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• Long-term goal: extend success of on-shell methods to 
off-shell quantities

✦ Main focus today: Form Factors (partially off-shell)

- MHV diagrams, BCFW, generalised unitarity, remainders, symbols           
AB, Kostacinska, Penante, Spence, Travaglini, Wen, Yang, Young; Bork, Kazakov, Vartanov; Gehrmann, Henn, 
Huber; Loebbert, Nandan, Sieg, Wilhelm, Yang;…

- Remarkable simplicities/regularities but no dual conformal symmetry

- Grassmannian and Twistor Formulations Frassek, Meidinger, Nandan, Wilhelm; Koster, 
Mitev, Staudacher, Wilhelm; Nandan, Meidinger, Penante, Wen; Chicherin, Sokatchev

- (Ambi-)Twistor Strings, Scattering Equations: He, Zhang, Liu; AB, Hughes, Panerai, 
Spence, Travaglini; Bork, Onishenko

- Dilatation operator/Integrability/Yangian Zwiebel; Koster, Mitev, Staudacher; Wilhelm; AB, 
Penante, Travaglini, Young

Beyond amplitudes



• More general objects than correlation functions, Wilson loops, 
amplitudes: e.g. Wilson loops with operator insertions, 
correlators of Wilson loops ...

• Form Factors: interpolate between correlators and amplitudes, 
partially off-shell 

Form Factors: “going partially off-shell”

Z
d4x e�iqx

h1 · · ·n|O(x)|0i = �(4)(q �
nX

i=1

pi) h1 · · ·n|O(0)|0i

q =
nX

i=1

pi

q2 6= 0 , o↵ � shell!



• Simplest case (QCD) Sudakov FF (n=2): IR divergences         

• In N=4: 1 & 2-Loop Sudakov FF first studied by Van 
Neerven in 1986

• 3 Loops: (Gehrmann, Henn, Huber)

• 4 & 5 Loops (Boels, Huber, Yang): 

• Color-Kinematics duality (Bern-Carrasco-Johansson)

• Cusp anomalous dim, Casimir scaling violated at four loops
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FFs appear in many physics contexts

72 diagrams 
like = (1.181241456...) (�e.m./⇥)

3 (Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96, …) 

hadronic electromagnetic currente+ e− → hadrons (X)
all orders in αstrong,  first order in αe.m.
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•  Five-loop correction to electron g−2 

• wild oscillations between individual diagram

• result is O(1)  => mysterious cancellations

• e+ e−   → hadrons (LEP): 



• Higgs + multi-gluon amplitudes 

• at low MH , dominant Higgs production                                            
at the LHC through gluon fusion 

• coupling to gluons through a quark loop   

• for MH  < 2 mt   integrate out top quark

• Effective Lagrangian description: leading

• coupling                                      independent of mt

• subleading:

Le↵ ⇠ H TrF 2

↵S

12⇡v
, v = 246GeV

Lsub ⇠ C1

vm
2
t

HtrF 3 +
C2

vm
2
t

HtrDFDF + . . .

Effective Lagrangians 
(Wilczek ’77; Shifman, Vainshtein, Voloshin & Zakharov 79; Dawson ’91; Djouadi, Graudenz, Spira, Zerwas ’95) 

TrF 2 = TrF 2
SD +TrF 2

ASD



• Higgs + Parton amplitudes are form factors of  Tr F2

• bring down one interaction, and Wick-contract the Higgs field

• Can we look at the same quantity, but in N=4 SYM? 

• Highly symmetric theory, easier to identify any structure 

• Find appropriate translation of the matrix element to N=4 SYM

• What operator? What state? 

FF 2
ASD

=

Z
d4x e�iqx hstate|TrF 2

ASD(x)|0i q2 = M2

Hwith

FFs = amplitudes in effective theories 



Higgs + gluon amplitudes

• Leading order

• Early application of on-shell techniques to tree- and one-
loop amplitudes (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager, Mastrolia, 

Williams)

• Has been pushed in QCD to 3-loop order for 2 gluons 
(Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat, Furlan, 

Mistlberger),                                                                    
and to 2 loops for 3 partons (Glover, Gehrmann, Jaquier & Koukoutsakis) 

• Subleading, finite top-mass corrections have been studied as well 
(e.g. Neill; Dawson, Lewis, Zeng….)

