N=4 Super-Yang-Mills Amplitudes and Cosmic Galois Theory

Lance Dixon 1609.00669 with S. Caron-Huot, M. von Hippel, A. McLeod, 18mm.nnnnn also with F. Dulat and G. Papathanasiou

SAGEX Kickoff September 5, 2018

Hexagon function bootstrap

LD, Drummond, Henn, 1108.4461, 1111.1704; Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669; **Heptagon:** Drummond, Papathanasiou, Spradlin, 1412.3763; LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976

Use analytical properties of perturbative amplitudes in planar N=4 SYM to determine them directly, without ever peeking inside the loops

Step toward doing this nonperturbatively (no loops to peek inside) for general kinematics

Solving Planar N=4 SYM

Images: A. Sever, N. Arkani-Hamed

Amplitudes = Wilson loops

Spacetime

Alday, Maldacena, 0705.0303 Drummond, Korchemsky, Sokatchev, 0707.0243 Brandhuber, Heslop, Travaglini, 0707.1153 Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466; Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

L. Dixon N=4 SYM and Cosmic Galois Theory

Momentum Twistor Space

Hodges, 0905.1473 Arkani-Hamed et al, 0907.5418, 1008.2958, 1212.5605 Adamo, Bullimore, Mason, Skinner, 1104.2890

Rich theoretical "data" mine

- Rare to have perturbative results to 6 loops
- Usually high loop order \rightarrow single numbers
- Here we have analytic functions of 3 variables (6 variables in 7-point case)
- Rich Hopf algebraic structure
- Many limits to study (and exploit)

(Near) collinear (OPE) limit

Flux tubes at finite coupling

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile *n*-gon with pentagon transitions.
- Quantum integrability → compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = expansion around near collinear limit

Multi-Regge limit

• Amplitude factorizes in Fourier-Mellin space

Bartels, Lipatov, Sabio Vera, 0802.2065, Fadin, Lipatov, 1111.0782;
LD, Duhr, Pennington, 1207.0186; Pennington, 1209.5357;
Basso, Caron-Huot, Sever, 1407.3766 (analytic continuation from OPE limit);
Broedel, Sprenger, 1512.04963; Lipatov, Prygarin, Schnitzer, 1205.0186;
LD, von Hippel, 1408.1505; Del Duca, Druc, Drummond, Duhr, Dulat, Marzucca, Papathanasiou, Verbeek, 1606.08807

Dual conformal invariance

• Wilson *n*-gon invariant under

$$x_i^\mu \to \frac{x_i^\mu}{x_i^2}, \quad x_{ij}^2 \to \frac{x_{ij}^2}{x_i^2 x_j^2}$$

 $x_{ij}^2 = (k_i + k_{i+1} + \dots + k_{j-1})^2$

• Fixed, up to functions of invariant cross ratios:

$$u_{ijkl} \equiv \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$$

• $x_{i,i+1}^2 = k_i^2 = 0 \rightarrow$ no such variables for n = 4,5

L. Dixon N=4 SYM and Cosmic Galois Theory

SAGEX kickoff - 2018.09.05

2

Removing Divergences

- On-shell amplitudes IR divergent due to long-range gluons
- Polygonal Wilson loops UV divergent at cusps, anomalous dimension γ_K

- Both removed by dividing by a known function, the BDS-like ansatz Bern, LD, Smirnov, hep-th/0505205, Alday, Gaiotto, Maldacena, 0911.4708
- Normalized amplitude is finite, (dual) conformally invariant.
- BDS-like → also maintain important relation due to causality (Steinmann)

$$\begin{split} & \textbf{BDS-like ansatz} \\ & \underline{\mathcal{A}_6^{\text{BDS-like}}}{\mathcal{A}_6^{\text{MHV}(0)}} = \exp \Bigl[\sum_{L=1}^\infty a^L \Bigl(f^{(L)}(\epsilon) \frac{1}{2} \hat{M}_6(L\epsilon) + C^{(L)} \Bigr) \Bigr] \\ & \text{where} \quad f^{(L)}(\epsilon) = \frac{1}{4} \gamma_K^{(L)} + \epsilon \frac{L}{2} \mathcal{G}_0^{(L)} + \epsilon^2 f_2^{(L)} \qquad \text{are constants, and} \end{split}$$

$$\hat{M}_{6}(\epsilon) = M_{6}^{1-\text{loop}}(\epsilon) + Y(u, v, w)$$

= $\sum_{i=1}^{6} \left[-\frac{1}{\epsilon^{2}} (1 - \epsilon \ln s_{i,i+1}) - \ln s_{i,i+1} \ln s_{i+1,i+2} + \frac{1}{2} \ln s_{i,i+1} \ln s_{i+3,i+4} \right] + 6\zeta_{2}$

 $Y(u, v, w) = \text{Li}_2(1-u) + \text{Li}_2(1-v) + \text{Li}_2(1-w) + \frac{1}{2}(\ln^2 u + \ln^2 v + \ln^2 w)$

- BDS-like ansatz contains all IR poles, but no 3-particle invariants.
- BDS-like removes Y from BDS
- Y is dual conformally invariant part of one-loop amplitude M_6^{1-loop} containing all 3-particle invariants
- L. Dixon N=4 SYM and Cosmic Galois Theory

6-point BDS-like normalized amplitude

Define

$$\frac{\mathcal{A}_{6}^{\mathsf{MHV}}}{\mathcal{A}_{6}^{\mathsf{BDS-like}}} \equiv \mathcal{E}(u, v, w)$$
No 3-particle invariants in denominator of \mathcal{E}

- → Necessary for Steinmann constraints to hold
- → A unique choice (up to constant)

Basic bootstrap assumption

- MHV: L loop coefficient $\mathcal{E}^{(L)}(u, v, w)$ is a linear combination of weight 2L hexagon functions at any loop order L
- **NMHV**: BDS-like normalized super-amplitude

 $\widehat{\mathcal{P}}_{\mathsf{NMHV}} \equiv \frac{\mathcal{A}_{\mathsf{NMHV}}}{\mathcal{A}_{\mathsf{MHV}}^{\mathsf{BDS-like}}}$

has expansion

Drummond, Henn, Korchemsky, Sokatchev, 0807.1095; LD, von Hippel, McLeod, 1509.08127

Iterated integrals

Chen; Goncharov; Brown

- Generalized polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives:

$$df = \sum_{s_k \in \mathcal{S}} f^{s_k} d \ln s_k$$

S = finite set of rational expressions, "symbol letters", and $f^{s_k} \equiv \{n-1,1\}$ component of a "coproduct" Δ

 f^{s_k} are also pure functions, weight *n*-1

• Iterate: $df^{s_k} \Rightarrow f^{s_j, s_k} \equiv \{n-2, 1, 1\}$ component

• Symbol = {1,1,...,1} component (maximally iterated) Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Example 1: Harmonic Polylogarithms of one variable (HPLs {0,1})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions.
- Gen'lize classical polylogs: $Li_n(u) = \int_0^u \frac{dt}{t} Li_{n-1}(t)$, $Li_1(t) = -\ln(1-t)$
- Define HPLs by iterated integration: $H_{0,\vec{w}}(u) = \int_0^u \frac{dt}{t} H_{\vec{w}}(t), \quad H_{1,\vec{w}}(u) = \int_0^u \frac{dt}{1-t} H_{\vec{w}}(t)$
- Or by derivatives

 $dH_{0,\vec{w}}(u) = H_{\vec{w}}(u) \ d\ln u \quad dH_{1,\vec{w}}(u) = -H_{\vec{w}}(u)d\ln(1-u)$

- Symbol letters: $S = \{u, 1 u\}$
- Weight n =length of binary string \vec{w}
- Number of functions at weight n = 2L: 2^{2L}

Values of HPLs {0,1} at *u* = 1

 $\operatorname{Li}_{n}(u) = \int^{u} \frac{dt}{dt} \operatorname{Li}_{n-1}(t) = \sum_{k=1}^{\infty} \frac{u^{k}}{dt}$ Classical polylogs • evaluate to Riemann zeta values

$$J_0 \quad t \quad n \quad 1 \quad (f) \quad \sum_{k=1}^{\infty} k$$
$$J_n(1) = \sum_{k=1}^{\infty} \frac{1}{k^n} = \zeta(n) \equiv \zeta_n$$

 HPL's evaluate to nested sums called multiple zeta values (MZVs): $\zeta_{n_1, n_2, \dots, n_m} = \sum_{k_1 > k_2 > \dots > k_m > 0}^{\infty} \frac{1}{k_1^{n_1} k_2^{n_2} \cdots k_m^{n_m}}$

