives

$$
d H_{0, \vec{w}}(u)=H_{\vec{w}}(u) d \ln u \quad d H_{1, \vec{w}}(u)=-H_{\vec{w}}(u) d \ln (1-u)
$$

- Symbol letters: $\mathcal{S}=\{u, 1-u\}$
- Weight $n=$ length of binary string \vec{w}
- Number of functions at weight $n=2 L: 2^{2 L}$

Values of HPLs $\{0,1\}$ at $u=1$

- Classical polylogs evaluate to Riemann zeta values

$$
\begin{aligned}
& \mathrm{Li}_{n}(u)=\int_{0}^{u} \frac{d t}{t} \mathrm{Li}_{n-1}(t)=\sum_{k=1}^{\infty} \frac{u^{k}}{k^{n}} \\
& \mathrm{Li}_{n}(1)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}=\zeta(n) \equiv \zeta_{n}
\end{aligned}
$$

- HPL's evaluate to nested sums called multiple zeta values (MZVs):

$$
\zeta_{n_{1}, n_{2}, \ldots, n_{m}}=\sum_{k_{1}>k_{2}>\cdots>k_{m}>0}^{\infty} \frac{1}{k_{1}^{n_{1}} k_{2}^{n_{2}} \cdots k_{m}^{n_{m}}}
$$

Weight $n=n_{1}+n_{1}+\ldots+n_{m}$

- MZV's obey many identities, e.g. stuffle

$$
\zeta_{n_{1}} \zeta_{n_{2}}=\zeta_{n_{1}, n_{2}}+\zeta_{n_{2}, n_{1}}+\zeta_{n_{1}+n_{2}}
$$

- All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \ldots$

Example 2: Single-valued harmonic polylogarithms of one complex variable

```
Brown, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 527
```

- Also a subsector of hexagon functions, in the "multi-Regge limit"
- Symbol letters: $\mathcal{S}=\{z, 1-z, \bar{z}, 1-\bar{z}\}$
- Also require function to be real analytic in

$$
(z, \bar{z}) \in \mathbb{C}-\{0,1\}
$$

- Constrains the first entry of the symbol to be $z \bar{z} \leftrightarrow \ln |z|^{2} \quad$ or $\quad(1-z)(1-\bar{z}) \leftrightarrow \ln |1-z|^{2}$
- Brown: One SVHPL for each HPL
- Powerful constraint: $4^{2 L} \rightarrow 2^{2 L}$ functions

Hexagon symbol letters

- Momentum twistors $Z_{i}^{A}, i=1,2, \ldots, 6$ transform simply under dual conformal transformations. Hodges, 0905.1473
- Construct 4-brackets $\varepsilon_{A B C D} Z_{i}^{A} Z_{j}^{B} Z_{k}^{C} Z_{l}^{D} \equiv\langle i j k l\rangle$
- 15 projectively invariant combinations of 4-brackets can be factored into 9 basic ones:

$$
\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

$$
\begin{aligned}
u=\frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle} \quad 1-u= & \frac{\langle 6135\rangle\langle 2346\rangle}{\langle 6134\rangle\langle 2356\rangle} \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle} \\
& + \text { cyclic }
\end{aligned}
$$

Hexagon function symbol letters (cont.)

- y_{i} not independent of u_{i} :

$$
y_{u} \equiv \frac{u-z_{+}}{u-z_{-}}, \ldots \text { where }
$$

$$
\begin{aligned}
z_{ \pm} & =\frac{1}{2}[-1+u+v+w \pm \sqrt{\Delta}] \\
\Delta & =(1-u-v-w)^{2}-4 u v w
\end{aligned}
$$

- Function space graded by parity:

$$
\begin{array}{rll|}
i \sqrt{\triangle} & \leftrightarrow & -i \sqrt{\triangle} \\
z_{+} & \leftrightarrow & z_{-} \\
y_{i} & \leftrightarrow 1 / y_{i} \\
u_{i} & \leftrightarrow u_{i}
\end{array}
$$

Branch cut condition

- All massless particles \rightarrow all branch cuts start at origin in

$$
s_{i, i+1}, \quad s_{i, i+1, i+2}
$$

\rightarrow Branch cuts all start from 0 or ∞ in

$$
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad \text { or } v \text { or } w
$$

\rightarrow First symbol entry $\in\{u, v, w\} \quad$ GMSV, 1102.0062

- Powerful constraint: At weight 8 (four loops) we would have $1,675,553$ functions without it; exactly 6,916 with it.
- But most of the 6,916 functions are still unphysical.

Steinmann relations

Steinmann, Helv. Phys. Acta (1960) Bartels, Lipatov, Sabio Vera, 0802.2065

- Amplitudes should not have overlapping branch cuts:

Not Allowed

Allowed
$\operatorname{Disc}_{s_{234}}\left[\operatorname{Disc}_{s_{123}} \mathcal{E}(u, v, w)\right]=0$

Steinmann relations (cont.)

S. Caron-Huot, LD, M. von Hippel, A. McLeod, 1609.00669
$\operatorname{Disc}_{s_{234}}\left[\operatorname{Disc}_{s_{123}} \mathcal{E}(u, v, w)\right]=0$

+ cyclic conditions

$$
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad v=\frac{s_{23} s_{56}}{s_{234} s_{123}} \quad w=\frac{s_{61} s_{34}}{s_{345} s_{234}}
$$

$\ln ^{2} u \quad \ln ^{2} \frac{u v}{w}$
NO OK
First two entries restricted to 6 out of 9 :

$$
\begin{aligned}
& \operatorname{Li}_{2}(1-1 / u) \quad \operatorname{Li}_{2}(1-1 / v) \quad \operatorname{Li}_{2}(1-1 / w) \\
& \quad \ln ^{2} \frac{u v}{w} \ln ^{2} \frac{v w}{u} \quad \ln ^{2} \frac{w u}{v}
\end{aligned}
$$

$$
\frac{u v}{w}=\frac{s_{12} s_{23} s_{45} s_{56}}{s_{34} s_{61} s_{123}^{2}}
$$

Analogous constraints for $n=7$

LD, J. Drummond, T. Harrington, A. McLeod,

 G. Papathanasiou, M. Spradlin, 1612.08976
Iterative Construction of Steinmann hexagon functions

$\{n-1,1\}$ coproduct F^{x} characterizes first derivatives, defines F up to additive constant (a multiple zeta value).
$\left.\frac{\partial F}{\partial u}\right|_{v, w}=\frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{v}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}}$

$$
\frac{\partial \ln y_{u} \Upsilon}{\partial u}
$$

1. Insert general linear combinations for F^{x}
2. Apply "integrability" constraint that mixed-partial derivatives are equal (largest linear algebra computation)
3. Stay in space of functions with good branch cuts and obeying Steinmann by imposing a few more "zeta-valued" conditions in each iteration.