• Integrating out the top-quark or stringy effects induce new 
interaction terms such as:              (q → 0 limit of FFs)                                             
(Dixon, Shadmi; Dixon, Glover, Khoze; Broedel, Dixon; Neill)

F tree
trF 2(1�, 2�, 3+) =

h12i3

h23ih31i , F tree
trF 2(1+, 2+, 3+) =

q4

[12][23][31]
, q2 = m2

H

Le↵ ⇠ H TrF 2

tr(F 3)



• In N=4 SYM operators are organised in multiplets and are related 
by SUSY transformations

• A) Protected operators (zero anomalous dimension): eg. stress 
tensor multiplet

• B) Non-protected:

• In N=4 related to Konishi operator,                                        

• Q: are there unexpected similarities between QCD & N=4?

• Translate operator Tr (FASD)2 in QCD to                 in N=4 SYM

tr(F 3) , tr(DFDF ) , . . .

K ⇠ tr(X̄X + Ȳ Y + Z̄Z)

tr(X2) = tr(�2
12)

Q4

�! Lon-shell ⇠ tr(F 2
SD) + . . .

Higgs + gluon amplitudes: from QCD to N=4

Lon�shell



3-point 2-loop MHV FF in N=4

• Start with 3-point FF at 2-loops

• This is how we mimic                                                       
in QCD (Higgs into 3 gluons)

• At loop level tree FF can be stripped off

•        is helicity-blind, scalar function, permutation symmetric

• UV finite in N=4

• IR divergences exponentiate

G(2)
3

F3(1, 2, 3) = hX(p1)X(p2) g
+(p3) |TrX2 |0 i

hg±(p1) g±(p2) g+(p3) |TrF 2
ASD |0 i

F (L)
3 = F tree

3 G(L)
3 (1, 2, 3)



• Subtract off universal IR divergences from the 
(renormalised) L-loop answer                                                      

• All loops (N=4 SYM): 

 

•                                                          BDS Ansatz, completely known 

- div = universal infrared-divergent part, exponentiation is expected                                        

- Finite(1) (p1, …, pn)  =  finite part of one-loop amplitude    

-       = cusp anomalous dimension   → integrability  

- R is the so-called remainder function  the most interesting part!

Finite remainders
(Catani; Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

�K

An,MHV = Atree

n,MHV
Mn

☞

Mn := 1 +
1X

L=1

aLM(L)
n ⇠ exp

⇥
BDS + R

⇤
a ⇠ g2N/(8p2)

BDS ⇠ div + �K Finite(1)(p1, . . . , pn)



• Exponentiation of finite parts for one-loop amplitude  
due to dual conformal symmetry (Drummond, Henn, Korchemsky, Sokatchev)                    

• Non-trivial remainder R appears from six points on (Drummond, Henn, Korchemsky, 

Sokatchev; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich)  

• No dual conformal symmetry for form factors?

• Still, exponentiating finite parts leads to much simpler remainders

• Generalized unitarity (Bern, Dixon, Dunbar, Kosower; BDK; Britto, Cachazo, Feng)

• 2- and 3-particle cuts
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DTri1 = q2(s23 + s31)× DTri2 = q2(s12 + s31)×

DBox1 = s23 (s31ℓ · p3 − s12ℓ · p2)× DBox2 = s12 (s31ℓ · p1 − s23ℓ · p2)×

TriPent = q2s12s23× NBox = s23
(
1
2s12s31 − s12ℓa · p2 − s31ℓb · p3

)
×
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NTri = 1

2q
2(s23 + s31)×

q

Figure 6: The integral expansion of our final result for the three-point form factor G(2)
3 .

we constructed an MB representation of NBox directly from its Feynman parameter form.
The result is an eight-fold MB representation of the form

(−q2)−2ϵ

2(2πi)8Γ(−1− 3ϵ)

∫ 8∏

i=1

(dziΓ(−zi))u
z5+1vz678+1w−3−2ϵ−z12345678 ×

Γ(−ϵ− z34)Γ(−ϵ+ z4)Γ(1 + z13456)Γ(1 + z157)Γ(−1− ϵ+ z3 − z8)×
Γ(−2− 2ϵ− z1 − z568)Γ(−2 − 2ϵ− z134578)Γ(−2 − 2ϵ− z1234678)× (3.12)

