

Volker Schomerus SAGEX Kickoff Meeting, Queen Mary University, London;

Based on work with M. Isachenkov

I.1 Feynman Integrals & Transcendentals

[De Calan et al.]

Step 1: Mellin-Barnes representation of Feynman integral

$$egin{aligned} &rac{1}{(X+Y)^{\mu}} = rac{1}{\Gamma(\mu)} rac{1}{2\pi i} imes \ &\int_{-i\infty}^{i\infty} ds rac{Y^s}{X^{\mu+s}} \Gamma(\mu+s) \Gamma(-s) \end{aligned}$$

Step 2: Evaluate Mellin-Barnes integral with Cauchy's theorem

Pick poles of Γ functions

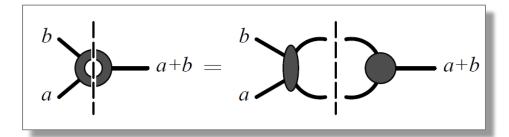
Sum over poles
$$\sum_{k_1,...,k_{n+m}} \prod_{a,b} \frac{\Gamma(\sum_{i=1}^m A_{ai}k_i + B_a)}{\Gamma(\sum_{j=1}^n C_{bj}k_j + D_b)} x_1^{k_1} \cdots x_{m+n}^{k_{n+m}} \leftarrow \text{kinematic invarants}$$

Step 3: expand in regulator ϵ **ABCD** = **ABCD**(μ, ϵ) linear

I.2 Transcendentals and Polylogarithms

Example: one-loop

splitting amplitude.



[Bern et al] [Kosower, Uwer]

$$\mathsf{involves} \int \frac{d^{4-2\epsilon}p}{p \cdot q} \frac{1}{p^2(p-k_a)^2(p-k_a-k_b)^2} \sim \frac{1}{\epsilon^2 z} \ _2F_1 \binom{1,-\epsilon}{1-\epsilon}; 1-\frac{1}{z}$$

Expand in regulator ϵ using

$$_{2}F_{1}\left(\begin{array}{c}1,-\epsilon\\1-\epsilon\end{array};x
ight)=1+\ln(1-x)\epsilon-\mathrm{Li}_{2}(x)\epsilon^{2}-\mathrm{Li}_{3}(x)\epsilon^{3}+\ldots$$

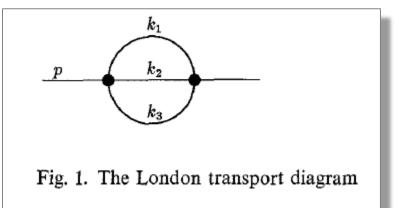
more generally use [Moch,Uwer,Weinzierl]..

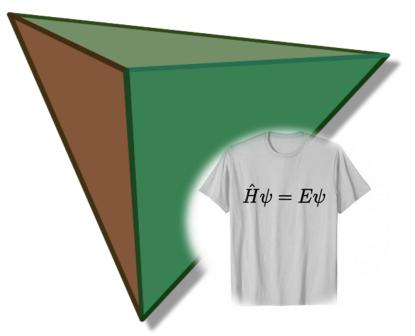
I.3 Higher Transcendental Functions

Lauricella functions $F_C^{(N)}$ appear for *N-1* loop massive scalar self-energy diagrams with *N* propagators.

[Berends, Böhm, Buza, Scharf]

Lauricella functions are wave functions of a particle in semiinfinite tetrahedron with exponential wall A_N Calogero-Sutherland [Shimeno, Tamaoka 2018]





I.4 Outline

Modern theory of hypergeometric functions [1987....] is intimately linked to integrable quantum mechanics

- 1. Revisiting Gaussian Hypergeometric Function
- 2. Multivariate Extensions and KZ-type Equations

Gaussian Hypergeometric Function

2.1 Hypergeometrics & Poeschl-Teller

Hamiltonian of single Poeschl-Teller particle on half-line

$$H^{(a,b)}_{ ext{PT}} = -rac{d^2}{du^2} - rac{ab}{\sinh^2 rac{u}{2}} + rac{(a+b)^2 - rac{1}{4}}{\sinh^2 u}$$

Wave functions with energy $E = -\lambda^2$ given by Gaussian hypergeometric function as

$$\psi(\lambda; u) \sim {}_2F_1igg(egin{array}{c} a+1/2+\lambda, a+1/2-\lambda\ 1+a-b \end{array}; -\sinh^2rac{u}{2}igg) extsf{\sim} {}_2F_1igg(egin{array}{c} lpha, eta\ \gamma \end{cases}; zigg)$$

Note: QM couplings, eigenvalues ~ QFT exponents, regulator QM particle coordinates ~ QFT kinematic invariants

2.2 Integrability of Poeschl-Teller

On reflection symmetric functions Poeschl-Teller *H*_{PT}

is a square $H_{PT} =
abla^2$, $R\psi(u) = \psi(-u)$

 $\nabla = \partial_u + \left[\frac{2b}{1-e^{-u}} - \frac{2a+2b+1}{1-e^{-2u}}\right] R$ Dunkl operator

<u>Rem</u>: ∇ , R, $x = e^u$ generate dDAHA = Heisenberg/Weyl algebra for system with reflection symmetry $u \rightarrow -u$

<u>Rem</u>: Obtain wave functions from solution of KZ eqn:

$$\frac{d}{dx}F = \begin{bmatrix} \frac{1}{x} \begin{pmatrix} \lambda & 2a-1 \\ 0 & -\lambda \end{pmatrix} + \frac{\left(a-b+\frac{1}{2}\right)}{1-x} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \frac{\left(a+b+\frac{1}{2}\right)}{1+x} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix} F$$