Weight $n = n_1 + n_1 + \ldots + n_m$

MZV's obey many identities, e.g. stuffle

$$\zeta_{n_1}\zeta_{n_2} = \zeta_{n_1,n_2} + \zeta_{n_2,n_1} + \zeta_{n_1+n_2}$$

 All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \dots$

Example 2: Single-valued harmonic polylogarithms of one complex variable

Brown, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 527

- Also a subsector of hexagon functions, in the "multi-Regge limit"
- Symbol letters: $\mathcal{S} = \{z, 1-z, \overline{z}, 1-\overline{z}\}$
- Also require function to be real analytic in $(z,\overline{z}) \in \mathbb{C} - \{0,1\}$
- Constrains the first entry of the symbol to be $z\overline{z} \leftrightarrow \ln |z|^2$ or $(1-z)(1-\overline{z}) \leftrightarrow \ln |1-z|^2$
- Brown: One SVHPL for each HPL
- Powerful constraint: $4^{2L} \rightarrow 2^{2L}$ functions

N=4 SYM and Cosmic Galois Theory L. Dixon

18 SAGEX kickoff - 2018.09.05

Hexagon symbol letters

- Momentum twistors Z_i^A , i=1,2,...,6 transform simply under dual conformal transformations. Hodges, 0905.1473
- Construct 4-brackets $\varepsilon_{ABCD} Z_i^A Z_j^B Z_k^C Z_l^D \equiv \langle ijkl \rangle$ • 15 projectively invariant combinations of 4-brackets can
- 15 projectively invariant combinations of 4-brackets can be factored into 9 basic ones:

$$S = \{u, v, w, 1 - u, 1 - v, 1 - w, y_u, y_v, y_w\}$$

$$u = \frac{\langle 6123 \rangle \langle 3456 \rangle}{\langle 6134 \rangle \langle 2356 \rangle} \qquad 1 - u = \frac{\langle 6135 \rangle \langle 2346 \rangle}{\langle 6134 \rangle \langle 2356 \rangle} \qquad y_u = \frac{\langle 1345 \rangle \langle 2456 \rangle \langle 1236 \rangle}{\langle 1235 \rangle \langle 3456 \rangle \langle 1246 \rangle} \\ + \text{ cyclic}$$

Hexagon function symbol letters (cont.)

• y_i not independent of u_i : $y_u \equiv \frac{u - z_+}{u - z_-}$, ... where

$$z_{\pm} = \frac{1}{2} \left[-1 + u + v + w \pm \sqrt{\Delta} \right]$$
$$\Delta = (1 - u - v - w)^2 - 4uvw$$

• Function space graded by **parity**:

$$\begin{array}{cccc} i\sqrt{\Delta} & \leftrightarrow & -i\sqrt{\Delta} \\ z_{+} & \leftrightarrow & z_{-} \\ y_{i} & \leftrightarrow & 1/y_{i} \\ u_{i} & \leftrightarrow & u_{i} \end{array}$$

Branch cut condition

- Powerful constraint: At weight 8 (four loops) we would have 1,675,553 functions without it; exactly 6,916 with it.
- But most of the 6,916 functions are still unphysical.

Steinmann relations

Steinmann, Helv. Phys. Acta (1960) Bartels, Lipatov, Sabio Vera, 0802.2065

• Amplitudes should not have overlapping branch cuts:

Steinmann relations (cont.)

S. Caron-Huot, LD, M. von Hippel, A. McLeod, 1609.00669

 $\mathsf{Disc}_{s_{234}} \big| \mathsf{Disc}_{s_{123}} \mathcal{E}(u, v, w) \big| = 0$ + cyclic conditions $u = \frac{s_{12}s_{45}}{s_{123}s_{345}} \qquad v = \frac{s_{23}s_{56}}{s_{234}s_{123}} \qquad w = \frac{s_{61}s_{34}}{s_{345}s_{234}}$ $\frac{uv}{w} = \frac{s_{12}s_{23}s_{45}s_{56}}{s_{34}s_{61}s_{123}^2}$ $\ln^2 u \qquad \ln^2 \frac{uv}{w}$ NO OK Analogous First two entries restricted to 6 out of 9: constraints for n=7 $Li_2(1-1/u)$ $Li_2(1-1/v)$ $Li_2(1-1/w)$ LD, J. Drummond, T. Harrington, A. McLeod, G. Papathanasiou, $\ln^2 \frac{uv}{dt} = \ln^2 \frac{vw}{dt} = \ln^2 \frac{wu}{dt}$ M. Spradlin, 1612.08976 \boldsymbol{u} \mathcal{U}

Iterative Construction of Steinmann hexagon functions

 $\{n-1,1\}$ coproduct F^x characterizes first derivatives, defines F up to additive constant (a multiple zeta value).

$$\begin{aligned} \frac{\partial F}{\partial u}\Big|_{v,w} &= \frac{F^u}{u} - \frac{F^{1-u}}{1-u} + \frac{1-u-v-w}{u\sqrt{\Delta}}F^{y_u} + \frac{1-u-v+w}{(1-u)\sqrt{\Delta}}F^{y_v} + \frac{1-u+v-w}{(1-u)\sqrt{\Delta}}F^{y_w} \\ & \frac{\partial \ln y_u}{\partial u} \end{aligned}$$

- 1. Insert general linear combinations for F^x
- 2. Apply "integrability" constraint that mixed-partial derivatives are equal (largest linear algebra computation)
- 3. Stay in space of functions with good branch cuts and obeying Steinmann by imposing a few more "zeta-valued" conditions in each iteration.

Simple all-loop constraints on ${\cal E}$

- S_3 permutation **symmetry** in $\{u, v, w\}$
- Even under "parity".
- "Remainder function" R_6 vanishes in collinear limit $(R_6 \rightarrow R_5 = 0)$ $v \rightarrow 0$ $u + w \rightarrow 1$

$$\frac{\mathcal{A}_6^{\mathsf{MHV}}}{\mathcal{A}_6^{\mathsf{BDS-like}}} \equiv \mathcal{E}(u, v, w) = \exp\left[\frac{R_6}{8} - \frac{\gamma_K(a)}{8}Y\right] \qquad \gamma_K(a) = \text{ cusp anom. dim.}$$
$$Y(u, v, w) \equiv \text{Li}_2(1-u) + \text{Li}_2(1-v) + \text{Li}_2(1-w) + \frac{1}{2}\left(\ln^2 u + \ln^2 v + \ln^2 w\right)$$

\bar{Q} equation for MHV

Bullimore, Skinner, 1112.1056; Caron-Huot, He, 1112.1060

- First derivative of \mathcal{E} constrained by dual superconformal invariance.
- In terms of final entry of symbol, restricts to 6 of 9 possible letters:

$$\left\{\frac{u}{1-u}, \frac{v}{1-v}, \frac{w}{1-w}, y_u, y_v, y_w\right\}$$

• In terms of {*n*-1,1} coproducts, equivalent to:

$$\mathcal{E}^u + \mathcal{E}^{1-u} = \mathcal{E}^v + \mathcal{E}^{1-v} = \mathcal{E}^w + \mathcal{E}^{1-w} = \mathbf{0}$$

• Similar (but more intricate) constraints for NMHV [Caron-Huot], LD, von Hippel McLeod, 1509.08127

Multi-Regge limit

- Euclidean MRK limit vanishes
- To get nonzero result for physical region, first let
 - $u \to u e^{-2\pi i}$, then $u \to 1$, $v, w \to 0$ $\frac{v}{1-u} \to \frac{1}{|1-z|^2}$ $\frac{w}{1-u} \to \frac{|z|^2}{|1-z|^2}$

$$R_6^{(L)} \to (2\pi i) \sum_{r=0}^{L-1} \ln^r (1-u) \left[g_r^{(L)}(z,\bar{z}) + 2\pi i h_r^{(L)}(z,\bar{z}) \right]$$

 $g_r^{(L)}$ and $h_r^{(L)}$ all well understood by now; all SVHPLs (Brown, 2004); also NMHV behavior

weight = 2L - r - 1

L. Dixon N=4 SYM and Cosmic Galois Theory

Fadin, Lipatov, 1111.0782; LD, Duhr, Pennington, 1207.0186; Pennington, 1209.5357; Basso, Caron-Huot, Sever, 1407.3766; Broedel, Sprenger, 1512.04963

