Form Factors from N=4 SYM to Higgs+gluon amplitudes

Andi Brandhuber

with

Martyna Kostacinska, Brenda Penante & Gabriele Travaglini (and earlier work with E. Hughes, R. Panerai, B. Spence, C. Wen, G. Yang & D. Young)

SAGEX KICK-OFF MEETING, 5-8/9/2018

Beyond amplitudes

- Long-term goal: extend success of on-shell methods to off-shell quantities
 - Main focus today: Form Factors (partially off-shell)
 - MHV diagrams, BCFW, generalised unitarity, remainders, symbols
 AB, Kostacinska, Penante, Spence, Travaglini, Wen, Yang, Young; Bork, Kazakov, Vartanov; Gehrmann, Henn, Huber; Loebbert, Nandan, Sieg, Wilhelm, Yang;...
 - Remarkable simplicities/regularities but no dual conformal symmetry
 - Grassmannian and Twistor Formulations Frassek, Meidinger, Nandan, Wilhelm; Koster, Mitev, Staudacher, Wilhelm; Nandan, Meidinger, Penante, Wen; Chicherin, Sokatchev
 - (Ambi-)Twistor Strings, Scattering Equations: He, Zhang, Liu; AB, Hughes, Panerai, Spence, Travaglini; Bork, Onishenko
 - Dilatation operator/Integrability/Yangian Zwiebel; Koster, Mitev, Staudacher; Wilhelm; AB, Penante, Travaglini, Young

Form Factors: "going partially off-shell"

- More general objects than correlation functions, Wilson loops, amplitudes: e.g. Wilson loops with operator insertions, correlators of Wilson loops ...
- Form Factors: interpolate between correlators and amplitudes, partially off-shell

$$\int d^4x \, e^{-iqx} \langle 1 \cdots n | \mathcal{O}(x) | 0 \rangle = \delta^{(4)} (q - \sum_{i=1}^n p_i) \langle 1 \cdots n | \mathcal{O}(0) | 0 \rangle$$

$$q = \sum_{i=1}^n p_i$$

$$q^2 \neq 0 \quad \text{, off - shell!}$$

- Simplest case (QCD) Sudakov FF (n=2): IR divergences
 - In N=4: 1 & 2-Loop Sudakov FF first studied by Van Neerven in 1986
 - **3** Loops: (Gehrmann, Henn, Huber)
 - 4 & 5 Loops (Boels, Huber, Yang):
 - Color-Kinematics duality (Bern-Carrasco-Johansson)
 - Cusp anomalous dim, Casimir scaling violated at four loops

FFs appear in many physics contexts

- Five-loop correction to electron g-2
- 72 diagrams $\alpha_{e.m.}/\pi^{3} = (1.181241456...) (\alpha_{e.m.}/\pi)^{3}$ (Cvitar)

(Cvitanovic & Kinoshita '74) (Laporta & Remiddi '96, ...)

• wild oscillations between individual diagram

result is O(1) => mysterious cancellations

Effective Lagrangians

(Wilczek '77; Shifman, Vainshtein, Voloshin & Zakharov 79; Dawson '91; Djouadi, Graudenz, Spira, Zerwas '95)

- Higgs + multi-gluon amplitudes
 - at low M_H , dominant Higgs production at the LHC through gluon fusion
 - coupling to gluons through a quark loop
 - for $M_H < 2 m_t$ integrate out top quark
- Effective Lagrangian description: leading

 $\mathcal{L}_{\text{eff}} \sim H \operatorname{Tr} F^2 \quad \operatorname{Tr} F^2 = \operatorname{Tr} F_{\text{SD}}^2 + \operatorname{Tr} F_{\text{ASD}}^2$

• coupling
$$\frac{\alpha_S}{12\pi v}$$
, $v = 246 GeV$ independent of m_t

 $\mathcal{L}_{sub} \sim \frac{C_1}{vm_*^2} H \mathrm{tr} F^3 + \frac{C_2}{vm_*^2} H \mathrm{tr} DF DF + \dots$

• subleading:

FFs = amplitudes in effective theories

- Higgs + Parton amplitudes are form factors of $\operatorname{Tr} F^2$
 - bring down one interaction, and Wick-contract the Higgs field

$$F_{F_{
m ASD}^2} = \int d^4x \, e^{-iqx} \, \langle state | {
m Tr} \, F_{
m ASD}^2(x) | 0
angle \quad {
m with} \quad q^2 = M_{
m H}^2$$

- Can we look at the same quantity, but in N=4 SYM?
 - Highly symmetric theory, easier to identify any structure
 - Find appropriate translation of the matrix element to N=4 SYM
 - What operator? What state?

