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Outline

 General Relativity as a perturbative effective 

field theory

 New on-shell toolbox for computations

 New applications for computation of 

observables in general relativity

 Scattering angles

 Light-by-light scattering

 Outlook
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General Relativity as 

an effective field theory
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Traditional quantization of 

gravity

 Known since the 1960ties that a particle version of 

General Relativity can be derived from the Einstein 

Hilbert Lagrangian (Feynman, DeWitt)

 Expand Einstein-Hilbert Lagrangian :

 Derive vertices as in a particle theory - compute

amplitudes as Feynman diagrams!
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Quantum theory for gravity

 Gravity as a theory with self-interactions

 Non-renormalisable theory! (‘t Hooft and Veltman)

 Traditional belief : – no known symmetry can 
remove all UV-divergences

Dimensionful

coupling:

GN=1/M2
planck

String theory can by introducing new length 

scales
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Quantum gravity as an 

effective field theory
 (Weinberg) proposed to view the quantization of 

general relativity from the viewpoint of effective field 

theory

 (Donoghue) and (NEJB, Donoghue, Holstein) did the 

first one-loop concrete computation in such a 

framework
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Effective field theory for 

gravity

 Consistent quantization

 Working low energy version of quantum gravity

 New point of view:

 General relativity hbar-> 0 limit of multi-loop expansion

 Classical pieces comes from loop diagrams!

 Explanation: contributions appear in loop diagrams feature a 

cancellation of the loop diagram hbar factor 

 (mass/hbar) expansion.
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One-loop (off-shell) gravity 

computation

Tree

Boxes

Triangles

Bubbles

9

(NEJB, Donoghue, Holstein)
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One-loop (off-shell) gravity 

computation

Tree

Boxes

Triangles

Bubbles

10

(NEJB, Donoghue, Holstein)
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One-loop (off-shell) gravity 

computation

Tree

Boxes

Triangles

Bubbles

11

(NEJB, Donoghue, Holstein)

11Gravity Amplitudes and General Relativity



One-loop (off-shell) gravity 

computation

Tree

Boxes

Triangles

Bubbles

12

(NEJB, Donoghue, Holstein)
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One-loop result for gravity

 Four point amplitude can be deduced to take the form

Focus on deriving these ~>

Long-range behavior 

(no higher derivative 

contributions)
Short range behaviour

(NEJB, Donoghue, Holstein)
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 The result for the amplitude (in coordinate space) after 

summing all diagrams is (leading in small momentum 

transfer contribution):

Post-Newtonian      New quantum 

term term

Post-Newtonian term in complete accordance with 

general relativity: (Iwasaki, Holstein and Ross, Neill and 

Rothstein, NEJB, Damgaard, Festuccia, Plante, Vanhove)

(NEJB, Donoghue, Holstein)

One-loop result for gravity
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 Suggest general relativity augmented by higher 

derivative operators – the most general modified 

theory

 Tiny consequences for most observables – since curvature 

is really small. Interesting connection between observed 

bounds and theory

 Quantum theory -> classical limit general relativity

 Post-Newtonian corrections, Hamiltonians for gravitational 

systems and Post-Minkowskian observables

Gravity as an EFT
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New on-shell 

toolbox for 

computations 

16Gravity Amplitudes and General Relativity



Off-shell gravity amplitudes

 Vertices: 3pt, 4pt, 5pt,..n-pt

 Complicated expressions

 Expand Lagrangian, tedious process….

(DeWitt;Sannan)

45 terms 

+ sym
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Concrete computation gravity

Featuring a number of unpleasant features

 Complicated Feynman rules (infinitely many vertices)

 Numerous double contractions

 Factorial growth in number of legs

 Feynman diagram topologies: no ordering!

 Loop order: complicated tensor integrals
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Key: String theory inspiration

Different form for amplitude

Feynman 

diagrams 

sums 

separate 

kinematic 

poles

String 

theory 

adds 

channels 

up.. 

<->
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Gravity Amplitudes

KLT relationship (Kawai, Lewellen and Tye) relates 

open and closed strings (Bern, Dixon, Dunbar, 

Perelstein, Rozowsky)

20
Momentum prefactors cancel double poles

KLT not manifestly crossing symmetric – explicit representation :



Key: on-shell states formalism

Spinor products : 

Different representations of 

the Lorentz group

(Xu, Zhang, 

Chang)

Momentum parts of amplitudes:

Spin-2 polarisation tensors in terms of helicities, 

(squares of those of YM):
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Yang-Mills MHV-amplitudes
(n) same helicities vanishes

Atree(1+,2+,3+,4+,..) = 0

(n-1) same helicities vanishes

Atree(1+,2+,..,j-,..) = 0

(n-2) same helicities:

Atree(1+,2+,..,j-,..,k-,..) 

Atree MHV Given by the formula 

(Parke and Taylor) and proven 

by (Berends and Giele)

First non-trivial 

example, 

(M)aximally

(H)elicity (V)iolating

(MHV) amplitudes

One single term!!
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Simplifications from Spinor-

Helicity

Huge simplifications

45 terms 

+ sym

Vanish in spinor helicity formalism
Gravity:

Contractions
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Gravity MHV amplitudes

Can be generated from KLT via YM MHV amplitudes.