Lipatov, Prygarin, Schnitzer, 1205.0186; LD, von Hippel, 1408.1505

SAGEX kickoff - 2018.09.05

Master Table

(MHV,NMHV): parameters left in $(\mathcal{E}^{(L)}, E^{(L)})$							
Constraint	L = 1	L=2	L = 3	$\tilde{L} = 4$	L = 5	L = 6	
0. Steinmann OLD	(7,7)	(37, 39)	(174, 190)	(758, 839)	(3105, 3434)	?????	
1. Steinmann NEW	(6, 6)	(25, 27)	(92,105)	(313, 372)	(991, 1214)	(2951, 742?)	
2. Symmetry	(2,4)	(7, 16)	(22, 56)	(66, 190)	(197, 602)	(???,???)	
3. Final entry	(1,1)	(4,3)	(11,6)	(30, 16)	(85, 39)	(262, 102)	
4. Collinear limit	(0,0)	(0,0)	$(0^{*},\!0^{*})$	$(0^*, 2^*)$	$(1^*, 5^*)$	$(6^*, 17^*)$	
5. LL MRK	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(1,2)	
6. NLL MRK	$(0,\!0)$	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)	
7. NNLL MRK	$(0,\!0)$	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)	
8. N^3LL MRK	$(0,\!0)$	(0,0)	(0,0)	(0,0)	$(0,\!0)$	(1,0)	
9. all MRK	$(0,\!0)$	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)	
10. T^1 OPE	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(1,0)	
11. $T^2 F^2 \ln^4 T$ OPE	$(0,\!0)$	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	
12. all T^2F^2 OPE	(0,0)	(0,0)	(0,0)	(0,0)	$(0,\!0)$	(0,0)	
$(0,0) \rightarrow$ amplitude uniquely determined							
L. Dixon N=4 SYM and Cosmic Galois Theory SAGEX kickoff - 2018.09.05						28	

"Steinmann NEW" = minimal function space

- Want to describe, not only (\$\mathcal{E}^{(L)}\$, \$E^{(L)}\$, \$\mathcal{E}^{(L)}\$) to a given loop order, but also derivatives ({n-k,1,1,...,1} coproducts) of even higher loop answers.
- But nothing more.
- How many functions do we need?
- We take multiple derivatives/coproducts of amplitudes we know, and ask how much more of the Steinmann space we can remove.

Minimal function space (cont.)

- First surprise already at weight 2
- The many, many {2,1,1,...,1} coproducts of the weight 12 functions (*E*⁽⁶⁾, *E*⁽⁶⁾&*E*⁽⁶⁾) span only a 6 dimensional subspace of the 7 dimensional Steinmann space, with basis:

$$\operatorname{Li}_2(1-1/u)$$
 $\operatorname{In}^2\frac{uv}{w} + 4\zeta_2$ plus cyclic

 ζ_2 is not an independent element!

Minimal Steinmann space

- At higher weights, we find that all zeta values are not independent elements of the basis, except ζ4, ζ6, ζ8, ζ10, ...
- That is,

 $\zeta_2, \zeta_3, \zeta_5, \zeta_2 \zeta_3, \zeta_3^2, \zeta_7, \zeta_2 \zeta_5, \zeta_3 \zeta_4, \zeta_{5,3}, \zeta_3 \zeta_5, \zeta_2 \zeta_3^2, \dots$

- are absorbable into other functions
- There are also additional Steinmann constraints, restricting pairs of adjacent entries, but deeper into the symbol than the first two entries.

Cosmic Galois Theory $\leftarrow \rightarrow$ Co-action principle

[Cartier (2001); Connes, Marcolli (2004)]; Brown, Panzer, Schnetz (~2013+)

- Classical Galois group: Discrete group permuting points = roots of a polynomial
- Is there a kind of continuous group acting on the space of numbers/functions generated by QFT?
- Look for stability (closure) under co-action Δ : $\Delta H \subset H \otimes F$

where Δ acting on weight *n* has components $\{n-r,r\}, r = 0,1,...,n$. Δ can be computed from iterated integral representations of functions or MZVs.

- Closure *trivial* if H = all polylogs or *all* MZVs.
- Nontrivial if H is restricted in some way.

32

Motivic decomposition of MZV's

Brown, 1102.1310 [math.NT]

- Can use Hopf co-algebra to represent any MZV in terms of words composed of an "*f*-basis" of non-commuting letters f_3 , f_5 , f_7 , ... while π^{2k} commutes.
- Generating function for independent MZVs at weight w:

$$\sum_{n=1}^{\infty} d(n)t^n = \frac{1}{1-t^2} \frac{1}{1-t^3-t^5-\dots} = \frac{1}{1-t^2-t^3}$$
$$= 1+t+t^2+t^3+t^4+2t^5+2t^6+3t^7+\dots$$

- *f*-basis makes manifest a set of odd weight derivations, ∂_3 , ∂_5 , ∂_7 , ... which clip f_3 , f_5 , f_7 , ... off back of a word
- This structure let's us probe co-action beyond {n-1,1}

High loop ϕ^4 primitive UV divergences (periods)

period	$\sum_{m} f_m^N \delta_m(P_{\bullet})$				
P_1	0	Danzar Schnatz			
P_3	$6f_3P_1$	Panzer, Schnetz,			
P_4	$20f_5P_1$	1603.04289			
P_5	$\frac{441}{8}f_7P_1$				
$P_{6,1}$	$168f_9P_1$				
$P_{6,2}$	$\frac{2}{3}f_3P_3^2 + \frac{1063}{9}f_9P_1$				
$P_{6,3}$	$\frac{63}{5}f_3P_4 - 30f_5P_3$				
$P_{6,4}$	$-\frac{648}{5}f_3P_4 + 720f_5P_3$				
$P_{7,1}$	$\frac{33759}{64}f_{11}P_1$				
$P_{7,2}$	$\frac{7}{12}f_3P_3P_4 - \frac{5}{18}f_5P_3^2 - \frac{195379}{192}f_{11}P_1$	At weight 11, new non-MZV			
$P_{7,3}$	$\frac{1}{3}f_3P_3P_4 - \frac{31}{9}f_5P_3^2 - \frac{960211}{240}f_{11}P_1$				
	$\frac{160}{21}f_3P_5 - 20f_5P_4 + 70f_7P_3$	numbers appear			
$P_{7,5}, P_{7,10}$					
$P_{7,6}$	$\frac{7}{12}f_3P_3P_4 + \frac{145}{18}f_5P_3^2 + \frac{502247}{64}f_{11}P_1$				
$P_{7,8}$	$ f_3(7P_{6,3} - \frac{161}{30}P_3P_4) + \frac{527}{9}f_5P_3^2 + \frac{2756439}{20}f_{11}P_1 $ $ f_4(7P_{6,3} - \frac{133}{30}P_{12}) - \frac{217}{217}f_5P_2^2 + \frac{4136619}{20}f_{11}P_1 $				
$P_{7,9}$	$ f_3(\frac{7}{2}P_{6,3} - \frac{133}{80}P_3P_4) - \frac{217}{24}f_5P_3^2 + \frac{4136619}{160}f_{11}P_1 $ $ f_6(-2755P_{2,3} + \frac{35}{2}P_3) + \frac{14}{16}f_6P_2 + \frac{1017}{160}f_6P_2 - \frac{36918}{36918}f_6P_2 + \frac{36918}{160}f_{11}P_1 $				
$P_{7,11}$	$\frac{f_2^6(-\frac{2755}{864}P_{6,1}+\frac{35}{27}P_3^3)+\frac{14}{9}f_4^6P_5+\frac{1017}{22}f_6^6P_4-\frac{36918}{43}f_8^6P_3}{1716f_{-}P_{-}}$				
$P_{8,1} \\ P_{8,2}$	$ \begin{array}{c} 1716f_{13}P_1 \\ f_{-}(^{145}D_{-}D_{-} - 27D^2) + 29f_{-}D_{-}D_{-} + 47f_{-}D^2 + 9487 \end{array} $	$1691 f_{-} P$			
$P_{8,2} \qquad f_3(\frac{145}{147}P_3P_5 - \frac{27}{80}P_4^2) + \frac{29}{40}f_5P_3P_4 + \frac{47}{16}f_7P_3^2 + \frac{94871691}{22400}f_{13}P_1$					