Higgs + gluon amplitudes

- Leading order $\mathcal{L}_{\mathrm{eff}} \sim H \operatorname{Tr} F^2$
 - Early application of on-shell techniques to tree- and oneloop amplitudes (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager, Mastrolia, Williams)

 $F_{\mathrm{tr}F^2}^{\mathrm{tree}}(1^-, 2^-, 3^+) = \frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 31 \rangle} \quad , \quad F_{\mathrm{tr}F^2}^{\mathrm{tree}}(1^+, 2^+, 3^+) = \frac{q^4}{[12][23][31]} \quad , \quad q^2 = m_H^2$

 Has been pushed in QCD to 3-loop order for 2 gluons (Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat, Furlan, Mistlberger),

and to 2 loops for 3 partons (Glover, Gehrmann, Jaquier & Koukoutsakis)

- Subleading, finite top-mass corrections have been studied as well (e.g. Neill; Dawson, Lewis, Zeng....)
- Integrating out the top-quark or stringy effects induce new interaction terms such as: $tr(F^3)$ ($q \rightarrow 0$ limit of FFs) (Dixon, Shadmi; Dixon, Glover, Khoze; Broedel, Dixon; Neill)

Higgs + gluon amplitudes: from QCD to N=4

- In N=4 SYM operators are organised in multiplets and are related by SUSY transformations
- A) Protected operators (zero anomalous dimension): eg. stress tensor multiplet

$$\operatorname{tr}(X^2) = \operatorname{tr}(\phi_{12}^2) \xrightarrow{Q^4} \mathcal{L}_{\text{on-shell}} \sim \operatorname{tr}(F_{\text{SD}}^2) + \dots$$

- B) Non-protected: $tr(F^3)$, tr(DFDF),...
 - In N=4 related to Konishi operator, $K \sim tr(\bar{X}X + \bar{Y}Y + \bar{Z}Z)$
- Q: are there unexpected similarities between QCD & N=4?
 - Translate operator Tr $(F_{ASD})^2$ in QCD to $\mathcal{L}_{on-shell}$ in N=4 SYM

3-point 2-loop MHV FF in N=4

• Start with 3-point FF at 2-loops

 $F_3(1,2,3) = \langle X(p_1) X(p_2) g^+(p_3) | \text{Tr} X^2 | 0 \rangle$

- This is how we mimic $\langle g^{\pm}(p_1) g^{\pm}(p_2) g^{+}(p_3) | \text{Tr} F_{\text{ASD}}^2 | 0 \rangle$ in QCD (Higgs into 3 gluons)
- At loop level tree FF can be stripped off $F_3^{(L)} = F_3^{\text{tree}} \mathcal{G}_3^{(L)}(1,2,3)$
- $\mathcal{G}_3^{(2)}$ is helicity-blind, scalar function, permutation symmetric
 - UV finite in N=4
 - IR divergences exponentiate

Finite remainders

(Catani; Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

 Subtract off universal IR divergences from the (renormalised) *L*-loop answer

• All loops (N=4 SYM):
$$\mathcal{A}_{n,\text{MHV}} = \mathcal{A}_{n,\text{MHV}}^{\text{tree}} \mathcal{M}_{n}$$

 $\mathcal{M}_{n} := 1 + \sum_{L=1}^{\infty} a^{L} \mathcal{M}_{n}^{(L)} \sim \exp\left[\text{BDS} + \mathcal{R}\right] \quad a \sim g^{2} N / (8\pi^{2})$

- BDS ~ div + γ_K Finite⁽¹⁾ (p_1, \ldots, p_n) BDS Ansatz, completely known
 - div = universal infrared-divergent part, exponentiation is expected
- \bigcirc Finite⁽¹⁾ $(p_1, ..., p_n)$ = finite part of one-loop amplitude
 - $\gamma_K = \text{cusp}$ anomalous dimension \rightarrow integrability
 - R is the so-called remainder function the most interesting part!