(Berends-Giele-Kuijf) recursion formula

Anti holomorphic 

Contributions 

– feature in gravity
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Unitarity cuts

Helicity formalism require unitarity methods
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New results: massless matter
 As an example we will consider scattering of massless 

matter

 Bending of light/massless matter around the Sun

 New features: mass-less external fields ~> IR 

singularities

 New test of universality of matter
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Trees and the cut

 We have the Lagrangian

where
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Trees and the cut

 We have the Lagrangian

We want to compute the cut
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Trees and the cut

 We have the Lagrangian

We want to compute the cut
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Photons and scalars

For photons we have

While for scalars
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Super compact compared to Feynman diagram results



Result for the amplitude

We can rewrite

where

Scalar 

case

Photon 

case

Fermion 

case
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Combine spinor expressions into traces



Result for the amplitude
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1) Expand out traces

2) Reduce to scalar 

basis of integrals

3) Isolate coefficients

(Bern, Dixon, Dunbar, 

Kosower)



Result for the amplitude
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Taking the post-Newtonian 

non-relativistic low energy limit

Result for the amplitude

(NEJB, Donoghue, 

Holstein, 

Plante, Vanhove)
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Making connection to general 

relativity

General metric

Schwarzschild

Can we reproduce?
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Stationary phase method
We apply a Fourier transformation to impact

parameter space and exponentiate into eikonal

phases, so that a stationary phase method can be

applied.

(See e.g. Akhoury, Saotome and Sterman)
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Now we can compute
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Stationary phase method



Leading to static phase when:

Using that

We arrive at: 
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Stationary phase method



Leading to static phase when:

Using that

Or: 
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Stationary phase method



Bending of light
Interpreted as a bending angle (eikonal approximation) we 

have:

plus a quantum effect of the order of magnitude:

We see that we have universality between scalars, fermions 

and photons only for the ‘Newton’ and ‘post-Newtonian’ 

contributions
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New applications for 

computation of 

observables in general 

relativity
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Classical contributions from 

perturbative computations
 Use of perturbative framework to compute observables in general 

relativity

 Truncation to only classical terms

 Only non-analytical piece corresponding to long-distance 
interactions -> Unitarity cuts useful

 Gravitational wave applications: (Blanchet review) 

 Some modern type amplitude computations of post-Newtonian 
potentials (NEJB, Donoghue, Holstein; Holstein and Ross; 
Holstein; Neill and Rothstein; NEJB, Donoghue, Vanhove) 
(Guevara and Cachazo; Guevara; Damour; NEJB, Damgaard, 
Festuccia, Plante, Vanhove; Cheung, Rothstein, Solon) 

 Some modern approaches to the scattering angle in post-
Minkowskian formalism (Westpfahl; Damour; Vines; NEJB, 
Damgaard, Festuccia, Plante, Vanhove)
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Classical contributions from 

perturbative computations
 In classical gravity the long-distance terms that are 

related to the post-Newtonian effects are triangle 

diagrams (at one-loop)

 Such contributions have cancellations of      and lead to 

purely classical terms
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General relativity from loops

44General Relativity from Particle Scattering

New derivation
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General relativity from loops

45General Relativity from Particle Scattering

(NEJB, Damgaard, Festuccia, Plante, Vanhove)

Close contour



Interpretation
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Explains the metric

computation by 

(Duff)

Integration of classical 

sources on 

tree graphs 

– no loops!

Picture extends to higher loops

(NEJB, Damgaard, Festuccia, Plante, Vanhove)
•Gravity Amplitudes and General Relativity



Scalar interaction potentials 

(tree)
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Tree level
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Scalar interaction potentials 

(one-loop)
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One-loop level
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Classical contribution from 

one-loop amplitude
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General relativity encoded in triangle 

coefficients

(NEJB, Damgaard, Festuccia, Plante, Vanhove)
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Post-Newtonian potentials
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Leading order in q

All momenta provided at infinity, contractions are done using 

flat space metric (Minkowski), no reference to coordinates. 

Gauge invariant expression – to derive potential we have to 

introduce coordinates, Fourier transform and expand 

subleading terms in .
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post-Newtonian interaction 

potentials
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(Einstein-Infeld-Hoffman)

Subtraction of tree-level Born term to in order 

to get the correct potential (3 – 7/2 -> -1/2 )
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post-Minkowskian expansion

General Relativity from Particle Scattering 52

Will use similar eikonal setup as  

for bending of light (extended to 

massive case):

Amplitude computed

Eikonal phase

b orthogonal and
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Stationary phase condition (leading order in q)

post-Minkowskian expansion
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post-Minkowskian expansion
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Final result becomes

Agrees with (Westpfahl)
Light-like limit
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post-Minkowskian expansion
Exact result light-by-

light scattering:

No triangles!

(NEJB, Damgaard, Festuccia, Plante, Vanhove)
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Amplitude toolbox for computations provides efficient 

new methods.

New applications can be used to increase precision for 

classical general relativity computations.

Good prospects for further theoretical and practical 

breakthroughs

 Much progress in short time – practical 

implementation still lags behind 

Outlook
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