Simple all-loop constraints on \mathcal{E}

- S_{3} permutation symmetry in $\{u, v, w\}$
- Even under "parity".
- "Remainder function" \boldsymbol{R}_{6} vanishes in collinear limit $\left(R_{6} \rightarrow R_{5}=0\right)$

$$
v \rightarrow 0 \quad u+w \rightarrow 1
$$

$$
\begin{array}{|l}
\begin{array}{l}
\frac{\mathcal{A}_{6}^{\mathrm{MHV}}}{\mathcal{A}_{6}^{\mathrm{BDS}-\text { like }}} \equiv \mathcal{E}(u, v, w)=\exp \left[R_{6}-\frac{\gamma_{K}(a)}{8} Y\right] \quad \gamma_{K}(a)=\text { cusp anom. dim. } \\
Y(u, v, w) \equiv \operatorname{Li}_{2}(1-u)+\mathrm{Li}_{2}(1-v)+\mathrm{Li}_{2}(1-w)+\frac{1}{2}\left(\ln ^{2} u+\ln ^{2} v+\ln ^{2} w\right)
\end{array} \\
\hline \text { L. Dixon } \quad \mathrm{N}=4 \text { SYM and Cosmic Galois Theory } \\
\text { SAGEX kickoff - 2018.09.05 }
\end{array}
$$

$\overline{\mathrm{Q}}$ equation for MHV

Bullimore, Skinner, 1112.1056; Caron-Huot, He, 1112.1060

- First derivative of \mathcal{E} constrained by dual superconformal invariance.
- In terms of final entry of symbol, restricts to 6 of 9 possible letters:

$$
\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_{u}, y_{v}, y_{w}\right\}
$$

- In terms of $\{n-1,1\}$ coproducts, equivalent to:

$$
\mathcal{E}^{u}+\mathcal{E}^{1-u}=\mathcal{E}^{v}+\mathcal{E}^{1-v}=\mathcal{E}^{w}+\mathcal{E}^{1-w}=0
$$

- Similar (but more intricate) constraints for NMHV [Caron-Huot], LD, von Hippel McLeod, 1509.08127

Multi-Regge limit

- Euclidean MRK limit vanishes
- To get nonzero result for physical region, first let $u \rightarrow u e^{-2 \pi i}$, then $u \rightarrow 1, v, w \rightarrow 0$

$R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}(z, \bar{z})+2 \pi i h_{r}^{(L)}(z, \bar{z})\right]$
$g_{r}^{(L)}$ and $h_{r}^{(L)}$
all well understood by now; all SVHPLs (Brown, 2004); also NMHV behavior

$$
\text { weight }=2 L-r-1
$$

L. Dixon $\quad \mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory

Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186;
Pennington, 1209.5357;
Basso, Caron-Huot, Sever, 1407.3766; Broedel, Sprenger, 1512.04963

Lipatov, Prygarin, Schnitzer, 1205.0186;
LD, von Hippel, 1408.1505
SAGEX kickoff - 2018.09.05

Master Table

(MHV,NMHV): parameters left in $\left(\mathcal{E}^{(L)}, E^{(L)} \& \tilde{E}^{(L)}\right)$
Constraint $\quad L=1 \quad L=2 \quad L=3 \quad L=4 \quad L=5 \quad L=6$

0. Steinmann OLD	$(7,7)$	$(37,39)$	$(174,190)$	$(758,839)$	$(3105,3434)$	$? ? ? ? ?$
1. Steinmann NEW	$(6,6)$	$(25,27)$	$(92,105)$	$(313,372)$	$(991,1214)$	$(2951,742 ?)$
2. Symmetry	$(2,4)$	$(7,16)$	$(22,56)$	$(66,190)$	$(197,602)$	$(? ? ?, ? ? ?)$
3. Final entry	$(1,1)$	$(4,3)$	$(11,6)$	$(30,16)$	$(85,39)$	$(262,102)$
4. Collinear limit	$(0,0)$	$(0,0)$	$\left(0^{*}, 0^{*}\right)$	$\left(0^{*}, 2^{*}\right)$	$\left(1^{*}, 5^{*}\right)$	$\left(6^{*}, 17^{*}\right)$
5. LL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,2)$
6. NLL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
7. NNLL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
8. N^{3} LL MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
9. all MRK	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
10. T^{1} OPE	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,0)$
11. $T^{2} F^{2} l^{4} T$ OPE	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
12. all $T^{2} F^{2}$ OPE	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$

$(0,0) \rightarrow$ amplitude uniquely determined
L. Dixon $\mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory

SAGEX kickoff - 2018.09.05

"Steinmann NEW" = minimal function space

- Want to describe, not only $\left(\mathcal{E}^{(L)}, E^{(L)} \& \tilde{E}^{(L)}\right)$ to a given loop order, but also derivatives ($\{n-k, 1,1, \ldots, 1\}$ coproducts) of even higher loop answers.
- But nothing more.
- How many functions do we need?
- We take multiple derivatives/coproducts of amplitudes we know, and ask how much more of the Steinmann space we can remove.

Minimal function space (cont.)

- First surprise already at weight 2
- The many, many $\{2,1,1, \ldots, 1\}$ coproducts of the weight 12 functions $\left(\mathcal{E}^{(6)}, E^{(6)} \& \tilde{E}^{(6)}\right)$ span only a 6 dimensional subspace of the 7 dimensional Steinmann space, with basis:

$$
\operatorname{Li}_{2}(1-1 / u) \quad \ln ^{2} \frac{u v}{w}+4 \zeta_{2} \quad \text { plus cyclic }
$$

ζ_{2} is not an independent element!

Minimal Steinmann space

- At higher weights, we find that all zeta values are not independent elements of the basis, except $\zeta_{4}, \zeta_{6}, \zeta_{8}, \zeta_{10}, \ldots$
- That is,

$$
\zeta_{2}, \zeta_{3}, \zeta_{5}, \zeta_{2} \zeta_{3}, \zeta_{3}^{2}, \zeta_{7}, \zeta_{2} \zeta_{5}, \zeta_{3} \zeta_{4}, \zeta_{5,3}, \zeta_{3} \zeta_{5}, \zeta_{2} \zeta_{3}^{2},
$$

- are absorbable into other functions
- There are also additional Steinmann constraints, restricting pairs of adjacent entries, but deeper into the symbol than the first two entries.

Cosmic Galois Theory $\longleftrightarrow \rightarrow$ Co-action principle

[Cartier (2001); Connes, Marcolli (2004)]; Brown, Panzer, Schnetz (~2013+)

- Classical Galois group: Discrete group permuting points = roots of a polynomial
- Is there a kind of continuous group acting on the space of numbers/functions generated by QFT?
- Look for stability (closure) under co-action Δ :

$$
\Delta H \subset H \otimes F
$$

where Δ acting on weight n has components
$\{n-r, r\}, r=0,1, \ldots, n . \Delta$ can be computed from iterated integral representations of functions or MZVs.

- Closure trivial if $H=$ all polylogs or all MZVs.
- Nontrivial if H is restricted in some way.

Motivic decomposition of MZV's

Brown, 1102.1310 [math.NT]

- Can use Hopf co-algebra to represent any MZV in terms of words composed of an " f-basis" of non-commuting letters $f_{3}, f_{5}, f_{7}, \ldots$ while $\pi^{2 k}$ commutes.
- Generating function for independent MZVs at weight w:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} d(n) t^{n}=\frac{1}{1-t^{2}} \frac{1}{1-t^{3}-t^{5}-\cdots}=\frac{1}{1-t^{2}-t^{3}} \\
& \quad=1+t+t^{2}+t^{3}+t^{4}+2 t^{5}+2 t^{6}+3 t^{7}+\cdots
\end{aligned}
$$

- f-basis makes manifest a set of odd weight derivations, $\partial_{3}, \partial_{5}, \partial_{7}, \ldots$ which clip $f_{3}, f_{5}, f_{7}, \ldots$ off back of a word
- This structure let's us probe co-action beyond $\{n-1,1\}$