- Exponentiation of finite parts for one-loop amplitude due to dual conformal symmetry (Drummond, Henn, Korchemsky, Sokatchev)
 - Non-trivial remainder R appears from six points on (Drummond, Henn, Korchemsky, Sokatchev; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich)
- No dual conformal symmetry for form factors?
 - Still, exponentiating finite parts leads to much simpler remainders
- Generalized unitarity (Bern, Dixon, Dunbar, Kosower; BDK; Britto, Cachazo, Feng)
 - 2- and 3-particle cuts

• Result of 2-loop calculation: (AB, Travaglini, Yang)

result expressed as rational coefficients × two-loop planar and non-planar integrals

Final answer (using the symbol of transcendental functions) (AB, Travaglini, Yang)

$$\mathcal{R}_{3}^{(2)} = -2\left[J_{4}\left(-\frac{uv}{w}\right) + J_{4}\left(-\frac{vw}{u}\right) + J_{4}\left(-\frac{wu}{v}\right)\right] - 8\sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right) + \frac{\log^{4}u_{i}}{4!}\right] \\ -2\left[\sum_{i=1}^{3}\operatorname{Li}_{2}(1-u_{i}^{-1})\right]^{2} + \frac{1}{2}\left[\sum_{i=1}^{3}\log^{2}u_{i}\right]^{2} - \frac{\log^{4}(uvw)}{4!} - \frac{23}{2}\zeta_{4}$$

- $u_1 = u = s_{12} / q^2$, $u_2 = v = s_{23} / q^2$, $u_3 = w = s_{31} / q^2$ kinematic invariants • $J_4(z) := \text{Li}_4(z) - \log(-z)\text{Li}_3(z) + \frac{\log^2(-z)}{2!}\text{Li}_2(z) - \frac{\log^3(-z)}{3!}\text{Li}_1(z) - \frac{\log^4(-z)}{48}$.
- Bloch-Wigner-Ramakrishnan(-Zagier) polylogarithmic function
- Result: extremely compact, homogeneous degree of transcendentality = 4

Next: compare with QCD

Higgs + parton amplitudes in QCD

- Higgs + 3 partons (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)
 - $H g^+ g^- g^-$ MHV • $H g^+ g^- g^-$ MHV • $H g^+ g^+ g^+$ maximally non-MHV $F^{\text{tree}}(H, g_1^-, g_2^-, g_3^+) = \frac{\langle 1 2 \rangle^2}{\langle 2 3 \rangle \langle 3 1 \rangle}$ $F^{\text{tree}}(H, g_1^+, g_2^+, g_3^+) = \frac{q^4}{[12][23][31]}$
 - $H q \ \bar{q} \ g$ fundamental quarks

$$q^2 = M_H^2$$

- In N=4 SYM:
 - $(H g^+ g^- g^-)$ and $(H g^+ g^+ g^+)$ both derived from super form factor
 - from supersymmetric Ward identities:

$$\frac{F^{(L)}(g_1^-, g_2^-, g_3^+)}{F^{\text{tree}}(g_1^-, g_2^-, g_3^+)} = \frac{F^{(L)}(g_1^+, g_2^+, g_3^+)}{F^{\text{tree}}(g_1^+, g_2^+, g_3^+)} = \mathcal{G}^{(L)}(u, v, w) \quad \leftarrow \text{ what we computed}$$

- 2-loop QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis
 - very different looking than N=4 SYM result!
 - transcendentality 4,3,2,1 and 0 (rational). In N=4, only degree 4
 - expressed in terms of several pages of multiple polylogarithms
 - expected because of expansion as \sum (coefficient x integral) !
 - each integral is separately quite complicated
- Comparing the two quantities reveals a surprising relation:

$$\mathcal{R}_{Hg^{-}g^{-}g^{+}}^{(2)}\Big|_{\text{MAX TRANS}} = \mathcal{R}_{Hg^{+}g^{+}g^{+}}^{(2)}\Big|_{\text{MAX TRANS}} = \mathcal{R}_{\mathcal{N}=4\text{SYM}}^{(2)}$$