Γ(−2ϵ− z3 + z8)Γ(1 + z168)Γ(1 + z278)Γ(3 + 2ϵ+ z12345678)

Γ(−2ϵ− z3)Γ(−1− 2ϵ− z3 − z48)Γ(−1− 2ϵ+ z34 − z8)Γ(−2ϵ− z34 + z8)
,

where we have introduced the shorthand notation zij...k = zi + zj + . . .+ zk, and

u =:
s12
q2

, v :=
s23
q2

, w :=
s31
q2

. (3.13)

Note that for sake of brevity we have dropped here the terms of the numerator which
are linear in loop momentum ℓ; they lead to a number of similar eight-fold MB integrals.
Furthermore, due to the Γ(−1 − 3ϵ) denominator the integral effectively becomes seven-
dimensional [21]. In this sense this integral is the most complicated and numerically the
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F (2)
3

F tree
3

=
2X

i=1

(DTrii + DBoxi) + TriPent + NBox + NTri + cyclic

• Result of 2-loop calculation: (AB, Travaglini, Yang) 

result expressed as rational coefficients × two-loop planar and non-planar integrals

BCJ-Dual
Numerators

(Boels, Kniehl, 
Tarasov, Yang)



• Final answer  (using the symbol of transcendental 
functions)          (AB, Travaglini,  Yang)

• u1 = u = s12 / q2 ,   u2 = v = s23 / q2 ,  u3 = w = s31 / q2   kinematic 
invariants

•  

• Bloch-Wigner-Ramakrishnan(-Zagier) polylogarithmic function 

• Result: extremely compact, homogeneous degree of transcendentality 
= 4 

following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4 ,

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.

24

this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
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[
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(
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)
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]

−2
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i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these

24 Next: compare with QCD



• Higgs + 3 partons  (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)

• H g+ g− g−   MHV

• H g+ g+ g+   maximally non-MHV 

• H         g      fundamental quarks

• In N=4 SYM: 

• (H g+ g− g−)      and  (H g+ g+ g+)  both derived from super form factor

• from supersymmetric Ward identities: 

q q̄

F (L)(g�1 , g
�
2 , g

+
3 )

F tree(g�1 , g
�
2 , g

+
3 )

=
F (L)(g+1 , g

+
2 , g

+
3 )

F tree(g+1 , g
+
2 , g

+
3 )

= G(L)(u, v, w)

q2 = M2
H

← what we computed

F
tree(H, g

+
1 , g

+
2 , g

+
3 ) =

q
4

[1 2] [2 3] [3 1]

F
tree(H, g

�
1 , g

�
2 , g

+
3 ) =

h1 2i2

h2 3i h3 1i

Higgs + parton amplitudes in QCD



• 2-loop QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis 

• very different looking than N=4 SYM result!

• transcendentality 4,3,2,1 and  0 (rational). In N=4, only degree 4

• expressed in terms of several pages of multiple polylogarithms

• expected because of expansion as ∑ (coefficient x integral) !

• each integral is separately quite complicated 

• Comparing the two quantities reveals a surprising 
relation:

R(2)
H g�g�g+

���
MAXTRANS

= R(2)
H g+g+g+

���
MAXTRANS

= R(2)
N=4SYM



• Principle of maximal transcendentality:  

• First example with kinematic dependence

• Discovered by Kotikov, Lipatov, Onishchenko and Velizhanin  
in the context of anomalous dimensions of twist-2 operators 
(Moch-Vermaseren-Vogt) 

• several counter-examples in amplitudes, e.g. broken for  
one-loop amplitudes in pure Yang-Mills 

• Next testing ground: form factors of higher-dimensional 
operators describing Higgs + multigluon scattering   



• Effective field theory description for finite mtop  corrections 

• Beyond leading-order term                                         (infinite mtop)  

• Next corrections:   4 dimension-7 operators in QCD

• Two particular operators also present in N=4 SYM:  
  

• Goal: compute in N=4 SYM and compare to QCD (result not yet available)

• previous work at one loop: Dawson, Lewis & Zeng; Neill; Harlander, Neumann, Ozeren, 
Wiesemann

• higher-dimensional operators also studied as corrections to the Standard Model  
(Buchmuller & Wyler ’85 and MANY more!)