High loop ϕ^{4} primitive UV divergences (periods)

period	$\sum_{m} f_{m}^{N} \delta_{m}\left(P_{\bullet}\right)$	
P_{1}	0	
P_{3}	$6 f_{3} P_{1}$	

$$
\begin{aligned}
& a_{e} \cong \frac{1}{2}\left(\frac{\alpha}{\pi}\right) \quad 41000 \text { Electrong} \boldsymbol{- 2} \\
& +\left(\frac{197}{144}+\frac{1}{12} \pi^{2}+\frac{27}{32} f_{3}^{6}-\frac{1}{4} g_{1}^{6} \pi^{2}\right)\left(\frac{\alpha}{\pi}\right)^{2} \\
& +\left(\frac{28259}{5184}+\frac{17101}{810} \pi^{2}+\frac{139}{16} f_{3}^{6}-\frac{149}{9} g_{1}^{6} \pi^{2}-\frac{525}{32} g_{1}^{6} f_{3}^{6}+\frac{1969}{8640} \pi^{4}-\frac{1161}{128} f_{5}^{6}\right. \\
& \left.+\frac{83}{64} f_{3}^{6} \pi^{2}\right)\left(\frac{\alpha}{\pi}\right)^{3} \\
& +\left(\frac{1243127611}{130636800}+\frac{30180451}{155520} \pi^{2}-\frac{255842141}{2419200} f_{3}^{6}-\frac{8873}{36} g_{1}^{6} \pi^{2}+\frac{126909}{2560} \frac{f_{4}^{6}}{\mathrm{i} \sqrt{3}}\right. \\
& -\frac{84679}{1280} g_{1}^{6} f_{3}^{6}+\frac{169703}{3840} \frac{f_{2}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}}+\frac{779}{108} g_{1}^{6} g_{1}^{6} \pi^{2}+\frac{112537679}{3110400} \pi^{4}-\frac{2284263}{25600} f_{5}^{6} \\
& +\frac{8449}{96} g_{1}^{6} g_{1}^{6} f_{3}^{6}-\frac{12720907}{345600} f_{3}^{6} \pi^{2}-\frac{231919}{97200} g_{1}^{6} \pi^{4}+\frac{150371}{256} \frac{f_{6}^{6}}{\mathrm{i} \sqrt{3}}+\frac{313131}{1280} g_{1}^{6} f_{5}^{6} \\
& -\frac{121383}{1280} f_{2}^{6} f_{4}^{6}-\frac{14662107}{51200} f_{3}^{6} f_{3}^{6}+\frac{8645}{128} \frac{f_{2}^{6} g_{1}^{6} f_{3}^{6}}{\mathrm{i} \sqrt{3}}-\frac{231}{4} g_{1}^{6} g_{1}^{6} g_{1}^{6} f_{3}^{6}-\frac{16025}{48} \frac{f_{4}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}} \\
& +\frac{4403}{384} g_{1}^{6} f_{3}^{6} \pi^{2}-\frac{136781}{1920} f_{2}^{6} f_{2}^{6} \pi^{2}+\frac{7069}{75} f_{2}^{4} f_{2}^{4} \pi^{2}-\frac{1061123}{14400} f_{3}^{6} g_{1}^{6} \pi^{2} \\
& +\frac{1115}{72} \frac{f_{2}^{6} g_{1}^{6} g_{1}^{6} \pi^{2}}{\mathrm{i} \sqrt{3}}+\frac{781181}{20736} \frac{f_{2}^{6} \pi^{4}}{\mathrm{i} \sqrt{3}}-\frac{4049}{1080} g_{1}^{6} g_{1}^{6} \pi^{4}+\frac{90514741}{54432000} \pi^{6} \\
& -\frac{95624828289}{2050048} f_{7}^{6}-\frac{29295}{512} g_{1}^{6} f_{2}^{6} f_{4}^{6}+\frac{107919}{512} g_{1}^{6} f_{3}^{6} f_{3}^{6}+\frac{337365}{256} f_{3}^{6} g_{1}^{6} f_{3}^{6} \\
& -\frac{55618247}{409600} f_{5}^{6} \pi^{2}-\frac{1055}{256} g_{1}^{6} f_{2}^{6} f_{2}^{6} \pi^{2}+\frac{26}{3} f_{1}^{4} f_{2}^{4} f_{2}^{4} \pi^{2}+\frac{553}{4} g_{1}^{6} f_{3}^{6} g_{1}^{6} \pi^{2} \\
& -\frac{35189}{1024} f_{3}^{6} g_{1}^{6} g_{1}^{6} \pi^{2}+\frac{79147091}{2211840} f_{3}^{6} \pi^{4}-\frac{3678803}{4354560} g_{1}^{6} \pi^{6} \\
& \left.+\sqrt{3}\left(E_{4 a}+E_{5 a}+E_{6 a}+E_{7 a}\right)+E_{6 b}+E_{7 b}+U\right)\left(\frac{\alpha}{\pi}\right)^{4} .
\end{aligned}
$$

Laporta, 1704.06996; Schnetz, 1711.05118

$f_{k}^{4}=$ weight k primitives for $4^{\text {th }}$ roots of unity
$g_{1}^{6}, f_{k}^{6}=$ weight k primitives for $6^{\text {th }}$ roots of unity

$E_{i}=$ elliptic
$U=$ unknown

At $(u, v, w)=(1,1,1)$, amplitude \rightarrow MZVs

MHV

$$
\begin{array}{rlrl}
\mathcal{E}^{(1)}(1,1,1)=0, & & \text { "co-action" principle, restricting } \\
\mathcal{E}^{(2)}(1,1,1)=-10 \zeta_{4}, & & \text { combinations that can appear } \\
\mathcal{E}^{(3)}(1,1,1)= & \frac{413}{3} \zeta_{6}, & & \text { Brown, Panzer, Schnetz } \\
\mathcal{E}^{(4)}(1,1,1)= & -\frac{5477}{3} \zeta_{8}+24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right], \\
\mathcal{E}^{(5)}(1,1,1)= & \frac{379957}{15} \zeta_{10}-12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& -96\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right]
\end{array}
$$

$$
\begin{aligned}
& E^{(1)}(1,1,1)=-2 \zeta_{2}, \\
& E^{(2)}(1,1,1)=26 \zeta_{4}, \\
& E^{(3)}(1,1,1)=-\frac{940}{3} \zeta_{6},
\end{aligned}
$$

\rightarrow Evidence that the hexagon space is closed under elements of the coaction beyond the $\{n-1,1\}$ component
NMHV
Allowed MZV's obey a Galois "co-action" principle, restricting the

$$
\begin{aligned}
E^{(4)}(1,1,1)= & \frac{36271}{9} \zeta_{8}-24\left[\zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}\right], \\
E^{(5)}(1,1,1)= & -\frac{1666501}{30} \zeta_{10}+12\left[4 \zeta_{2} \zeta_{5,3}+25\left(\zeta_{5}\right)^{2}\right] \\
& +132\left[2 \zeta_{7,3}+28 \zeta_{3} \zeta_{7}+11\left(\zeta_{5}\right)^{2}-4 \zeta_{2} \zeta_{3} \zeta_{5}-6 \zeta_{4}\left(\zeta_{3}\right)^{2}\right]
\end{aligned}
$$

MZV's found in full hexagon function space at $(1,1,1)$, in f-basis

$\zeta_{12}, 7 f_{3,9}-6 \zeta_{4} f_{3,5}, \quad 5 f_{3,9}-3 \zeta_{6} f_{3,3}, \quad \zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}, \quad 7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}, \quad 5 f_{7,5}-2 \zeta_{2} f_{7, \varepsilon}$

$\zeta_{10}, \quad 7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}, 5 f_{5,5}-2 \zeta_{2} f_{5,3}$
$7 f_{9}-6 \zeta_{4} f_{5}, \quad 5 f_{9}-3 \zeta_{6} f_{3}, \quad \zeta_{2} f_{7}-\zeta_{6} f_{3}$
$\zeta_{8}, \zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2}=5 f_{3,5}-2 \zeta_{2} f_{3,3}$
$7 \zeta_{7}-\zeta_{2} \zeta_{5}-3 \zeta_{4} \zeta_{3}=7 f_{7}-\zeta_{2} f_{5}-\zeta_{4} f_{3}$

- Co-action principle manifest
- Far fewer MZVs than "expected"

$$
\begin{array}{ll}
& 1+t+t^{2}+t^{3}+t^{4}+2 t^{5}+2 t^{6}+3 t^{7}+\cdots \\
\rightarrow \quad & 1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+2 t^{8}+3 t^{9}+\ldots
\end{array}
$$