• Principle of maximal transcendentality:

- First example with kinematic dependence
- Discovered by Kotikov, Lipatov, Onishchenko and Velizhanin in the context of anomalous dimensions of twist-2 operators (Moch-Vermaseren-Vogt)
- several counter-examples in amplitudes, e.g. broken for one-loop amplitudes in pure Yang-Mills
- Next testing ground: form factors of higher-dimensional operators describing Higgs + multigluon scattering

From N=4 to QCD

(AB, Kostacińska, Penante, Travaglini, Young '16; AB, Kostacińska, Penante, Travaglini '17 + 18)

- Effective field theory description for finite *m*top corrections
 - Beyond leading-order term

 ${\cal L}_{
m eff}^{(0)} \sim H\,{
m Tr}F^2$

(infinite *m*top)

- Next corrections: 4 dimension-7 operators in QCD
- Two particular operators also present in N=4 SYM:

 ${\cal L}_{
m eff}^{(1)} \sim H\,{
m Tr}F^3$

$$\mathcal{L}_{\text{eff}}^{(2)} \sim H \operatorname{Tr}(D_{\mu}F_{\rho\sigma})(D^{\mu}F^{\rho\sigma})$$

- Goal: compute in N=4 SYM and compare to QCD (result not yet available)
- previous work at one loop: Dawson, Lewis & Zeng; Neill; Harlander, Neumann, Ozeren, Wiesemann
- higher-dimensional operators also studied as corrections to the Standard Model (Buchmuller & Wyler '85 and MANY more!)

Increasing difficulty:

- Operators with 3 fields: approach the problem with increasing difficulty
- Protected: $Tr(X^3), Tr(X \{Y, Z\})$

- Non-protected: $O_B := Tr(X[Y, Z])$
 - mixes with Tr ($\psi\psi$), part of SU(2|3) sector in N=4 SYM
- Non-protected: $\operatorname{Tr} F^3$ is descendant
 - descendant of "Konishi" $K \sim tr(\bar{X}X + \bar{Y}Y + \bar{Z}Z)$

3-point form factor of $Tr X^3$ at **2 loops**

(AB, Penante, Travaglini, Wen)

$$F_{3}(1,2,3) := \langle X(p_{1}) X(p_{2}) X(p_{3}) | \mathrm{Tr} X^{3} | 0 \rangle$$

• Two-loop result expressed in terms of planar integrals

• Remainder very simple! But very different from $Tr X^2$

$$\mathcal{R}_{3,3}^{(2)} := -\frac{3}{2}\operatorname{Li}_{4}(u) + \frac{3}{4}\operatorname{Li}_{4}\left(-\frac{uv}{w}\right) - \frac{3}{2}\log(w)\operatorname{Li}_{3}\left(-\frac{u}{v}\right) + \frac{1}{16}\log^{2}(u)\log^{2}(v) + \frac{\log^{2}(u)}{32}\left[\log^{2}(u) - 4\log(v)\log(w)\right] + \frac{\zeta_{2}}{8}\log(u)\left[5\log(u) - 2\log(v)\right] + \frac{\zeta_{3}}{2}\log(u) + \frac{7}{16}\zeta_{4} + \operatorname{permutations}\left(u, v, w\right)$$

maximal degree of transcendentality

Non-protected operators

(AB, Kostacinska, Penante, Travaglini)

- First example: descendant of Konishi in SU(2|3) sector $\mathcal{O}_K = \operatorname{Tr}(X[Y, Z]) - \frac{gN}{8\pi^2} \operatorname{Tr}(\psi\psi)$
- Tr (X [Y, Z]) not protected and mixes with Tr ($\psi\psi$)
- 2-loop form factor has IR and UV divergences
 - Renormalise and resolve mixing to obtain correct anomalous dimension $\gamma_K = 12a - 48a^2 + O(a^3)$
 - Use BDS to extract UV/IR finite remainder
- Admire the result and look for novel structures