The result for the QED contribution a_e to the electron g-2 is

$$\begin{array}{rcl} a_{e} &\cong& \frac{1}{2} \left(\frac{\alpha}{\pi}\right) & \textbf{4 loop Electron g-2} \\ & & + \left(\frac{197}{144} + \frac{1}{12}\pi^{2} + \frac{27}{32}f_{3}^{6} - \frac{1}{4}g_{1}^{6}\pi^{2}\right) \left(\frac{\alpha}{\pi}\right)^{2} \\ & & + \left(\frac{28259}{5184} + \frac{17101}{810}\pi^{2} + \frac{139}{16}f_{3}^{6} - \frac{149}{9}g_{1}^{6}\pi^{2} - \frac{525}{32}g_{1}^{6}f_{3}^{6} + \frac{1969}{8640}\pi^{4} - \frac{1161}{128}f_{5}^{6} \\ & & + \frac{83}{64}f_{3}^{6}\pi^{2}\right) \left(\frac{\alpha}{\pi}\right)^{3} \\ & & + \left(\frac{1243127611}{130636800} + \frac{30180451}{155520}\pi^{2} - \frac{255842141}{2419200}f_{3}^{6} - \frac{8873}{36}g_{1}^{6}\pi^{2} + \frac{126909}{2560}\frac{f_{4}^{6}}{i\sqrt{3}} \\ & & - \frac{84679}{1280}g_{1}^{6}f_{3}^{6} + \frac{169703}{3840}\frac{f_{2}^{6}\pi^{2}}{i\sqrt{3}} + \frac{779}{108}g_{1}^{6}g_{1}^{6}\pi^{2} + \frac{112537679}{3110400}\pi^{4} - \frac{2284263}{25600}f_{5}^{6} \\ & & + \frac{849}{96}g_{1}^{6}g_{1}^{6}f_{3}^{6} - \frac{12720907}{345600}f_{3}^{6}\pi^{2} - \frac{231919}{97200}g_{1}^{6}\pi^{4} + \frac{150371}{256}\frac{f_{6}^{6}}{i\sqrt{3}} + \frac{313131}{1280}g_{1}^{6}f_{5}^{6} \\ & - \frac{121383}{1280}f_{2}^{6}f_{4}^{6} - \frac{14662107}{51200}f_{3}^{6}f_{3}^{6} + \frac{8645}{128}\frac{f_{2}^{6}g_{1}^{6}f_{3}^{6}} - \frac{231}{4}g_{1}^{6}g_{1}^{6}g_{1}^{6}f_{3}^{6} - \frac{16025}{48}\frac{f_{4}^{4}\pi^{2}}{i\sqrt{3}} \\ & & + \frac{4403}{384}g_{1}^{6}f_{3}^{6}\pi^{2} - \frac{136781}{1920}f_{2}^{6}f_{2}^{6}\pi^{2} + \frac{7069}{75}f_{2}^{4}f_{2}^{4}\pi^{2} - \frac{1061123}{14400}f_{3}^{6}g_{1}^{6}\pi^{2} \\ & & + \frac{1115}{72}\frac{f_{2}^{6}g_{1}^{6}g_{1}\pi^{2}}{i\sqrt{3}} + \frac{781181}{200}f_{2}^{6}f_{2}^{6}\pi^{2} + \frac{7069}{7512}g_{1}^{6}f_{3}^{6}f_{3}^{6} + \frac{337365}{256}f_{3}^{6}g_{1}^{6}f_{3}^{6} \\ & & - \frac{9562482829}{2050048}f_{7}^{6} - \frac{29295}{512}g_{1}^{6}f_{2}^{6}f_{4}^{2} + \frac{10719}{512}g_{1}^{6}f_{3}f_{3}^{6} + \frac{337365}{256}f_{3}^{6}g_{1}^{6}f_{3}^{2} \\ & & - \frac{35189}{40900}f_{5}^{6}\pi^{2} + \frac{79147091}{2211840}f_{3}^{6}\pi^{4} - \frac{3678803}{4354560}g_{1}^{6}\pi^{6} \\ & & - \frac{35189}{1024}f_{3}^{6}g_{1}^{6}g_{1}^{6}\pi^{2} + \frac{79147091}{2211840}f_{3}^{6}\pi^{4} - \frac{3678803}{4354560}g_{1}^{6}\pi^{6} \\ & & + \sqrt{3}(E_{4a} + E_{5a} + E_{6a} + E_{7a}) + E_{6b} + E_{7b} + U\right) \left(\frac{\alpha}{\pi}\right)^{4}. \end{array}$$

Laporta, 1704.06996; Schnetz, 1711.05118

> f_k^4 = weight k primitives for 4^{th} roots of unity

 g_1^6 , f_k^6 = weight kprimitives for 6^{th} roots of unity

 $E_i = \text{elliptic}$

U = unknown

L. Dixon N=4 SYM and Cosmic Galois Theory

)

SAGEX kickoff - 2018.09.05 35

At (u,v,w) = (1,1,1), amplitude \rightarrow MZVs

MHV

 $\begin{aligned} \mathcal{E}^{(1)}(1,1,1) &= 0, \\ \mathcal{E}^{(2)}(1,1,1) &= -10\,\zeta_4, \\ \mathcal{E}^{(3)}(1,1,1) &= \frac{413}{3}\,\zeta_6, \\ \mathcal{E}^{(3)}(1,1,1) &= \frac{413}{3}\,\zeta_6, \\ \mathcal{E}^{(4)}(1,1,1) &= -\frac{5477}{3}\,\zeta_8 + 24\left[\zeta_{5,3} + 5\,\zeta_3\,\zeta_5 - \zeta_2\,(\zeta_3)^2\right], \\ \mathcal{E}^{(5)}(1,1,1) &= \frac{379957}{15}\,\zeta_{10} - 12\left[4\,\zeta_2\,\zeta_{5,3} + 25\,(\zeta_5)^2\right] \\ &\quad -96\left[2\,\zeta_{7,3} + 28\,\zeta_3\,\zeta_7 + 11\,(\zeta_5)^2 - 4\,\zeta_2\,\zeta_3\,\zeta_5 - 6\,\zeta_4\,(\zeta_3)^2\right] \end{aligned}$

NMHV

$$E^{(2)}(1,1,1) = -2\zeta_{2},$$

$$E^{(2)}(1,1,1) = 26\zeta_{4},$$

$$E^{(3)}(1,1,1) = -\frac{940}{3}\zeta_{6},$$

$$E^{(4)}(1,1,1) = \frac{36271}{9}\zeta_{8} - 24\left[\zeta_{5,3} + 5\zeta_{3}\zeta_{5} - \zeta_{2}(\zeta_{3})^{2}\right],$$

$$E^{(5)}(1,1,1) = -\frac{1666501}{30}\zeta_{10} + 12\left[4\zeta_{2}\zeta_{5,3} + 25(\zeta_{5})^{2}\right] + 132\left[2\zeta_{7,3} + 28\zeta_{3}\zeta_{7} + 11(\zeta_{5})^{2} - 4\zeta_{2}\zeta_{3}\zeta_{5} - 6\zeta_{4}(\zeta_{3})^{2}\right]$$

L. Dixon N=4 SYM and Cosmic Galois Theory

 $F^{(1)}(1 \ 1 \ 1) = 2 \zeta_{-}$

SAGEX kickoff - 2018.09.05

 \rightarrow Evidence that the hexagon space

MZV's found in full hexagon function space at (1,1,1), in *f*-basis

L. Dixon N=4 SYM and Cosmic Galois Theory

Amplitudes at (1,1,1) in *f*-basis

$$\begin{split} \textbf{MHV} \qquad & \mathcal{E}^{(1)}(1,1,1) = 0, \\ \mathcal{E}^{(2)}(1,1,1) = -10\,\zeta_4, \\ \mathcal{E}^{(3)}(1,1,1) = \frac{413}{3}\,\zeta_6, \\ \mathcal{E}^{(4)}(1,1,1) = -\frac{5477}{3}\,\zeta_8 + 24\left[5f_{3,5} - 2\zeta_2f_{3,3}\right], \\ \mathcal{E}^{(5)}(1,1,1) = \frac{379957}{15}\,\zeta_{10} - 384\left[7f_{3,7} - \zeta_2f_{3,5} - 3\zeta_4f_{3,3}\right] - 312\left[5f_{5,5} - 2\zeta_2f_{5,3}\right] \\ \mathcal{E}^{(6)}(1,1,1) = -\frac{2273108143}{6219}\,\zeta_{12} + 2264\left[7f_{3,9} - 6\zeta_4f_{3,5}\right] + 6536\left[5f_{3,9} - 3\zeta_6f_{3,3}\right] \\ & - 3072\left[\zeta_2f_{3,7} - \zeta_6f_{3,3}\right] + 5328\left[7f_{5,7} - \zeta_2f_{5,5} - 3\zeta_4f_{5,3}\right] \\ & + 4224\left[5f_{7,5} - 2\zeta_2f_{7,3}\right]. \\ \end{split}$$

L. Dixon N=4 SYM and Cosmic Galois Theory

Confession: need BDS-like-like

 To get the amplitudes into the minimal space requires, starting at 3 loops, one more redefinition of the BDS ansatz, by a multi-loop constant ρ:

$$\mathcal{A}_6^{\mathsf{BDS-like'}} = \mathcal{A}_6^{\mathsf{BDS-like}} \times \rho$$

$$\rho = 1 + (\zeta_3)^2 a^3 - 10\zeta_3\zeta_5 a^4 + \left[-\zeta_4(\zeta_3)^2 + \frac{105}{2}\zeta_3\zeta_7 + \frac{57}{2}(\zeta_5)^2 \right] a^5 + \left[\frac{25}{4}\zeta_6(\zeta_3)^2 + 7\zeta_4\zeta_3\zeta_5 - 294\zeta_3\zeta_9 - \frac{651}{2}\zeta_5\zeta_7 \right] a^6 + \cdots$$

• What is the meaning of ρ ?