Amplitudes at $(1,1,1)$ in f-basis

MHV

$$
\begin{aligned}
\mathcal{E}^{(1)}(1,1,1)= & 0 \\
\mathcal{E}^{(2)}(1,1,1)= & -10 \zeta_{4}, \\
\mathcal{E}^{(3)}(1,1,1)= & \frac{413}{3} \zeta_{6}, \\
\mathcal{E}^{(4)}(1,1,1)= & -\frac{5477}{3} \zeta_{8}+24\left[5 f_{3,5}-2 \zeta_{2} f_{3,3}\right], \\
\mathcal{E}^{(5)}(1,1,1)= & \frac{379957}{15} \zeta_{10}-384\left[7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}\right]-312\left[5 f_{5,5}-2 \zeta_{2} f_{5,3}\right] \\
\mathcal{E}^{(6)}(1,1,1)= & -\frac{2273108143}{6219} \zeta_{12}+2264\left[7 f_{3,9}-6 \zeta_{4} f_{3,5}\right]+6536\left[5 f_{3,9}-3 \zeta_{6} f_{3,3}\right] \\
& -3072\left[\zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}\right]+5328\left[7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}\right] \\
& +4224\left[5 f_{7,5}-2 \zeta_{2} f_{7,3}\right] .
\end{aligned}
$$

$$
E^{(1)}(1,1,1)=-2 \zeta_{2}
$$

NMHV

$$
\begin{aligned}
E^{(3)}(1,1,1)= & -\frac{940}{3} \zeta_{6} \\
E^{(4)}(1,1,1)= & \frac{36271}{9} \zeta_{8}-24\left[5 f_{3,5}-2 \zeta_{2} f_{3,3}\right] \\
E^{(5)}(1,1,1)= & -\frac{1666501}{30} \zeta_{10}+528\left[7 f_{3,7}-\zeta_{2} f_{3,5}-3 \zeta_{4} f_{3,3}\right]+384\left[5 f_{5,5}-2 \zeta_{2} f_{5,3}\right] \\
E^{(6)}(1,1,1)= & \frac{5066300219}{6219} \zeta_{12}-4664\left[7 f_{3,9}-6 \zeta_{4} f_{3,5}\right]-11384\left[5 f_{3,9}-3 \zeta_{6} f_{3,3}\right] \\
& +5664\left[\zeta_{2} f_{3,7}-\zeta_{6} f_{3,3}\right]-8928\left[7 f_{5,7}-\zeta_{2} f_{5,5}-3 \zeta_{4} f_{5,3}\right] \\
& -6528\left[5 f_{7,5}-2 \zeta_{2} f_{7,3}\right]
\end{aligned}
$$

L. Dixon $\quad N=4$ SYM and Cosmic Galois Theory

Confession: need BDS-like-like

- To get the amplitudes into the minimal space requires, starting at 3 loops, one more redefinition of the BDS ansatz, by a multi-loop constant ρ :

$$
\begin{aligned}
& \mathcal{A}_{6}^{\mathrm{BDS}-\text { like }^{\prime}}=\mathcal{A}_{6}^{\mathrm{BDS}-\text { like }} \times \rho \\
& \rho= 1+\left(\zeta_{3}\right)^{2} a^{3}-10 \zeta_{3} \zeta_{5} a^{4} \\
&+\left[-\zeta_{4}\left(\zeta_{3}\right)^{2}+\frac{105}{2} \zeta_{3} \zeta_{7}+\frac{57}{2}\left(\zeta_{5}\right)^{2}\right] a^{5} \\
&+\left[\frac{25}{4} \zeta_{6}\left(\zeta_{3}\right)^{2}+7 \zeta_{4} \zeta_{3} \zeta_{5}-294 \zeta_{3} \zeta_{9}-\frac{651}{2} \zeta_{5} \zeta_{7}\right] a^{6}+\cdots
\end{aligned}
$$

$$
a=\frac{N_{c} g^{2}}{8 \pi^{2}}=\frac{\lambda}{8 \pi^{2}}
$$

- What is the meaning of ρ ?

Menagerie of "cyclotomic" polylogs at unity

finite
1 variable singular
2 variables singular
Galois co-action principle applies to entire function space at every point at which we have checked it!!
3 variables singular

$$
\text { e.g. } \begin{array}{ll}
u=v=w, & y_{u}=y_{v}=y_{w}=y \\
u=\frac{y}{(1+y)^{2}} & 1-u=\frac{1+y+y^{2}}{(1+y)^{2}}
\end{array}
$$

On the line $(u, u, 1)$, everything collapses to HPLs of u. In a linear representation, and a very compressed notation,

$$
H_{1}^{u} H_{2,1}^{u}=H_{1}^{u} H_{0,1,1}^{u}=3 H_{0,1,1,1}^{u}+H_{1,0,1,1}^{u} \rightarrow 3 h_{7}^{[4]}+h_{11}^{[4]}
$$

2 and 3 loop answers:

$$
\begin{aligned}
& R_{6}^{(2)}(u, u, 1)=h_{1}^{[4]}-h_{3}^{[4]}+h_{9}^{[4]}-h_{11}^{[4]}-\frac{5}{2} \zeta_{4}, \\
& R_{6}^{(3)}(u, u, 1)=-3 h_{1}^{[6]}+5 h_{3}^{[6]}+\frac{3}{2} h_{5}^{[6]}-\frac{9}{2} h_{7}^{[6]}-\frac{1}{2} h_{9}^{[6]}-\frac{3}{2} h_{11}^{[6]}-h_{13}^{[6]}-\frac{3}{2} h_{17}^{[6]} \\
& +\frac{3}{2} h_{19}^{[6]}-\frac{1}{2} h_{21}^{[6]}-\frac{3}{2} h_{23}^{[6]}-3 h_{33}^{[6]}+5 h_{35}^{[6]}+\frac{3}{2} h_{37}^{[6]}-\frac{9}{2} h_{39}^{[6]} \\
& -\frac{1}{2} h_{41}^{[6]}-\frac{3}{2} h_{43}^{[6]}-h_{45}^{[6]}-\frac{3}{2} h_{49}^{[6]}+\frac{3}{2} h_{51}^{[6]}-\frac{1}{2} h_{53}^{[66}-\frac{3}{2} h_{55}^{(6)} \\
& +\zeta_{2}\left[-h_{1}^{[4]}+3 h_{3}^{[4]}+2 h_{5}^{[4]}-h_{9}^{[4]}+3 h_{11}^{[4]}+2 h_{13}^{[4]}\right] \\
& +\zeta_{4}\left[-2 h_{1}^{[2]}-2 h_{3}^{[2]}\right]+\zeta_{3}^{2}+\frac{413}{24} \zeta_{6}, \\
& 5 \text { loop answer is several pages } \\
& 6 \text { loop answer is a novel! } \\
& \text { L. Dixon } \quad \mathrm{N}=4 \mathrm{SYM} \text { and Cosmic Galois Theory }
\end{aligned}
$$