- numerators indicated by dotted lines
- remaining integrals: UV divergent, transcendentality < 4
- BDS-remainder

$$\mathcal{R}^{(2)}_{\mathcal{O}_{X[Y,Z]}} = \mathcal{R}^{(2)}_{\mathrm{BPS}} + \mathcal{R}^{(2)}_{\mathrm{offset}}$$

- Novel part: $\mathcal{R}_{offset}^{(2)} = \sum^{o} \mathcal{R}_{offset,I}^{(2)}$
- by decreasing degree of transcendentality:

$$\begin{aligned} \mathcal{R}_{\text{offset};3}^{(2)} &= 2 \Big[\text{Li}_3(u) + \text{Li}_3(1-u) \Big] - \frac{1}{2} \log^2(u) \log \frac{vw}{(1-u)^2} + \frac{2}{3} \log(u) \log(v) \log(w) \\ &+ \frac{2}{3} \zeta_3 + 2 \zeta_2 \log(-q^2) + \text{perms} (u, v, w) \\ \mathcal{R}_{\text{offset};2}^{(2)} &= -12 \Big[\text{Li}_2(1-u) + \text{Li}_2(1-v) + \text{Li}_2(1-w) \Big] - 2 \log^2(uvw) + 36 \zeta_2 \\ \mathcal{R}_{\text{offset};1}^{(2)} &= -12 \log(uvw) - 36 \log(-q^2) \\ \mathcal{R}_{\text{offset};0}^{(2)} &= 126 \end{aligned}$$

- Transcendentaliy 4 terms "universal": appear in 2-loop FF's in SU(2) and SL(2) sectors (Loebbert, Nandan, Sieg, Wilhelm, Yang)
- Lower Degree Terms: intriguing relation to those of SU(2)/ SL(2) FF's! (shuffling, permutations)
- Signs of universal building blocks of general FF's

Two-loop results for $Tr F^3$

- Compare remainders for the two form factors: $\langle g^+g^+g^+ | \operatorname{Tr} F^3_{ASD} | 0 \rangle$ in any theory (even without supersymmetry)
 - $\langle XXX | \operatorname{Tr} X^3 | 0 \rangle$ in N=4 SYM
- Maximally transcendental parts agree!

$$\begin{aligned} \mathcal{R}_{F_{ASD}^{3}}^{(2)} \Big|_{MAX\,TRANS} &= \mathcal{R}_{BPS}^{(2)} = -\frac{3}{2}\operatorname{Li}_{4}(u) + \frac{3}{4}\operatorname{Li}_{4}\left(-\frac{uv}{w}\right) - \frac{3}{2}\log(w)\operatorname{Li}_{3}\left(-\frac{u}{v}\right) + \frac{1}{16}\log^{2}(u)\log^{2}(v) \\ &+ \frac{\log^{2}(u)}{32} \left[\log^{2}(u) - 4\log(v)\log(w)\right] + \frac{\zeta_{2}}{8}\log(u) \left[5\log(u) - 2\log(v)\right] \\ &+ \frac{\zeta_{3}}{2}\log(u) + \frac{7}{16}\zeta_{4} + \operatorname{perms}\left(u, v, w\right). \end{aligned}$$

- BPS operators in N=4 SYM compute (parts of) FFs in QCD!
- Next: sub-leading transcendentality terms

Translation of Tr F^3 to N=4

- Translating the operator Tr (F_{ASD}^3) to N=4 language leads to the Konishi supermultiplet $K \sim tr(\bar{X}X + \bar{Y}Y + \bar{Z}Z)$
- Acting with 8 supercharges gives $\mathcal{O}_{S} \sim Tr(F_{ASD}^{3}) + gTr(F_{ASD}^{2}\phi\bar{\phi}) + gTr(F_{ASD}\phi F_{ASD}\bar{\phi}) + gTr(F_{ASD}\psi\psi\psi) + gTr(F_{ASD}\psi\psi\psi) + gTr(\psi\psi\psi\psi),$
- O(g) terms give additional contact terms contributing from n=4 (which is needed in cuts), e.g.: $F^{(0)}(1^+, 2^+, 3^{\phi^{12}}, 4^{\phi^{34}}; q) = -\frac{1}{2} \frac{[12]}{[34]} ([13][24] + [14][23]) + \frac{1}{6} [12]^2$
- MHV super form factor for full stress tensor multiplet is known (Chicherin, Sokatchev) extract relevant component
- At two loops a new structure appears $\frac{1}{\epsilon} \overline{uvw}$
- Renormalisation involves mixing with operator $\sim q^2 Tr(F_{ASD}^2)$