L. Dixon N=4 SYM and Cosmic Galois Theory

 $a = \frac{N_c g^2}{8\pi^2} = \frac{\lambda}{8\pi^2}$

Menagerie of "cyclotomic" polylogs at unity

L. Dixon N=4 SYM and Cosmic Galois Theory

On the line (u,u,1), everything ^{*R*₆^{*u*}(collapses to HPLs of *u*. In a linear representation, and a very compressed notation,}

 $H_1^u H_{2,1}^u = H_1^u H_{0,1,1}^u = 3H_{0,1,1,1}^u + H_{1,0,1,1}^u \to 3h_7^{[4]} + h_{11}^{[4]}$

2 and 3 loop answers:

$$\begin{split} R_6^{(2)}(u,u,1) &= h_1^{[4]} - h_3^{[4]} + h_9^{[4]} - h_{11}^{[4]} - \frac{5}{2}\zeta_4 \,, \\ R_6^{(3)}(u,u,1) &= -3h_1^{[6]} + 5h_3^{[6]} + \frac{3}{2}h_5^{[6]} - \frac{9}{2}h_7^{[6]} - \frac{1}{2}h_9^{[6]} - \frac{3}{2}h_{11}^{[6]} - h_{13}^{[6]} - \frac{3}{2}h_{17}^{[6]} \\ &\quad + \frac{3}{2}h_{19}^{[6]} - \frac{1}{2}h_{21}^{[6]} - \frac{3}{2}h_{23}^{[6]} - 3h_{33}^{[6]} + 5h_{35}^{[6]} + \frac{3}{2}h_{37}^{[6]} - \frac{9}{2}h_{39}^{[6]} \\ &\quad - \frac{1}{2}h_{41}^{[6]} - \frac{3}{2}h_{43}^{[6]} - h_{45}^{[6]} - \frac{3}{2}h_{49}^{[6]} + \frac{3}{2}h_{51}^{[6]} - \frac{1}{2}h_{53}^{[6]} - \frac{3}{2}h_{55}^{[6]} \\ &\quad + \zeta_2 \Big[-h_1^{[4]} + 3h_3^{[4]} + 2h_5^{[4]} - h_9^{[4]} + 3h_{11}^{[4]} + 2h_{13}^{[4]} \Big] \\ &\quad + \zeta_4 \Big[-2h_1^{[2]} - 2h_3^{[2]} \Big] + \zeta_3^2 + \frac{413}{24}\zeta_6 \,, \end{split}$$

4 loop answer → 5 loop answer is several pages 6 loop answer is a novel! L. Dixon N=4 SYM and Cosmic Galois Theory

 $R_{6}^{(4)}(u, u, 1) = 15h_{1}^{[8]} - 41h_{3}^{[8]} - \frac{31}{2}h_{5}^{[8]} + \frac{105}{2}h_{7}^{[8]} - \frac{7}{2}h_{9}^{[8]} + \frac{53}{2}h_{11}^{[8]} + 12h_{13}^{[8]} - 42h_{15}^{[8]} - 42h_{15}^{[8]$ $+\frac{5}{2}h_{17}^{[8]}+\frac{11}{2}h_{19}^{[8]}+\frac{9}{2}h_{21}^{[8]}-\frac{41}{2}h_{23}^{[8]}+h_{25}^{[8]}-13h_{27}^{[8]}-7h_{29}^{[8]}-5h_{31}^{[8]}$ $+ 6h_{33}^{[8]} - 11h_{35}^{[8]} - 3h_{37}^{[8]} + 3h_{39}^{[8]} - 4h_{43}^{[8]} - 4h_{45}^{[8]} - 11h_{47}^{[8]} + \frac{3}{2}h_{49}^{[8]} - \frac{3}{2}h_{51}^{[8]}$ $-3h_{53}^{[8]} - 5h_{55}^{[8]} + \frac{3}{2}h_{57}^{[8]} - \frac{3}{2}h_{59}^{[8]} + 9h_{65}^{[8]} - 25h_{67}^{[8]} - 9h_{69}^{[8]} + 27h_{71}^{[8]} - 2h_{73}^{[8]} + 22h_{71}^{[8]} - 2h_{73}^{[8]} + 2h_{71}^{[8]} - 2h_{73}^{[8]} + 2h_{73}^{[8]} - 2h_{73}^{[8]$ $+9h_{75}^{[8]}+2h_{77}^{[8]}-23h_{79}^{[8]}+2h_{81}^{[8]}-h_{85}^{[8]}-8h_{87}^{[8]}+2h_{89}^{[8]}-3h_{91}^{[8]}+\frac{5}{2}h_{97}^{[8]}$ $-\frac{7}{2}h_{99}^{[8]} - \frac{1}{2}h_{101}^{[8]} + \frac{5}{2}h_{103}^{[8]} + \frac{1}{2}h_{105}^{[8]} + \frac{1}{2}h_{107}^{[8]} + \frac{1}{2}h_{109}^{[8]} - \frac{5}{2}h_{111}^{[8]} + 15h_{129}^{[8]}$ $-41h_{131}^{[8]} - \frac{31}{2}h_{133}^{[8]} + \frac{105}{2}h_{135}^{[8]} - \frac{7}{2}h_{137}^{[8]} + \frac{53}{2}h_{139}^{[8]} + 12h_{141}^{[8]} - 42h_{143}^{[8]}$ $+\frac{5}{2}h_{145}^{[8]}+\frac{11}{2}h_{147}^{[8]}+\frac{9}{2}h_{149}^{[8]}-\frac{41}{2}h_{151}^{[8]}+h_{153}^{[8]}-13h_{155}^{[8]}-7h_{157}^{[8]}$ $-5h_{159}^{[8]}+6h_{161}^{[8]}-11h_{163}^{[8]}-3h_{165}^{[8]}+3h_{167}^{[8]}-4h_{171}^{[8]}-4h_{173}^{[8]}$ $-11h_{175}^{[8]} + \frac{3}{2}h_{177}^{[8]} - \frac{3}{2}h_{179}^{[8]} - 3h_{181}^{[8]} - 5h_{183}^{[8]} + \frac{3}{2}h_{185}^{[8]} - \frac{3}{2}h_{187}^{[8]}$ $+9h_{193}^{[8]} - 25h_{195}^{[8]} - 9h_{197}^{[8]} + 27h_{199}^{[8]} - 2h_{201}^{[8]} + 9h_{203}^{[8]} + 2h_{205}^{[8]} - 23h_{207}^{[8]}$ $+2h_{209}^{[8]}-h_{213}^{[8]}-8h_{215}^{[8]}+2h_{217}^{[8]}-3h_{219}^{[8]}+\frac{5}{2}h_{225}^{[8]}-\frac{7}{2}h_{227}^{[8]}-\frac{1}{2}h_{229}^{[8]}$ $+\frac{5}{2}h_{231}^{[8]}+\frac{1}{2}h_{233}^{[8]}+\frac{1}{2}h_{235}^{[8]}+\frac{1}{2}h_{237}^{[8]}-\frac{5}{2}h_{239}^{[8]}$ $+\zeta_{2}\left[2h_{1}^{[6]}-14h_{3}^{[6]}-\frac{15}{2}h_{5}^{[6]}+\frac{37}{2}h_{7}^{[6]}-\frac{5}{2}h_{9}^{[6]}+\frac{25}{2}h_{11}^{[6]}+7h_{13}^{[6]}-\frac{1}{2}h_{17}^{[6]}\right]$ $+\frac{5}{2}h_{19}^{[6]}+\frac{7}{2}h_{21}^{[6]}+\frac{9}{2}h_{23}^{[6]}-3h_{25}^{[6]}+3h_{27}^{[6]}+2h_{33}^{[6]}-14h_{35}^{[6]}-\frac{15}{2}h_{37}^{[6]}$ $+\frac{37}{2}h_{39}^{[6]}-\frac{5}{2}h_{41}^{[6]}+\frac{25}{2}h_{43}^{[6]}+7h_{45}^{[6]}-\frac{1}{2}h_{49}^{[6]}+\frac{5}{2}h_{51}^{[6]}+\frac{7}{2}h_{53}^{[6]}$ $+\frac{9}{2}h_{55}^{[6]}-3h_{57}^{[6]}+3h_{59}^{[6]}$ $+\zeta_{4}\left[\frac{15}{2}h_{1}^{[4]}-\frac{55}{2}h_{3}^{[4]}-\frac{41}{2}h_{5}^{[4]}+\frac{15}{2}h_{9}^{[4]}-\frac{55}{2}h_{11}^{[4]}-\frac{41}{2}h_{13}^{[4]}\right]$ $+\left(\zeta_{2}\zeta_{3}-\frac{5}{2}\zeta_{5}\right)\left[h_{3}^{[3]}+h_{7}^{[3]}\right]-\left(\zeta_{3}^{2}-\frac{73}{4}\zeta_{6}\right)\left[h_{1}^{[2]}+h_{3}^{[2]}\right]$ $-\frac{3}{2}\zeta_2\zeta_3^2-\frac{5}{2}\zeta_3\zeta_5-\frac{471}{4}\zeta_8+\frac{3}{2}\zeta_{5,3}.$ SAGEX kickoff - 2018.09.05 41