$R_{6}^{(4)}(u, u, 1)=15 h_{1}^{[8]}-41 h_{3}^{[8]}-\frac{31}{2} h_{5}^{[8]}+\frac{105}{2} h_{7}^{[8]}-\frac{7}{2} h_{9}^{[8]}+\frac{53}{2} h_{11}^{[8]}+12 h_{13}^{[8]}-42 h_{15}^{[8]}$

$$
+\frac{5}{2} h_{17}^{[8]}+\frac{11}{2} h_{19}^{[8]}+\frac{9}{2} h_{21}^{[8]}-\frac{41}{2} h_{23}^{[8]}+h_{25}^{[8]}-13 h_{27}^{[8]}-7 h_{29}^{[8]}-5 h_{31}^{[8]}
$$

$$
+6 h_{33}^{[8]}-11 h_{35}^{[8]}-3 h_{37}^{[8]}+3 h_{39}^{[8]}-4 h_{43}^{[8]}-4 h_{45}^{[8]}-11 h_{47}^{[8]}+\frac{3}{2} h_{49}^{[8]}-\frac{3}{2} h_{51}^{[8]}
$$

$$
-3 h_{53}^{[8]}-5 h_{55}^{[8]}+\frac{3}{2} h_{57}^{[8]}-\frac{3}{2} h_{59}^{[8]}+9 h_{65}^{[8]}-25 h_{67}^{[8]}-9 h_{69}^{[8]}+27 h_{71}^{[8]}-2 h_{73}^{[8]}
$$

$$
+9 h_{75}^{[8]}+2 h_{77}^{[8]}-23 h_{79}^{[8]}+2 h_{81}^{[8]}-h_{85}^{[8]}-8 h_{87}^{[8]}+2 h_{89}^{[8]}-3 h_{91}^{[8]}+\frac{5}{2} h_{97}^{[8]}
$$

$$
-\frac{7}{2} h_{99}^{[8]}-\frac{1}{2} h_{101}^{[8]}+\frac{5}{2} h_{103}^{[8]}+\frac{1}{2} h_{105}^{[8]}+\frac{1}{2} h_{107}^{[8]}+\frac{1}{2} h_{109}^{[8]}-\frac{5}{2} h_{111}^{[8]}+15 h_{129}^{[8]}
$$

$$
-41 h_{131}^{[8]}-\frac{31}{2} h_{133}^{[8]}+\frac{105}{2} h_{135}^{[8]}-\frac{7}{2} h_{137}^{[8]}+\frac{53}{2} h_{139}^{[8]}+12 h_{141}^{[8]}-42 h_{143}^{[8]}
$$

$$
+\frac{5}{2} h_{145}^{[8]}+\frac{11}{2} h_{147}^{[8]}+\frac{9}{2} h_{149}^{[8]}-\frac{41}{2} h_{151}^{[8]}+h_{153}^{[8]}-13 h_{155}^{[8]}-7 h_{157}^{[8]}
$$

$$
-5 h_{159}^{[8]}+6 h_{161}^{[8]}-11 h_{163}^{[8]}-3 h_{165}^{[8]}+3 h_{167}^{[8]}-4 h_{171}^{[8]}-4 h_{173}^{[8]}
$$

$$
-11 h_{175}^{[8]}+\frac{3}{2} h_{177}^{[8]}-\frac{3}{2} h_{179}^{[8]}-3 h_{181}^{[8]}-5 h_{183}^{[8]}+\frac{3}{2} h_{185}^{[8]}-\frac{3}{2} h_{187}^{[8]}
$$

$$
+9 h_{193}^{[8]}-25 h_{195}^{[8]}-9 h_{197}^{[8]}+27 h_{199}^{[8]}-2 h_{201}^{[8]}+9 h_{203}^{[8]}+2 h_{205}^{[8]}-23 h_{207}^{[8]}
$$

$$
+2 h_{209}^{[8]}-h_{213}^{[8]}-8 h_{215}^{[8]}+2 h_{217}^{[8]}-3 h_{219}^{[8]}+\frac{5}{2} h_{225}^{[8]}-\frac{7}{2} h_{227}^{[8]}-\frac{1}{2} h_{229}^{[8]}
$$

$$
+\frac{5}{2} h_{231}^{[8]}+\frac{1}{2} h_{233}^{[8]}+\frac{1}{2} h_{235}^{[8]}+\frac{1}{2} h_{237}^{[8]}-\frac{5}{2} h_{239}^{[8]}
$$

$$
+\zeta_{2}\left[2 h_{1}^{[6]}-14 h_{3}^{[6]}-\frac{15}{2} h_{5}^{[6]}+\frac{37}{2} h_{7}^{[6]}-\frac{5}{2} h_{9}^{[6]}+\frac{25}{2} h_{11}^{[6]}+7 h_{13}^{[6]}-\frac{1}{2} h_{17}^{[6]}\right.
$$

$$
+\frac{5}{2} h_{19}^{[6]}+\frac{7}{2} h_{21}^{[6]}+\frac{9}{2} h_{23}^{[6]}-3 h_{25}^{[6]}+3 h_{27}^{[6]}+2 h_{33}^{[6]}-14 h_{35}^{[6]}-\frac{15}{2} h_{37}^{[6]}
$$

$$
+\frac{37}{2} h_{39}^{[6]}-\frac{5}{2} h_{41}^{[6]}+\frac{25}{2} h_{43}^{[6]}+7 h_{45}^{[6]}-\frac{1}{2} h_{49}^{[6]}+\frac{5}{2} h_{51}^{[6]}+\frac{7}{2} h_{53}^{[6]}
$$

$$
\left.+\frac{9}{2} h_{55}^{[6]}-3 h_{57}^{[6]}+3 h_{59}^{[6]}\right]
$$

$$
+\zeta_{4}\left[\frac{15}{2} h_{1}^{[4]}-\frac{55}{2} h_{3}^{[4]}-\frac{41}{2} h_{5}^{[4]}+\frac{15}{2} h_{9}^{[4]}-\frac{55}{2} h_{11}^{[4]}-\frac{41}{2} h_{13}^{[4]}\right]
$$

$$
+\left(\zeta_{2} \zeta_{3}-\frac{5}{2} \zeta_{5}\right)\left[h_{3}^{[3]}+h_{7}^{[3]}\right]-\left(\zeta_{3}^{2}-\frac{73}{4} \zeta_{6}\right)\left[h_{1}^{[2]}+h_{3}^{[2]}\right]
$$

$$
-\frac{3}{2} \zeta_{2} \zeta_{3}^{2}-\frac{5}{2} \zeta_{3} \zeta_{5}-\frac{471}{4} \zeta_{8}+\frac{3}{2} \zeta_{5,3} .
$$

SAGEX kickoff - 2018.09.05

Numerical values on $(u, u, 1)$ - and finite radius of convergence of perturbation theory

$R_{6}{ }^{(L)}(\mathrm{u}, \mathrm{u}, 1) / R_{6}{ }^{(L-1)}(\mathrm{u}, \mathrm{u}, 1)$

Beyond 6 gluons

- Cluster algebras provide strong clues to "the right functions"
Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Spradlin talk at Amplitudes 2016;

Drummond, Foster, Gurdogan, 1710.10953

- Power seen particularly in symbol of 3-loop MHV 7-point amplitude. 6 variables, 42 letters.
Drummond, Papathanasiou, Spradlin 1412.3763
- With Steinmann relations, can go to 4-loop MHV and 3-loop non-MHV LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976, and in progress

Summary \& Outlook

- Steinmann hexagon (heptagon) functions provide solution space for planar $\mathrm{N}=4$ SYM amplitudes/WLs over full kinematical phase space, for 6 (7) gluons, both MHV and NMHV, to high loop orders.
- 6 point: used only multi-Regge limits, OPE at 6 loops
- 7 point (symbol): only basic collinear limits needed.
- Rich algebraic structure: Lots of evidence for closure of hexagon functions under co-action principle [Schnetz], as also seen in $g-2, \phi^{4}$
- Can we go to finite coupling for generic kinematics? What are the right finite-coupling functions? Clues from OPE/integrability?