The remainder

- Remainder contains two types of terms:
 - purely transcendental: 4 (already discussed), 3, 2, 1 and 0
 - new feature: multiplied by a rational prefactor, e.g. u/v, u/w, v/w
- Calculation in N=4 done, N=2 and 1 (using mostly 4D cuts)
 - <u>maximally transcendental part is universal</u> since all extra integrals have lower transcendentality

- Final N=4 result extremely simple
 - Tests
 - UV: Reproduce expected 2-loop anomalous dimension of Konishi
 - IR-divergences exponentiate as expected
- N=2 and 1
 - Calculation more involved; <u>Still:</u> remainders **R** differ only slightly
 - Running coupling+operator mixing: first renormalise form factors...
 - ... and compute Catani's remainder to remove IR divergences

• Transcendentality 3, 2, 1, 0 parts of the N=4 SYM result for \mathcal{O}_S :

$$\begin{split} \mathcal{R}_{\mathcal{K},3}^{(2)}\Big|_{\text{pure}} &= \text{Li}_{3}(u) + \text{Li}_{3}(1-u) - \frac{1}{4}\log^{2}(u)\log\left(\frac{vw}{(1-u)^{2}}\right) + \frac{1}{3}\log(u)\log(v)\log(v) \\ &+ \zeta_{2}\log(u) - \frac{5}{3}\zeta_{3} + \text{perms}\left(u, v, w\right) \\ \mathcal{R}_{\mathcal{K};3}^{(2)}\Big|_{u/w} &= \left[-\text{Li}_{3}\left(-\frac{u}{w}\right) + \log(u)\text{Li}_{2}\left(\frac{v}{1-u}\right) - \frac{1}{2}\log(1-u)\log(u)\log\left(\frac{w^{2}}{1-u}\right) \\ &+ \frac{1}{2}\text{Li}_{3}\left(-\frac{uv}{w}\right) + \frac{1}{2}\log(u)\log(v)\log(w) + \frac{1}{12}\log^{3}(w) + (u \leftrightarrow v)\right] \\ &+ \text{Li}_{3}(1-v) - \text{Li}_{3}(u) + \frac{1}{2}\log^{2}(v)\log\left(\frac{1-v}{u}\right) - \zeta_{2}\log\left(\frac{uv}{w}\right) \\ \hline \mathcal{R}_{\mathcal{K};2}^{(2)}\Big|_{\text{pure}} &= -\text{Li}_{2}(1-u) - \log^{2}(u) + \frac{1}{2}\log(u)\log(v) - \frac{13}{2}\zeta_{2} + \text{perms}\left(u, v, w\right) \\ \mathcal{R}_{\mathcal{K};2}^{(2)}\Big|_{u^{2}/w^{2}} &= \text{Li}_{2}(1-u) + \text{Li}_{2}(1-v) + \log(u)\log(v) - \zeta_{2} \end{split}$$

$$\mathcal{R}_{\mathcal{K};1}^{(2)} = \left(-4 + \frac{v}{w} + \frac{u^2}{2vw}\right)\log(u) + \operatorname{perms}\left(u, v, w\right), \qquad \mathcal{R}_{\mathcal{K};0}^{(2)} = 7\left(12 + \frac{1}{uvw}\right)$$

More surprises...