Numerical values on (u,u,1) – and finite radius of convergence of perturbation theory

Beyond 6 gluons

Cluster algebras provide strong clues to "the right functions"

Golden, Goncharov, Paulos, Spradlin, Volovich, Vergu, 1305.1617, 1401.6446, 1411.3289; Spradlin talk at Amplitudes 2016; Drummond, Foster, Gurdogan, 1710.10953

 Power seen particularly in symbol of 3-loop MHV 7-point amplitude. 6 variables, 42 letters.

Drummond, Papathanasiou, Spradlin 1412.3763

• With Steinmann relations, can go to 4-loop MHV and 3-loop non-MHV LD, Drummond, McLeod, Harrington, Papathanasiou, Spradlin, 1612.08976, and in progress

Summary & Outlook

- Steinmann hexagon (heptagon) functions provide solution space for planar N=4 SYM amplitudes/WLs over full kinematical phase space, for 6 (7) gluons, both MHV and NMHV, to high loop orders.
- 6 point: used only multi-Regge limits, OPE at 6 loops
- 7 point (symbol): only basic collinear limits needed.
- Rich algebraic structure: Lots of evidence for closure of hexagon functions under co-action principle [Schnetz], as also seen in g-2, ϕ ⁴
- Can we go to finite coupling for generic kinematics? What are the right finite-coupling functions? Clues from OPE/integrability?

Extra Slides

Cosmic Galois Theory

Studies the symmetries of 'periods' (integrals of rational functions over domains given by rational inequalities)

- The space of functions appearing in the six-point amplitude is (conjecturally) stable under the coaction
- This property can be formulated as a 'coaction principle'

$$\Delta \mathcal{H}^{\mathsf{hex}} \subset \mathcal{H}^{\mathsf{hex}} \otimes \mathcal{H}^{\pi}$$

which incorporates the branch cut condition, but also constrains the constants that can show up

 $\circ~$ This can be alternately formulated in terms of the action of the 'cosmic Galois group' C which is dual to this coaction

$$C \times \mathcal{H}^{\mathsf{hex}} \to \mathcal{H}^{\mathsf{hex}}$$

Cosmic Galois Theory

• The Lie algebra of C includes a set of elements ∂_{2m+1} that act on the zeta values as

$$\partial_{2m+1}\zeta_{2n+1} = \delta_{m,n}$$

and that satisfy the Leibniz rule. So, for example,

$$\partial_3(\zeta_7\zeta_3^2) = 2\zeta_7\zeta_3$$

- There is no ∂_2 , because including even zeta values on both sides of the coaction leads to contradictions
- These operators also act nontrivially on multiple zeta values Brown, arXiv:1102.1310 [math.NT]

MZV restrictions

Weight	All MZVs	$\mathcal{H}^{ ext{hex}}(1,1,1)$	\mathcal{H}^{hex} indep.
0	1	1	1
1	_	_	
2	ζ_2	ζ_2	_
X 3	ζ_3	-	2
4	ζ_4	ζ_4	05_{ζ_4}
★ 5	$\zeta_5,\ \zeta_2\zeta_3$	$5\zeta_5 - 2\zeta_2\zeta_3$	-
6	$\zeta_6,~(\zeta_3)^2$	ζ_6	$\sum_{i=1}^{n} \zeta_{6}$
X X 7	$\zeta_7,\ \zeta_2\zeta_5,\ \zeta_3\zeta_4$	$7\zeta_7 - \zeta_2\zeta_5 - 3\zeta_3\zeta_4$	<u> </u>
	$\zeta_8, \zeta_{5,3}, \zeta_3\zeta_5, \zeta_2(\zeta_3)^2$	$\zeta_8, \zeta_{5,3} + 5\zeta_3\zeta_5 - \zeta_2(\zeta_3)$	2 58

NMHV Multi-Particle Factorization

Bern, Chalmers, hep-ph/9503236; LD, von Hippel, 1408.1505

L. Dixon N=4 SYM and Cosmic Galois Theory

Multi-Particle Factorization (cont.)

$$(1) = (4) \rightarrow \infty$$
, rest finite

 \rightarrow look at E(u,v,w)

Or rather at $U(u,v,w) = \ln E(u,v,w)$

$$rac{\mathcal{A}_{\mathsf{NMHV}}}{\mathcal{A}_{\mathsf{BDS-like}}} pprox e^U[(1)+(4)]$$

Factorization limit of U

$$U^{(1)}(u, v, w) = -\frac{1}{4}\ln^2(uw/v) - \zeta_2$$

$$U^{(2)}(u,v,w)|_{u,w\to\infty} = \frac{3}{4}\zeta_2 \ln^2(uw/v) - \frac{1}{2}\zeta_3 \ln(uw/v) + \frac{71}{8}\zeta_4$$

$$U^{(3)}(u,v,w)|_{u,w\to\infty} = \frac{1}{3}\zeta_3 \ln^3(uw/v) - \frac{75}{8}\zeta_4 \ln^2(uw/v) + (7\zeta_5 + 8\zeta_2\zeta_3)\ln(uw/v) - \frac{721}{8}\zeta_6 - 3(\zeta_3)^2$$

 Simple polynomial in ln(uw/v), form dictated by Steinmann relations

uw _	$s_{12}s_{34}$	$s_{45}s_{61}$	1
v –	s_{56}	s ₂₃	s_{345}^2

- Sudakov logs due to on-shell intermediate state
- All orders form available via analytic continuation from the near-collinear (OPE) limit. Basso, Sever, Vieira (Sever talk at Amplitudes 2015)

L. Dixon N=4 SYM and Cosmic Galois Theory

All hexagon letter are rational in terms of
$$y_i$$

$$u = \frac{y_u(1-y_v)(1-y_w)}{(1-y_uy_v)(1-y_uy_w)}, \quad v = \frac{y_v(1-y_w)(1-y_u)}{(1-y_vy_w)(1-y_vy_u)}, \quad w = \frac{y_w(1-y_u)(1-y_v)}{(1-y_wy_u)(1-y_wy_v)}$$
$$1-u = \frac{(1-y_u)(1-y_uy_vy_w)}{(1-y_uy_v)(1-y_uy_w)}, \quad \text{etc.}, \quad \sqrt{\Delta} = \frac{(1-y_u)(1-y_v)(1-y_w)(1-y_wy_w)}{(1-y_uy_v)(1-y_wy_w)}$$

$$\mathcal{S} = \{y_i, 1 - y_i, 1 - y_i y_j, 1 - y_u y_v y_w\}$$

"extra" 10th letter

MRK Master formulae

$$w = -z, \quad w^* = -\overline{z}$$
• MHV:
 $e^{R+i\pi\delta}|_{MRK} = \cos \pi\omega_{ab} + i\frac{a}{2}\sum_{n=-\infty}^{\infty} (-1)^n \left(\frac{w}{w^*}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d\nu}{\nu^2 + \frac{n^2}{4}} |w|^{2i\nu} \Phi_{Reg}(\nu, n)$
NLL: Fadin, Lipatov, 1111.0782;
Caron-Huot, 1309.6521 $\times \left(-\frac{1}{1-u}\frac{|1+w|^2}{|w|}\right)^{\omega(\nu,n)}$