Extra Slides

Cosmic Galois Theory

Studies the symmetries of 'periods' (integrals of rational functions over domains given by rational inequalities)

- The space of functions appearing in the six-point amplitude is (conjecturally) stable under the coaction
- This property can be formulated as a 'coaction principle'

$$
\Delta \mathcal{H}^{\text {hex }} \subset \mathcal{H}^{\text {hex }} \otimes \mathcal{H}^{\pi}
$$

which incorporates the branch cut condition, but also constrains the constants that can show up

- This can be alternately formulated in terms of the action of the 'cosmic Galois group' C which is dual to this coaction

$$
C \times \mathcal{H}^{\text {hex }} \rightarrow \mathcal{H}^{\text {hex }}
$$

Cosmic Galois Theory

- The Lie algebra of C includes a set of elements $\partial_{2 m+1}$ that act on the zeta values as

$$
\partial_{2 m+1} \zeta_{2 n+1}=\delta_{m, n}
$$

and that satisfy the Leibniz rule. So, for example,

$$
\partial_{3}\left(\zeta_{7} \zeta_{3}^{2}\right)=2 \zeta_{7} \zeta_{3}
$$

- There is no ∂_{2}, because including even zeta values on both sides of the coaction leads to contradictions
- These operators also act nontrivially on multiple zeta values Brown, arXiv:1102.1310 [math.NT]

MZV restrictions

Weight	All MZVs	$\mathcal{H}^{\text {hex }}(1,1,1)$	$\mathcal{H}^{\text {hex }}$ indep.
0	1	1	1
1	-	-	-
2	ζ_{2}	ζ_{2}	-
\% 3	-		
4	$034 \quad \zeta_{4} \quad 05 \zeta_{4}$		
5	$\zeta_{5}, \zeta_{2} \zeta_{3} \quad$ 5 $\zeta_{5}-2 \zeta_{2} \zeta_{3} \quad$ -		
W6	$\zeta_{6},\left(\zeta_{3}\right)^{2}$ 敃		
边	$\zeta_{7}, \zeta_{2} \zeta_{5}, \zeta_{3} \zeta_{4} \quad 7 \zeta_{7}-\zeta_{2} \zeta_{5}-3 \zeta_{3} \zeta_{4}$		
$\text { (} 8$	$\zeta_{8}, \zeta_{5,3}, \zeta_{3} \zeta_{5}, \zeta_{2}\left(\zeta_{3}\right)^{2} \quad \zeta_{8}, \zeta_{5,3}+5 \zeta_{3} \zeta_{5}-\zeta_{2}\left(\zeta_{3}\right)^{2} \quad \zeta_{8}$		

NMHV Multi-Particle Factorization

Bern, Chalmers, hep-ph/9503236; LD, von Hippel, 1408.1505

$$
A_{6}^{\mathrm{NMHV}}\left(k_{i}\right) \xrightarrow{s_{345} \rightarrow 0} A_{4}\left(k_{6}, k_{1}, k_{2}, K\right) \frac{F_{6}\left(K^{2}, s_{i, i+1}\right)}{K^{2}} A_{4}\left(-K, k_{3}, k_{4}, k_{5}\right)
$$

Look at for NMHV: MHV tree has no pole

$$
\mathcal{A}_{\mathrm{MHV}}^{(0)}=i \frac{\delta^{4}(p) \delta^{8}(q)}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

$$
\begin{gathered}
u=\frac{s_{12} s_{45}}{s_{123} s_{345}} \rightarrow \infty \quad w=\frac{s_{61} s_{34}}{s_{345} s_{234}} \rightarrow \infty \\
u / w \text { and } v=\frac{s_{23} s_{56}}{s_{234} s_{123}} \text { fixed }
\end{gathered}
$$

Multi-Particle Factorization (cont.)

$(1)=(4) \rightarrow \infty$, rest finite
\rightarrow look at $E(u, v, w)$
Or rather at $U(u, v, w)=\ln E(u, v, w)$

$$
\frac{\mathcal{A}_{\mathrm{NMHV}}}{\mathcal{A}_{\mathrm{BDS}-\text { like }}} \approx e^{U}[(1)+(4)]
$$

Factorization limit of U

$$
\begin{aligned}
U^{(1)}(u, v, w)= & -\frac{1}{4} \ln ^{2}(u w / v)-\zeta_{2} \\
\left.U^{(2)}(u, v, w)\right|_{u, w \rightarrow \infty}= & \frac{3}{4} \zeta_{2} \ln ^{2}(u w / v)-\frac{1}{2} \zeta_{3} \ln (u w / v)+\frac{71}{8} \zeta_{4} \\
\left.U^{(3)}(u, v, w)\right|_{u, w \rightarrow \infty}= & \frac{1}{3} \zeta_{3} \ln ^{3}(u w / v)-\frac{75}{8} \zeta_{4} \ln ^{2}(u w / v)+\left(7 \zeta_{5}+8 \zeta_{2} \zeta_{3}\right) \ln (u w / v) \\
& -\frac{721}{8} \zeta_{6}-3\left(\zeta_{3}\right)^{2}
\end{aligned}
$$

- Simple polynomial in $\ln (u w / v)$, form dictated by Steinmann relations

$$
\frac{u w}{v}=\frac{s_{12} s_{34}}{s_{56}} \cdot \frac{s_{45} s_{61}}{s_{23}} \cdot \frac{1}{s_{345}^{2}}
$$

- Sudakov logs due to on-shell intermediate state
- All orders form available via analytic continuation from the near-collinear (OPE) limit. Basso, Sever, Vieira
(Sever talk at Amplitudes 2015)
L. Dixon $\quad \mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory

SAGEX kickoff - 2018.09.05

All hexagon letter are rational in terms of y_{i}

$$
\begin{gathered}
u=\frac{y_{u}\left(1-y_{v}\right)\left(1-y_{w}\right)}{\left(1-y_{u} y_{v}\right)\left(1-y_{u} y_{w}\right)}, \quad v=\frac{y_{v}\left(1-y_{w}\right)\left(1-y_{u}\right)}{\left(1-y_{v} y_{w}\right)\left(1-y_{v} y_{u}\right)}, \quad w=\frac{y_{w}\left(1-y_{u}\right)\left(1-y_{v}\right)}{\left(1-y_{w} y_{u}\right)\left(1-y_{w} y_{v}\right)} \\
1-u=\frac{\left(1-y_{u}\right)\left(1-y_{u} y_{v} y_{w}\right)}{\left(1-y_{u} y_{v}\right)\left(1-y_{u} y_{w}\right)}, \quad \text { etc., } \sqrt{\Delta}=\frac{\left(1-y_{u}\right)\left(1-y_{v}\right)\left(1-y_{w}\right)\left(1-y_{u} y_{v} y_{w}\right)}{\left(1-y_{u} y_{v}\right)\left(1-y_{v} y_{w}\right)\left(1-y_{w} y_{u}\right)} \\
\mathcal{S}=\left\{y_{i}, 1-y_{i}, 1-y_{i} y_{j}, 1-y_{u} y_{v} y_{w}\right\} \\
\text { "extra" 10 th letter }
\end{gathered}
$$

MRK Master formulae

- MHV:

$$
w=-z, \quad w^{*}=-\bar{z}
$$

$\left.e^{R+i \pi \delta}\right|_{\mathrm{MRK}}=\cos \pi \omega_{a b}+i \frac{a}{2} \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d \nu}{\nu^{2}+\frac{n^{2}}{4}}|w|^{2 i \nu} \Phi_{\operatorname{Reg}}(\nu, n)$
NLL: Fadin, Lipatov, 1111.0782; Caron-Huot, 1309.6521

$$
\times\left(-\frac{1}{1-u} \frac{|1+w|^{2}}{|w|}\right)^{\omega(\nu, n)}
$$

- NMHV:

$$
\begin{gathered}
\left.\exp \left(R^{\mathrm{NMHV}}+i \pi \delta\right)\right|_{\mathrm{MRK}}=\boldsymbol{\mathcal { P }} \exp \left(R^{\mathrm{MHV}}+i \pi \delta\right) \\
=\cos \pi \omega_{a b}-i \frac{a}{2} \sum_{n=-\infty}^{\infty}(-1)^{n}\left(\frac{w}{w^{*}}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \sqrt{\left(i \nu+\frac{n}{2}\right)^{2}}|w|^{2 i \nu} \\
\left.\times \Phi_{\mathrm{Neg}}^{\mathrm{NMHV}} \nu, n\right)\left(-\frac{1}{1-u} \frac{|1+w|^{2}}{|w|}\right)^{\omega(\nu, n)}
\end{gathered}
$$

LL: Lipatov, Prygarin, Schnitzer, 1205.0186
L. Dixon $\quad \mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory

NMHV MRK limit

Like g, h for R_{6} :
Extract p, q from V, \tilde{V}
\rightarrow linear combinations of SVHPLs [Brown, 2004]
$R_{6}^{(L)} \rightarrow(2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[g_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i h_{r}^{(L)}\left(w, w^{*}\right)\right]$

$$
\begin{aligned}
\mathcal{P}_{\mathrm{MRK}}^{(L)}= & (2 \pi i) \sum_{r=0}^{L-1} \ln ^{r}(1-u)\left[\frac{1}{1+w^{*}}\left(p_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i q_{r}^{(L)}\left(w, w^{*}\right)\right)\right. \\
& \left.+\left.\frac{w^{*}}{1+w^{*}}\left(p_{r}^{(L)}\left(w, w^{*}\right)+2 \pi i q_{r}^{(L)}\left(w, w^{*}\right)\right)\right|_{\left(w, w^{*}\right) \rightarrow\left(\frac{1}{w^{2}}, \frac{1}{w^{*}}\right)}\right]+\mathcal{O}(1-u)
\end{aligned}
$$

- Then match p, q to master formula for factorization in Fourier-Mellin space

MRK limits agree with all-orders predictions Basso, Caron-Huot, Sever 1407.3766

- BFKL eigenvalue:

$$
E^{(1)}(\nu, n), E^{(2)}(\nu, n), E^{(3)}(\nu, n)
$$

LL,
NLL,
NNLL,
NNNLL

- Impact factors:
$\Phi_{\mathrm{Reg}}^{(\mathrm{N}) \mathrm{MHV},(1)}(\nu, n), \Phi_{\mathrm{Reg}}^{(\mathrm{N}) \mathrm{MHV},(2)}(\nu, n), \Phi_{\mathrm{Reg}}^{(\mathrm{N}) \mathrm{MHV},(3)}(\nu, n), \Phi_{\mathrm{Reg}}^{(\mathrm{N}) \mathrm{MHV},(4)}(\nu, n)$
- All zeta-valued linear combinations of: derivatives of $\ln \Gamma\left(1 \pm i \nu+\frac{n}{2}\right)$

$$
\frac{i \nu}{\nu^{2}+\frac{n^{2}}{4}}, \frac{n}{\nu^{2}+\frac{n^{2}}{4}}
$$

\bar{Q} equation for NMHV

Caron-Huot, He, 1112.1060; S. Caron-Huot (2015);
LD, von Hippel, McLeod, 1509.08127

$$
\begin{gathered}
\bar{Q} \hat{\mathcal{R}}_{6,1}=\frac{\gamma_{K}}{8} \int d^{2 \mid 3} \mathcal{Z}_{7}\left[\mathcal{R}_{7,2}-\hat{\mathcal{R}}_{6,1} \mathcal{R}_{7,1}^{\text {tree }}\right]+\text { cyclic } \\
\bar{Q}_{a}^{A}=\sum_{i=1}^{n} \chi_{i}^{A} \frac{\partial}{\partial Z_{i}^{a}} \quad \hat{\mathcal{R}}_{6,1} \equiv \frac{\mathcal{A}_{\mathrm{NMHV}}}{\mathcal{A}_{\mathrm{BDS}}-\text { like }} \\
\begin{array}{l}
\text { prevents second (simpler) term } \\
\text { from generating new "final entries" }
\end{array}
\end{gathered}
$$

\rightarrow Only 18 out of $5 \times 9=45$ possible R-invariants \times final entries:

$$
\begin{array}{|l}
\quad(1) d \ln (u w / v), \quad(1) d \ln \left(\frac{(1-w) u}{w(1-u) y_{v}}\right), \\
{[(2)+(5)+(3)+(6)] d \ln \left(\frac{v}{1-v}\right)+(1) d \ln \left(\frac{w}{y_{u}(1-w)}\right)+(4) d \ln \left(\frac{u}{y_{w}(1-u)}\right)} \\
+ \text { Cyclic }
\end{array}
$$

L	$\gamma_{K}^{(L)} / \gamma_{K}^{(L-1)}$	$\bar{R}_{6}^{(L)}(1,1,1)$	${\overline{\ln } \mathcal{W}_{\mathrm{hex}}^{(L)}\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}\right)}^{[2} 1--1.6449340$
∞	-2.7697175		
3	-3.6188549	-7.0040885	-5.0036164
4	-4.9211827	-6.5880519	-5.8860842
5	-5.6547494	-6.7092373	-6.3453695
6	-6.0801089	-6.8736364	$? ?$
7	-6.3589220	-	-
8	-6.5608621	-	-
9	-6.7164600	-	-
10	-6.8410049	-	-
11	-6.9432839	-	-
12	-7.0288902	-	-
13	-7.1016320	-	$-\sim-$

Rescaled $R_{6}^{(L)}(u, u, u)$ and strong coupling

$(u, u, u) \rightarrow$ cyclotomic polylogs (weak coupling) $\arccos ^{2}(1 / 4 / u) \quad$ (strong coupling)

Iterative construction

$$
\left.\frac{\partial F}{\partial u}\right|_{v, w}=\frac{F^{u}}{u}-\frac{F^{1-u}}{1-u}+\frac{1-u-v-w}{u \sqrt{\Delta}} F^{y_{u}}+\frac{1-u-v+w}{(1-u) \sqrt{\Delta}} F^{y_{v}}+\frac{1-u+v-w}{(1-u) \sqrt{\Delta}} F^{y_{w}}
$$

- F weight n, from F^{x} weight $n-1$ (already classified)
- Just need to impose: 1. mixed-partials:

$$
\frac{\partial^{2} F}{\partial u_{i} \partial u_{j}}=\frac{\partial^{2} F}{\partial u_{j} \partial u_{i}}, \quad i \neq j
$$

```
    F
    F
    F
F
F
F
F
F
F
F
F
F
```

```
\(F^{u, y_{u}}=F^{y_{u}, u}\),
\(F^{v, y_{v}}=F^{y_{v}, v}\),
\(F^{w, y_{w}}=F^{y_{w}, w}\),
\(F^{u, y_{w}}=F^{w, y_{u}}-F^{y_{u}, w}+F^{y_{w}, u}\),
\(F^{v, y_{u}}=F^{u, y_{v}}-F^{y_{v}, u}+F^{y_{u}, v}\),
\(F^{w, y_{v}}=F^{v, y_{w}}-F^{y_{w, v}}+F^{y_{v, w}}\),
\(F^{1-v, y_{v}}=F^{y_{v}, 1-v}-F^{y_{u}, 1-u}+F^{1-u, y_{u}}+F^{y_{u}, w}-F^{w, y_{u}}-F^{y_{w}, v}+F^{v, y_{w}}\)
\(F^{1-w, y_{w}}=F^{y_{v}, 1-w}-F^{y_{v}, 1-v}+F^{1-v, y_{v}}+F^{y_{v}, u}-F^{u, y_{v}}-F^{y_{u}, w}+F^{w, y_{u}}\)
\(F^{1-u, y_{u}}=F^{y_{u}, 1-u}-F^{y_{w}, 1-w}+F^{1-w, y_{w}}+F^{y_{w}, v}-F^{v, y_{w}}-F^{y_{v}, u}+F^{u, y_{v}}\)
\(F^{1-u, y_{v}}=F^{y_{v}, 1-u}+F^{y_{v}, w}-F^{w, y_{v}}\)
\(F^{1-v, y_{\omega}}=F^{y_{w}, 1-v}+F^{y_{\omega}, u}-F^{u, y_{\omega}}\),
\(F^{1-w, y_{u}}=F^{y_{u}, 1-w}+F^{y_{u}, v}-F^{v, y_{u}}\),
\(F^{1-u, y_{w}}=F^{y_{w}, 1-u}+F^{y_{w}, v}-F^{v, y_{w}}\),
\(F^{1-v, y_{u}}=F^{y_{u}, 1-v}+F^{y_{u}, w}-F^{w, y_{u}}\),
\(F^{1-w, y_{v}}=F^{y_{v}, 1-w}+F^{y_{v}, u}-F^{u, y_{v}}\)
```