From N=4 to QCD 

L(1)
e↵ ⇠ H TrF 3 L(2)

e↵ ⇠ H Tr(DµF⇢�)(D
µ
F

⇢�)

(AB, Kostacińska, Penante, Travaglini,  Young ’16; AB, Kostacińska, Penante, Travaglini ’17 + 18)

L(0)
e↵ ⇠ H TrF 2



• Operators with 3 fields: approach the problem with increasing 
difficulty

• Protected:    Tr (X3), Tr (X {Y , Z})

• Non-protected:   OB := Tr (X [Y , Z])

‣ mixes with Tr (𝜓𝜓), part of SU(2|3) sector in N=4 SYM

• Non-protected:   Tr F3 is descendant

‣ descendant of “Konishi”

Increasing difficulty:

K ⇠ tr(X̄X + Ȳ Y + Z̄Z)



‣ Two-loop result expressed in terms of planar integrals

‣ Remainder very simple! But very different from Tr X2

  3-point form factor of Tr X3 at 2 loops                                                                                            
(AB, Penante,  Travaglini,  Wen)

+ + + −

F3(1, 2, 3) := hX(p1)X(p2)X(p3) |TrX3 |0 i

where the integrals Ik are given by

. (5.26)

Explicit expressions for all integrals that appear in (5.2) can be found in [3], except for I1
and I2, which have the same topology. We focus on I2, i.e. the second integral in (3.26),
and employ the FIRE algorithm [11] in order to decompose it in terms of scalar two-loop
master integrals, with the result

(5.27)
The dashed lines in the integral on the left-hand side of (3.27) represent the numerator
s23s1`2 .

A few comments are in order here.

1. The first integral in (3.27) can naturally be combined with I5(1) in (3.25). This
is important as it ensures that the contribution to the final answer from this topology is
a linear combination of multiple polylogarithms with purely numerical, i.e. momentum-
independent coe�cients. The explicit expressions of the first and second integral in terms
of two-dimensional Goncharov polylogarithms can be found in [3], Eqns. (4.32)–(4.37) and
Eqns. (4.26)–(4.31), respectively. Also note that the ✏-dependent prefactor of the second
integral ensures that the expanded result has homogenous degree of transcendentality.
Finally, the third integral in (3.27) multiplied with its ✏-dependent coe�cient turns out be
�(1/2) I4(2) which follows from Eqn. (5.15) of [12] which also has homogenous degree of
transcendentality.

2. We also note that once the reduction (3.27) is substituted into (3.25) the final result
is expressed as a linear combination of transcendental functions with numerical coe�cients.
We refrain from writing explicitly the result at this stage because of its considerable length.
Instead in the next section we will identify the universal infrared divergences and construct
the finite remainder function. This remainder is a transcendental function of degree four
and, as we will show, can be brought to an extremely compact form that involves only
classical polylogarithms.

3. As noted in [10], the elements of the integral basis (3.26) can be obtained from dual
conformal integrals upon taking certain external region momenta to infinity. Consider for
instance the simpler one-loop form factor, which may be obtained by taking one of xi’s of

11

R(2)
3,3 := � 3

2
Li4(u) +

3

4
Li4

⇣
�uv

w

⌘
� 3

2
log(w)Li3

⇣
�u

v

⌘
+

1

16
log2(u) log2(v)

+
log2(u)

32

h
log2(u)� 4 log(v) log(w)

i
+

⇣2
8
log(u)[5 log(u)� 2 log(v)]

+
⇣3
2
log(u) +

7

16
⇣4 + permutations (u, v, w)

maximal
degree of
transcen-
dentality



• First example: descendant of Konishi in SU(2|3) sector

• Tr (X [Y , Z]) not protected and mixes with Tr (𝜓𝜓)

• 2-loop form factor has IR and UV divergences

• Renormalise and resolve mixing to obtain correct 
anomalous dimension

• Use BDS to extract UV/IR finite remainder

• Admire the result and look for novel structures

Non-protected operators
(AB, Kostacinska, Penante, Travaglini)

OK = Tr(X[Y, Z])�
gN

8⇡2
Tr(  )