• NMHV:

Ν

$$\begin{split} \exp(R^{\text{NMHV}} + i\pi\delta)|_{\text{MRK}} &= \overline{\mathcal{P}} \exp(R^{\text{MHV}} + i\pi\delta) \\ &= \cos\pi\omega_{ab} - i\frac{a}{2} \sum_{n=-\infty}^{\infty} (-1)^n \left(\frac{w}{w^*}\right)^{\frac{n}{2}} \int_{-\infty}^{+\infty} \frac{d\nu}{(i\nu + \frac{n}{2})^2} |w|^{2i\nu} \\ &\times \Phi_{\text{Reg}}^{\text{NMHV}}(\nu, n) \left(-\frac{1}{1-u} \frac{|1+w|^2}{|w|}\right)^{\omega(\nu, n)} \end{split}$$

LL: Lipatov, Prygarin, Schnitzer, 1205.0186

L. Dixon N=4 SYM and Cosmic Galois Theory

NMHV MRK limit

Like g, h for R_6 : Extract p, q from V, \tilde{V} \rightarrow linear combinations of SVHPLs [Brown, 2004]

$$R_{6}^{(L)} \rightarrow (2\pi i) \sum_{r=0}^{L-1} \ln^{r} (1-u) \left[g_{r}^{(L)}(w,w^{*}) + 2\pi i h_{r}^{(L)}(w,w^{*}) \right]$$

$$\mathcal{P}_{MRK}^{(L)} = (2\pi i) \sum_{r=0}^{L-1} \ln^{r} (1-u) \left[\frac{1}{1+w^{*}} (p_{r}^{(L)}(w,w^{*}) + 2\pi i q_{r}^{(L)}(w,w^{*})) + \frac{w^{*}}{1+w^{*}} (p_{r}^{(L)}(w,w^{*}) + 2\pi i q_{r}^{(L)}(w,w^{*})) \right]$$

• Then match p, q to master formula for factorization in Fourier-Mellin space

MRK limits agree with all-orders predictions Basso, Caron-Huot, Sever 1407.3766

• BFKL eigenvalue:

 $E^{(1)}(\nu,n), \ E^{(2)}(\nu,n), \ E^{(3)}(\nu,n)$

- LL, NLL, NNLL, NNNLL
- Impact factors:

 $\Phi_{\text{Reg}}^{(\text{N})\text{MHV},(1)}(\nu,n), \ \Phi_{\text{Reg}}^{(\text{N})\text{MHV},(2)}(\nu,n), \ \Phi_{\text{Reg}}^{(\text{N})\text{MHV},(3)}(\nu,n), \ \Phi_{\text{Reg}}^{(\text{N})\text{MHV},(4)}(\nu,n)$

• All zeta-valued linear combinations of: derivatives of $\ln \Gamma(1 \pm i\nu + \frac{n}{2}) = \frac{i\nu}{\nu^2 + \frac{n^2}{4}}, \quad \frac{n}{\nu^2 + \frac{n^2}{4}}$

\bar{Q} equation for NMHV

Caron-Huot, He, 1112.1060; S. Caron-Huot (2015); LD, von Hippel, McLeod, 1509.08127

$$\bar{Q}\hat{\mathcal{R}}_{6,1} = \frac{\gamma_K}{8} \int d^{2|3} \mathcal{Z}_7 [\mathcal{R}_{7,2} - \hat{\mathcal{R}}_{6,1} \mathcal{R}_{7,1}^{\text{tree}}] + \text{ cyclic}$$

 \rightarrow Only 18 out of 5 x 9 = 45 possible R-invariants x final entries:

(1)
$$d \ln(uw/v)$$
, (1) $d \ln(\frac{(1-w)u}{w(1-u)y_v})$,
[(2) + (5) + (3) + (6)] $d \ln(\frac{v}{1-v}) + (1) d \ln(\frac{w}{y_u(1-w)}) + (4) d \ln(\frac{u}{y_w(1-u)})$
+ cyclic
L. Dixon N=4 SYM and Cosmic Galois Theory SAGEX kickoff - 2018.09.05 56

	$\gamma_K^{(L)} / \gamma_K^{(L-1)}$	$\bar{R}_{6}^{(L)}(1,1,1)$	$\boxed{\ln \mathcal{W}_{\text{hex}}^{(L)}(\frac{3}{4}, \frac{3}{4}, \frac{3}{4})}$
2	-1.6449340	∞	-2.7697175
3	-3.6188549	-7.0040885	-5.0036164
4	-4.9211827	-6.5880519	-5.8860842
5	-5.6547494	-6.7092373	-6.3453695
6	-6.0801089	-6.8736364	??
7	-6.3589220		_
8	-6.5608621		_
9	-6.7164600		_
10	-6.8410049		_
11	-6.9432839		
12	-7.0288902		
13	-7.1016320		
		l	I I

L. Dixon N=4 SYM and Cosmic Galois Theory

Rescaled $R_6^{(L)}(u, u, u)$ and strong coupling

Iterative construction

$$\frac{\partial F}{\partial u}\Big|_{v,w} = \frac{F^u}{u} - \frac{F^{1-u}}{1-u} + \frac{1-u-v-w}{u\sqrt{\Delta}}F^{y_u} + \frac{1-u-v+w}{(1-u)\sqrt{\Delta}}F^{y_v} + \frac{1-u+v-w}{(1-u)\sqrt{\Delta}}F^{y_w}$$

- F weight n, from F^x weight n-1 (already classified)
- Just need to impose: 1. mixed-partials:

 $\frac{\partial^2 F}{\partial u_i \partial u_j} = \frac{\partial^2 F}{\partial u_j \partial u_i}\,, \qquad i \neq j$

$F^{u,v} = F^{v,u} - F^{y_u,y_v} + F^{y_v,y_u} ,$
$F^{v,w} = F^{w,v} - F^{y_v,y_w} + F^{y_w,y_v} ,$
$F^{w,u} = F^{u,w} - F^{y_w,y_u} + F^{y_u,y_w} ,$
$F^{1-u,1-v} = F^{1-v,1-u} + F^{y_u,y_v} - F^{y_u,y_w} - F^{y_v,y_u} + F^{y_v,y_w} + F^{y_w,y_u} - F^{y_w,y_v}$
$F^{1-v,1-w} = F^{1-w,1-v} + F^{y_v,y_w} - F^{y_v,y_u} - F^{y_w,y_v} + F^{y_w,y_u} + F^{y_u,y_v} - F^{y_u,y_w}$
$F^{1-w,1-u} = F^{1-u,1-w} + F^{y_w,y_u} - F^{y_w,y_v} - F^{y_u,y_w} + F^{y_u,y_v} + F^{y_v,y_w} - F^{y_v,y_u}$
$F^{u,1-v} = F^{1-v,u} + F^{y_u,y_w} - F^{y_w,y_u},$
$F^{v,1-w} = F^{1-w,v} + F^{y_v,y_u} - F^{y_u,y_v},$
$F^{w,1-u} = F^{1-u,w} + F^{y_w,y_v} - F^{y_v,y_w},$
$F^{u,1-w} = F^{1-w,u} + F^{y_u,y_v} - F^{y_v,y_u},$
$F^{v,1-u} = F^{1-u,v} + F^{y_v,y_w} - F^{y_w,y_v},$
$F^{w,1-v} = F^{1-v,w} + F^{y_w,y_u} - F^{y_u,y_w},$

$$\begin{split} F^{u,y_{u}} &= F^{y_{u},u}, \\ F^{v,y_{v}} &= F^{y_{v},v}, \\ F^{w,y_{w}} &= F^{y_{v},w}, \\ F^{u,y_{w}} &= F^{w,y_{u}} - F^{y_{u},w} + F^{y_{w},u}, \\ F^{v,y_{u}} &= F^{u,y_{v}} - F^{y_{v},u} + F^{y_{v},v}, \\ F^{v,y_{u}} &= F^{v,y_{v}} - F^{y_{w},v} + F^{y_{v},w}, \\ F^{1-v,y_{v}} &= F^{y_{v},1-v} - F^{y_{u},1-u} + F^{1-u,y_{u}} + F^{y_{u},w} - F^{w,y_{v}} - F^{y_{u},w} + F^{w,y_{u}} \\ F^{1-u,y_{w}} &= F^{y_{u},1-u} - F^{y_{v},1-v} + F^{1-w,y_{w}} + F^{y_{w},v} - F^{y_{v},w} + F^{w,y_{u}} \\ F^{1-u,y_{u}} &= F^{y_{u},1-u} - F^{y_{w},1-w} + F^{1-w,y_{w}} + F^{y_{w},v} - F^{v,y_{w}} - F^{y_{v},u} + F^{u,y_{v}} \\ F^{1-u,y_{u}} &= F^{y_{v},1-u} + F^{y_{v},w} - F^{w,y_{v}}, \\ F^{1-v,y_{u}} &= F^{y_{u},1-v} + F^{y_{w},v} - F^{v,y_{u}}, \\ F^{1-u,y_{u}} &= F^{y_{u},1-w} + F^{y_{w},v} - F^{v,y_{w}}, \\ F^{1-v,y_{u}} &= F^{y_{u},1-v} + F^{y_{u},w} - F^{w,y_{u}}, \\ F^{1-w,y_{v}} &= F^{y_{v},1-w} + F^{y_{v},w} - F^{w,y_{v}}, \\ F^$$