- 2. No bad branch cuts: $F^{1-u_{i}}\left(y_{i}=1, y_{j}, y_{k}\right)=0$
L. Dixon $\quad \mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory

SAGEX kickoff - 2018.09.05

Hexagon functions as

generalized polylogarithms in y_{i}

$G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)$

Region I: $\quad\left\{\begin{array}{l}\Delta>0, \quad 0<u_{i}<1, \quad \text { and } \quad u+v+w<1, \\ 0<y_{i}<1 .\end{array}\right.$

$$
\mathcal{G}=\left\{G\left(\vec{w} ; y_{u}\right) \mid w_{i} \in\{0,1\}\right\} \cup\left\{G\left(\vec{w} ; y_{v}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}\right\}\right.\right\} \cup\left\{G\left(\vec{w} ; y_{w}\right) \left\lvert\, w_{i} \in\left\{0,1, \frac{1}{y_{u}}, \frac{1}{y_{v}}, \frac{1}{y_{u} y_{v}}\right\}\right.\right\}
$$

- Useful for analytics and for numerics for $\Delta>0$

GINAC implementation: Vollinga, Weinzierl, hep-th/0410259
L. Dixon
$\mathrm{N}=4 \mathrm{SYM}$ and Cosmic Galois Theory
SAGEX kickoff - 2018.09.05

First true (y-containing) hexagon function

$\Rightarrow \tilde{\Phi}_{6}(u, v, w)$

A real integral so it must be Steinmann

- Weight 3 , totally symmetric in $\{u, v, w\}$
- First parity odd function, so:

$$
\tilde{\Phi}_{6}^{u}=\tilde{\Phi}_{6}^{v}=\tilde{\Phi}_{6}^{w}=\tilde{\Phi}_{6}^{1-u}=\tilde{\Phi}_{6}^{1-v}=\tilde{\Phi}_{6}^{1-w}=0
$$

- Only independent $\{2,1\}$ coproduct:

$$
\begin{gathered}
\tilde{\Phi}_{6}^{y_{u}}=-\Omega^{(1)}(v, w, u)=-H_{2}^{u}-H_{2}^{v}-H_{2}^{w}-\ln v \ln w+2 \zeta_{2} \\
H_{2}^{u}=\operatorname{Li}_{2}(1-u)
\end{gathered}
$$

- Encapsulates first order differential equation found earlier LD, Drummond, Henn, 1104.2787

Infinite class of integrals

- Differential equations Drummond, Henn, Trnka, 1010.3679 easy to solve in space of Steinmann hexagon functions Caron-Huot, LD, von Hippel, McLeod, Papathanasiou, 1806.01361

6 variables, 42 letters

$$
\begin{aligned}
a_{11} & =\frac{\langle 1234\rangle\langle 1567\rangle\langle 2367\rangle}{\langle 1237\rangle\langle 1267\rangle\langle 3456\rangle}, \\
a_{21} & =\frac{\langle 1234\rangle\langle 2567\rangle}{\langle 1267\rangle\langle 2345\rangle}, \\
a_{31} & =\frac{\langle 1567\rangle\langle 2347\rangle}{\langle 1237\rangle\langle 4567\rangle},
\end{aligned}
$$

$$
\begin{aligned}
& a_{41}=\frac{\langle 2457\rangle\langle 3456\rangle}{\langle 2345\rangle\langle 4567\rangle}, \\
& a_{51}=\frac{\langle 1(23)(45)(67)\rangle}{\langle 1234\rangle\langle 1567\rangle} \\
& a_{61}=\frac{\langle 1(34)(56)(72)\rangle}{\langle 1234\rangle\langle 1567\rangle}
\end{aligned}
$$

$$
\langle a(b c)(d e)(f g)\rangle \equiv\langle a b d e\rangle\langle a c f g\rangle-\langle a b f g\rangle\langle a c d e\rangle
$$

- plus cyclic, $i \rightarrow i+1(\bmod 7), a_{j i} \rightarrow a_{j, i+1} \quad(6 \times 7=42)$

Number of (first 2 entry) Steinmann heptagon symbols

Weight $k=$	1	2	3	4	5	6	7	$7^{\prime \prime}$
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip -	3	12	43	140	443	1359	4063	2946
parity -, flip +	0	0	3	14	60	210	672	668
parity -, flip -	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table 1. Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the MHV next-to-final entry condition at weight 7 .

Enough to get symbols of 4 loop MHV \& 3 loop NMHV amplitude. Even less boundary data needed: just well-defined collinear limits.

6 loops at $(1,1,1)$

MHV

$$
\begin{aligned}
\mathcal{E}^{(6)}(1,1,1)= & -\frac{2273108143}{6219} \zeta_{12}+\frac{260}{3}\left[140 \zeta_{5} \zeta_{7}-56 \zeta_{2} \zeta_{3} \zeta_{7}-10 \zeta_{2}\left(\zeta_{5}\right)^{2}-60 \zeta_{4} \zeta_{3} \zeta_{5}+49 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +384\left[\zeta_{2} \zeta_{7,3}+14 \zeta_{2} \zeta_{3} \zeta_{7}+3 \zeta_{2}\left(\zeta_{5}\right)^{2}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +120\left[4 \zeta_{4} \zeta_{5,3}+20 \zeta_{4} \zeta_{3} \zeta_{5}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +\frac{5392}{3}\left[\zeta_{9,3}+27 \zeta_{3} \zeta_{9}+20 \zeta_{5} \zeta_{7}-2 \zeta_{2} \zeta_{3} \zeta_{7}-\zeta_{2}\left(\zeta_{5}\right)^{2}-6 \zeta_{4} \zeta_{3} \zeta_{5}-5 \zeta_{6}\left(\zeta_{3}\right)^{2}\right]
\end{aligned}
$$

NMHV

$$
\begin{aligned}
E^{(6)}(1,1,1)= & \frac{5066300219}{6219} \zeta_{12}-\frac{344}{3}\left[140 \zeta_{5} \zeta_{7}-56 \zeta_{2} \zeta_{3} \zeta_{7}-10 \zeta_{2}\left(\zeta_{5}\right)^{2}-60 \zeta_{4} \zeta_{3} \zeta_{5}+49 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& -528\left[\zeta_{2} \zeta_{7,3}+14 \zeta_{2} \zeta_{3} \zeta_{7}+3 \zeta_{2}\left(\zeta_{5}\right)^{2}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& +60\left[4 \zeta_{4} \zeta_{5,3}+20 \zeta_{4} \zeta_{3} \zeta_{5}-7 \zeta_{6}\left(\zeta_{3}\right)^{2}\right] \\
& -\frac{9952}{3}\left[\zeta_{9,3}+27 \zeta_{3} \zeta_{9}+20 \zeta_{5} \zeta_{7}-2 \zeta_{2} \zeta_{3} \zeta_{7}-\zeta_{2}\left(\zeta_{5}\right)^{2}-6 \zeta_{4} \zeta_{3} \zeta_{5}-5 \zeta_{6}\left(\zeta_{3}\right)^{2}\right]
\end{aligned}
$$

Factorization on multi-particle pole

Bern, Chalmers, hep-ph/9503236; LD, von Hippel, 1408.1505; Basso, Sever, Vieira (Sever talk at Amplitudes 2015)

- Virtual Sudakov region, $A \sim \exp \left[-\ln ^{2} \delta\right]$,

$$
\delta \sim s_{345}
$$

- Can study to very high accuracy in planar $\mathrm{N}=4 \mathrm{SYM}$

Double-parton-scattering-like limit

Georgiou, 0904.4675; LD, Esterlis, 1602.02107

- Self-crossing limit of Wilson loop
- Overlaps MRK limit
- Another Sudakov region
- Singularities ~ Wilson line RGE

Korchemsky and Korchemskaya hep-ph/9409446