�K = 12a� 48a2 +O(a3)



• the combined result in terms of integral functions

• numerators indicated by dotted lines

• remaining integrals: UV divergent, transcendentality < 4

• BDS-remainder R(2)
OX[Y,Z]

= R(2)
BPS + R(2)

o↵set

Same as
Tr(X3)



• Novel part: 

• by decreasing degree of transcendentality:

• Transcendentaliy 4 terms “universal”: appear in 2-loop FF’s 
in SU(2) and SL(2) sectors (Loebbert, Nandan, Sieg, Wilhelm, Yang)

• Lower Degree Terms: intriguing relation to those of SU(2)/
SL(2) FF’s! (shuffling, permutations)

• Signs of universal building blocks of general FF’s

R(2)
o↵set;2 = �12
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• Compare remainders for the two form factors:

• Maximally transcendental parts agree!

• BPS operators in N=4 SYM compute (parts of) FFs in QCD!

•Next: sub-leading transcendentality terms

Two-loop results for Tr F3 

hg+g+g+|TrF 3
ASD | 0 i

hXXX|TrX3 | 0 i

in any theory (even without supersymmetry) 

in N=4 SYM 
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���
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• Translating the operator Tr (FASD3) to N=4 language leads 
to the Konishi supermultiplet                            

• Acting with 8 supercharges gives

• O(g) terms give additional contact terms contributing from 
n=4 (which is needed in cuts), e.g.:

• MHV super form factor for full stress tensor multiplet is 
known (Chicherin, Sokatchev) — extract relevant component

• At two loops a new structure appears 

• Renormalisation involves mixing with operator

K ⇠ tr(X̄X + Ȳ Y + Z̄Z)

⇠ Tr(F 3
ASD) + g Tr(F 2

ASD��̄) + g Tr(FASD�FASD�̄)

+g Tr(FASD  �) + g Tr(FASD � ) + g Tr(    ) ,

1

✏

1

uvw

⇠ q2Tr(F 2
ASD)

F (0)(1+, 2+, 3�
12

, 4�
34

; q) = �1

2

[12]

[34]
([13][24] + [14][23]) +

1

6
[12]2

Translation of Tr F3 to N=4

OS



• Remainder contains two types of terms:

• purely transcendental: 4 (already discussed), 3, 2, 1 and 0

• new feature: multiplied by a rational prefactor, e.g.  u/v, u/w, v/w  

• Calculation in N=4 done, N=2 and 1 (using mostly 4D cuts)

• maximally transcendental part is universal since all extra 
integrals have lower transcendentality

Figure 2: The single-scale integral topology which incorporates the e↵ect of having a di↵erent field

content compared to that of N =4 SYM.

in Figure 2 which, due to non-trivial cancellations, is absent for N = 4 SYM. Evaluating
explicitly the integrals with appropriate numerators coming from fermions and scalars cross-
ing the cut, we find again that they only contribute at sub-maximal transcendental weight.
Hence we conclude that the transcendentality-four slice of the remainder function is indeed
universal for this particular form factor in Yang-Mills theories with any amount of super-
symmetry and QCD (the presence of fermions in the fundamental representation does not
alter this statement).

We end by commenting on possible extensions of our work that are currently under
investigation [28]. An obvious important step is to generalise our calculation to theories
with less supersymmetry, including pure Yang-Mills and QCD. Here it will be important to
address potential rational terms that may be missed in less supersymmetric theories when
four-dimensional cuts are employed (rather than D-dimensional ones). Note that issues
encountered with dimensional regularisation in the case of the Konishi operator in [26] did not
arise in [24] and in the present work since the operator definition does not involve state sums.
Other aspects to be discussed in future work are form factors of other dimension-six operators
such as Tr(DFDF ) appearing in the e↵ective theory for Higgs plus multi-parton scattering,
and studies of the operator mixing using subminimal/non-minimal form factors as in [24].
Finally, we are also investigating form factors with more general helicity configurations than
the one considered in this letter. We expect that in all these considerations supersymmetry
will emerge as a powerful organisational principle and that results for form factors in QCD
will reveal further remarkable similarities with N =4 SYM.
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• Final N=4 result extremely simple                  

• Tests

• UV: Reproduce expected 2-loop anomalous dimension of 
Konishi

• IR-divergences exponentiate as expected

• N=2 and 1

• Calculation more involved; Still: remainders R differ only slightly

• Running coupling+operator mixing: first renormalise form 
factors…

• … and compute Catani’s remainder to remove IR divergences



• Transcendentality 3, 2, 1, 0 parts of the N=4 SYM 
result for       : 
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• pure terms of result for Konishi almost identical to result for Tr 
(X[Y , Z])

• remainder “densities” of form factors in the SU(2) sector of N=4 
reappear as building blocks of the non-pure terms

‣ Surprising!