• 2. No bad branch cuts: $F^{1-u_i}(y_i = 1, y_j, y_k) = 0$

L. Dixon N=4 SYM and Cosmic Galois Theory

Hexagon functions as generalized polylogarithms in y_i

$$G(a_{1}, \dots, a_{n}; z) = \int_{0}^{z} \frac{dt}{t - a_{1}} G(a_{2}, \dots, a_{n}; t)$$
Region I:
$$\begin{cases} \Delta > 0, \quad 0 < u_{i} < 1, \quad \text{and} \quad u + v + w < 1, \\ 0 < y_{i} < 1. \end{cases}$$
Region I:
$$\begin{cases} \Delta > 0, \quad 0 < u_{i} < 1, \quad \text{and} \quad u + v + w < 1, \\ 0 < y_{i} < 1. \end{cases}$$

$$\mathcal{G} = \left\{ G(\vec{w}; y_u) | w_i \in \{0, 1\} \right\} \cup \left\{ G(\vec{w}; y_v) | w_i \in \left\{0, 1, \frac{1}{y_u}\right\} \right\} \cup \left\{ G(\vec{w}; y_w) | w_i \in \left\{0, 1, \frac{1}{y_u}, \frac{1}{y_v}, \frac{1}{y_u y_v}\right\} \right\}$$

 Useful for analytics and for numerics for ∆ > 0
 GINAC implementation: Vollinga, Weinzierl, hep-th/0410259
 L. Dixon N=4 SYM and Cosmic Galois Theory SAGEX kickoff - 2018.09.05

First true (y-containing) hexagon function

A real integral so it must be Steinmann

- Weight 3, totally symmetric in {*u*,*v*,*w*}
- First parity odd function, so:

$$\tilde{\Phi}_{6}^{u} = \tilde{\Phi}_{6}^{v} = \tilde{\Phi}_{6}^{w} = \tilde{\Phi}_{6}^{1-u} = \tilde{\Phi}_{6}^{1-v} = \tilde{\Phi}_{6}^{1-w} = 0$$

• Only independent {2,1} coproduct:

$$\tilde{\Phi}_6^{y_u} = -\Omega^{(1)}(v, w, u) = -H_2^u - H_2^v - H_2^w - \ln v \, \ln w + 2\,\zeta_2$$
$$H_2^u = \mathsf{Li}_2(1-u)$$

 Encapsulates first order differential equation found earlier LD, Drummond, Henn, 1104.2787

Infinite class of integrals

 Differential equations Drummond, Henn, Trnka, 1010.3679 easy to solve in space of Steinmann hexagon functions
 Caron-Huot, LD, von Hippel, McLeod, Papathanasiou, 1806.01361

6 variables, 42 letters

$$a_{11} = \frac{\langle 1234 \rangle \langle 1567 \rangle \langle 2367 \rangle}{\langle 1237 \rangle \langle 1267 \rangle \langle 3456 \rangle}, \qquad a_{41} = \frac{\langle 2457 \rangle \langle 3456 \rangle}{\langle 2345 \rangle \langle 4567 \rangle}, \\ a_{21} = \frac{\langle 1234 \rangle \langle 2567 \rangle}{\langle 1267 \rangle \langle 2345 \rangle}, \qquad a_{51} = \frac{\langle 1(23)(45)(67)}{\langle 1234 \rangle \langle 1567 \rangle}, \\ a_{31} = \frac{\langle 1567 \rangle \langle 2347 \rangle}{\langle 1237 \rangle \langle 4567 \rangle}, \qquad a_{61} = \frac{\langle 1(34)(56)(72)}{\langle 1234 \rangle \langle 1567 \rangle}$$

 $\langle a(bc)(de)(fg)\rangle \equiv \langle abde\rangle \langle acfg\rangle - \langle abfg\rangle \langle acde\rangle$

• plus cyclic, $i \rightarrow i+1 \pmod{7}$, $a_{ji} \rightarrow a_{j,i+1} \pmod{6} \times 7 = 42$)

Number of (first 2 entry) Steinmann heptagon symbols

Weight $k =$	1	2	3	4	5	6	7	7''
parity +, flip +	4	16	48	154	467	1413	4163	3026
parity +, flip –	3	12	43	140	443	1359	4063	2946
parity $-$, flip $+$	0	0	3	14	60	210	672	668
parity –, flip –	0	0	3	14	60	210	672	669
Total	7	28	97	322	1030	3192	9570	7309

Table 1. Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying theMHV next-to-final entry condition at weight 7.

Enough to get symbols of 4 loop MHV & 3 loop NMHV amplitude. Even less boundary data needed: just well-defined collinear limits.

6 loops at (1,1,1)

MHV

$$\begin{aligned} \mathcal{E}^{(6)}(1,1,1) &= -\frac{2273108143}{6219}\zeta_{12} + \frac{260}{3} \Big[140\zeta_5\zeta_7 - 56\zeta_2\zeta_3\zeta_7 - 10\zeta_2(\zeta_5)^2 - 60\zeta_4\zeta_3\zeta_5 + 49\zeta_6(\zeta_3)^2 \Big] \\ &+ 384 \Big[\zeta_2\zeta_{7,3} + 14\zeta_2\zeta_3\zeta_7 + 3\zeta_2(\zeta_5)^2 - 7\zeta_6(\zeta_3)^2 \Big] \\ &+ 120 \Big[4\zeta_4\zeta_{5,3} + 20\zeta_4\zeta_3\zeta_5 - 7\zeta_6(\zeta_3)^2 \Big] \\ &+ \frac{5392}{3} \Big[\zeta_{9,3} + 27\zeta_3\zeta_9 + 20\zeta_5\zeta_7 - 2\zeta_2\zeta_3\zeta_7 - \zeta_2(\zeta_5)^2 - 6\zeta_4\zeta_3\zeta_5 - 5\zeta_6(\zeta_3)^2 \Big] \end{aligned}$$

NMHV

$$E^{(6)}(1,1,1) = \frac{5066300219}{6219}\zeta_{12} - \frac{344}{3} \Big[140\zeta_5\zeta_7 - 56\zeta_2\zeta_3\zeta_7 - 10\zeta_2(\zeta_5)^2 - 60\zeta_4\zeta_3\zeta_5 + 49\zeta_6(\zeta_3)^2 \Big] - 528 \Big[\zeta_2\zeta_{7,3} + 14\zeta_2\zeta_3\zeta_7 + 3\zeta_2(\zeta_5)^2 - 7\zeta_6(\zeta_3)^2 \Big] + 60 \Big[4\zeta_4\zeta_{5,3} + 20\zeta_4\zeta_3\zeta_5 - 7\zeta_6(\zeta_3)^2 \Big] - \frac{9952}{3} \Big[\zeta_{9,3} + 27\zeta_3\zeta_9 + 20\zeta_5\zeta_7 - 2\zeta_2\zeta_3\zeta_7 - \zeta_2(\zeta_5)^2 - 6\zeta_4\zeta_3\zeta_5 - 5\zeta_6(\zeta_3)^2 \Big]$$

L. Dixon N=4 SYM and Cosmic Galois Theory

Factorization on multi-particle pole

Bern, Chalmers, hep-ph/9503236; LD, von Hippel, 1408.1505; Basso, Sever, Vieira (Sever talk at Amplitudes 2015)

- Virtual Sudakov region, $A \sim \exp[-\ln^2 \delta]$,
- Can study to very high accuracy in planar N=4 SYM

 $\delta \sim s_{345}$

L. Dixon N=4 SYM and Cosmic Galois Theory

Double-parton-scattering-like limit

- Self-crossing limit of Wilson loop
- Overlaps MRK limit
- Another Sudakov region
- Singularities ~ Wilson line RGE Korchemsky and Korchemskaya hep-ph/9409446