- pure terms of result for Konishi almost identical to result for Tr (X[Y, Z])
- remainder "densities" of form factors in the SU(2) sector of N=4 reappear as building blocks of the non-pure terms
 - Surprising!
 - Results much more structured than expected. Connections to integrability?
- Hints at universal building blocks?
- Results for N<4 and recent results for pure Yang-Mills confirm structural similarities (Q. Jin, G. Yang)

Summary

- Form factors in N=4 SYM
 - Share simplicities of amplitudes, but no dual conformal symmetry
 - Related to Higgs + gluons amplitudes in QCD in effective field theory approach
 - N=4 SYM computes the most complicated part of the remainder including terms of lower transcendentally
- Systematise (understand!) the connection between Higgs amplitudes in QCD and form factors in N=4 SYM

Further open questions

- Reinforce links with integrability
 - Dual conformal symmetry of amplitudes implies Yangian symmetry of dilatation operator *D* (proof via form factors)
 - Can extract D from form factors, e.g. SU(2|3)/SU(2) sector at 2 loops; complete 2-loop dilatation operator?
- Hidden symmetries responsible for simple results? How is dual conformal symmetry of amplitudes realised? (AB, Bianchi, Panerai, Travaglini)
- Apply modern methods like BCJ duality, Steinmann relations, cluster adjacency...

Amplitudes Group at QMUL

Academics and Fellows

Andi Gabriele

Travaglini

Brandhuber

Ricardo Monteiro

Chris White

Bill Spence

Michael Green

Rodolfo Russo

Postdocs

Lorenzo Bianchi plus Gang Chen from 10/2018

PhD students

Plus two ESRs From 10/2018

Manuel Accettulli-Huber Stefane De Angelis

Ricardo

Edward Hughes PhD 2017

Rodolfo Panerai

Nadia **Bahjat-Abbas**

Random comments

(work in progress with Bianchi, Panerai, Travaglini)

- BDS ansatz is powerful also for two-loop form factors, but why? There is no (obvious) dual conformal symmetry (DCS) to explain further simplicities
- Let's take a closer look for chiral part of stress-tensor multiplet which contains $Tr(X^2)$
- For various reasons it is useful to write kinematics in dual momentum space or momentum twistor space e.g. for n=3 (three on-shell legs):
- Periodic Wilson line

Periodic Wilson lines

 $\mathcal{Z}_i = (\lambda_i, x_i \cdot \lambda_i) = (\lambda_i, x_{i+1} \cdot \lambda_i) \qquad p_i = x_i - x_{i+1}$

Tree level: dual superconformal symmetry

- We can use BCFW recursion relations
- all-line shifts = MHV diagrams give for NMHV form factors (with Gurdogan, Mooney, Travaglini, Yang)

$$F_{NMHV}^{(0)} = F_{MHV}^{(0)} \sum_{i=1}^{n} \sum_{j=i+2}^{i+n-1} [*, i-1, i, j-1, j]$$

- two-line shifts produce a sum of box-coefficients (BCFW bridge)
 (Bork)
 - most of these are dual superconformal R-invariants
 - but special cases are C x R-invariant where C is only dual conformal but breaks SUSY

One-loop recursion

- Interestingly one can extend the BCFW recursion to one-loop integrands of FF's (probably also higher loops)
- All-line shift = MHV loop diagrams
- 2-line shifts = Forward Limit of tree-level FF's
 - E.g. 1-loop MHV = forward limit of tree-level NMHV with two extra legs

$$F_{MHV}^{(1)} = \int d^4l d^4\eta_l F_{NMHV}^{(0)}(\hat{1}, 2, \dots, \hat{n}, \ell, -\ell)$$

- Shown for all-line shifts in generality and checked in several cases for the 2-line shift
- For amplitudes only gets single residues, for FF's there are special topologies that give two residue contributions

Dual conformal symmetry

- The loop-level recursion gives hope that dual conformal symmetry is realised somehow
- We have checked that finite parts of MHV I-loop FF's obey expected anomalous dual conformal Ward identities (like amplitudes) $r^{(1)}$ n r^{2} r^{2} r^{2}

$$K^{\mu} \left. \frac{F_{MHV}^{(1)}}{F_{MHV}^{(0)}} \right|_{fin} = 2 \sum_{i=1}^{n} p_i^{\mu} \log\left(\frac{x_{i,i+2}^2}{x_{i-1,i+1}^2}\right)$$

 This requires to rewrite momentum variables in term of region momenta according to the know box expansion