‣ Results much more structured than expected. Connections to integrability?

• Hints at universal building blocks? 

• Results for N<4 and recent results for pure Yang-Mills confirm 
structural similarities (Q. Jin, G. Yang)

More surprises…



• Form factors in N=4 SYM

• Share simplicities of amplitudes, but no dual conformal 
symmetry 

• Related to Higgs + gluons amplitudes in QCD in effective 
field theory approach                                 

• N=4 SYM computes the most complicated part of the 
remainder including terms of lower transcendentally 

• Systematise (understand!) the connection between Higgs 
amplitudes in QCD and form factors in N=4 SYM  

Summary



• Reinforce links with integrability

• Dual conformal symmetry of amplitudes implies Yangian 
symmetry of dilatation operator D (proof via form factors)

• Can extract D from form factors, e.g. SU(2|3)/SU(2) sector 
at 2 loops; complete 2-loop dilatation operator?

• Hidden symmetries responsible for simple results?            
How is dual conformal symmetry of amplitudes realised?     
(AB, Bianchi, Panerai, Travaglini)

• Apply modern methods like BCJ duality, Steinmann relations, 
cluster adjacency…   

Further open questions
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Random comments
(work in progress with Bianchi, Panerai, Travaglini)

• BDS ansatz is powerful also for two-loop form factors, but 
why? There is no (obvious) dual conformal symmetry 
(DCS) to explain further simplicities

• Let’s take a closer look for chiral part of stress-tensor 
multiplet which contains Tr (X2)

• For various reasons it is useful to write kinematics in dual 
momentum space or momentum twistor space e.g. for n=3 
(three on-shell legs):

• Periodic Wilson line



Periodic Wilson lines

Z0

Z1

Z2

Z3

Z4

Z5
Z6

Z7

Z8
Z9

Z10

q

p3

p2

p1

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

q

q

dual momentum
space

momentum 
twistor space

Zi = (�i, xi · �i) = (�i, xi+1 · �i) pi = xi � xi+1



Tree level: dual superconformal symmetry
• We can use BCFW recursion relations

• all-line shifts = MHV diagrams give for NMHV form factors 
(with Gurdogan, Mooney, Travaglini, Yang)

• two-line shifts produce a sum of box-coefficients (BCFW 
bridge)(Bork)

• most of these are dual superconformal R-invariants

• but special cases are C x R-invariant                            
where C is only dual conformal but                        
breaks SUSY

F (0)
NMHV

= F (0)
MHV

nX

i=1

i+n�1X

j=i+2

[⇤, i� 1, i, j � 1, j]

dual 
superconformal

invariant



One-loop recursion
• Interestingly one can extend the BCFW recursion to one-loop 

integrands of FF’s (probably also higher loops)

• All-line shift = MHV loop diagrams

• 2-line shifts = Forward Limit of tree-level FF’s

• E.g. 1-loop MHV = forward limit of tree-level NMHV with two extra 
legs

• Shown for all-line shifts in generality and checked in several cases 
for the 2-line shift

• For amplitudes only gets single residues, for FF’s                                  
there are special topologies that give two residue           
contributions

F (1)
MHV

=

Z
d4ld4⌘lF

(0)
NMHV

(1̂, 2, . . . , n̂, `,�`)



Dual conformal symmetry

• The loop-level recursion gives hope that dual conformal 
symmetry is realised somehow

• We have checked that finite parts of MHV 1-loop FF’s obey 
expected anomalous dual conformal Ward identities (like 
amplitudes)

• This requires to rewrite momentum variables in term of 
region momenta according to the know box expansion

Kµ
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F (0)
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�����
fin
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pµ
i
log

 
x2
i,i+2
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