2.3 Formal Knizhnik-Zamolodchikov Eqs.

Consider following Knizhnik-Zamolodchikov type eqn.

$$\frac{dG}{dz} = \left[\frac{\varrho(X)}{z} + \frac{\varrho(Y)}{1-z}\right]G$$

It possesses fundamental system of solutions of form

In application to Poeschl-Teller wave functions choose

$$arrho(X) = egin{pmatrix} 0 & eta \ 0 & 1-\gamma \end{pmatrix} \qquad \qquad arrho(Y) = egin{pmatrix} 0 & 0 \ lpha & lpha+eta+1-\gamma \end{pmatrix}$$

2.4 Harmonic Polylogs from Integrability

 $_{2}F_{1}$ admits convergent expansion in regime $|t_{X}| < 1/2$

$$_2F_1igg(egin{array}{c} lpha,eta\\ \gamma \end{array};wigg) = 1+lphaeta\sum_{k,n,s>0}G_0(k,n,s;w)t^{k-n-s}t^{n-s}_{lphaeta}t^s_lpha t^s_eta$$

$$t = 1 - \gamma \quad t_{\alpha\beta} = \alpha + \beta + 1 - \gamma$$

$$t_{\alpha} = \alpha + 1 - \gamma \quad t_{\beta} = \beta + 1 - \gamma$$
[Shu Oi, 2009]

$$G_0(k, n, s; w) = \sum_{\substack{k_1 + \dots + k_n = k \ k_1 \ge 2, k_i \ge 1 \ \#\{i \mid k_i \ge 2\} = s}} Li_{k_1, \dots, k_n}(z)$$

k = |w| = # of letters = weight $= 4(w) = \#$ of letters y = depth

s = h(w) = # of yx + 1 = height

 \rightarrow Formulas (75) of Moch et al.

Multivariate Extensions

3.1 Calogero-Sutherland Models

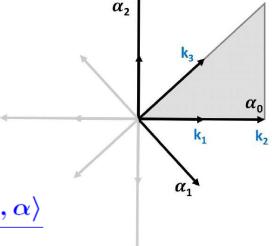
[Calogero 71] [Sutherland 72]

Integrable multi-particle genera-

lization of Poeschl-Teller model

Associated with root systems Σ

$$H_{ ext{CS}} = -\sum_{i=1}^{N} rac{d^2}{du_i^2} + \sum_{lpha \in \Sigma^+} rac{k_lpha (k_lpha + 2k_{2lpha} - 1) \langle lpha, lpha
angle}{4 \sinh^2 rac{\langle lpha, u
angle}{2}}$$



Poeschl-Teller appears as special case $\Sigma_{
m PT}^+ = \{e_1, 2e_1\}$ $k_1 = -2b$ $k_2 = a + b + rac{1}{2}$

Scattering states $\psi(\lambda, k; u)$ with momentum λ given by Heckmann-Opdam hypergeometrics [Heckman,Opdam]...

3.2 Integrability and KZ-Equations

On Weyl symmetric functions, Calogero-Sutherland H_{CS} takes form $H_{CS} = \sum_{i} \nabla_{i}^{2}$ with commuting ∇_{i} , *i*. *e*. $[\nabla_{i}, \nabla_{i}] = 0$

$$abla_j = \partial_j - \sum_{lpha \in \Sigma^+} rac{k_lpha \langle lpha, e_j
angle}{1 - e^{-\langle lpha, u
angle}} R_lpha$$
 Dunkl operators Weyl reflection

HO Hypergeometrics obtained from solution of system of matrix Knizhnik-Zamolodchikov equations N variables, $|\Sigma^+| + N$ singularities, |W| components From ∇_j one can also build differential shift operators shift parameters $k_a \rightarrow$ Differential reduction

3.3 Bispectral-Duality and Recurrence

<u>Rem</u>: ∇_{j} , R_{α} , $x_{i} = e^{u_{i}}$ generate dDAHA = Heisenberg/Weyl algebra for system with Weyl reflection symmetry

Free particle: Heisenberg algebra is symmetric $x \leftrightarrow \partial$

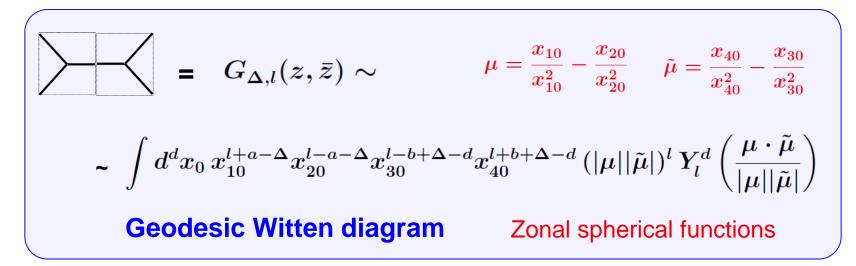
Heckman-Opdam hypergeometrics satisfy higher order integrable difference eqs in the eigenvalues λ , e.g.

$$\sum_{j=1,2} \left[v_j(\lambda)(\psi_{\lambda+e_j} - \psi_\lambda) + v_j(-\lambda)(\psi_{\lambda-e_j} - \psi_\lambda) \right] = 4 \sum_{j=1,2} \sinh^2 u_i/2 \ \psi_{\lambda}$$

$$v_j(\lambda) = \frac{(\lambda_j + a + 1/2)(\lambda_j - b + 1/2)}{\lambda_j(\lambda_j + 1/2)} \frac{(\lambda_1 + \lambda_2 + \epsilon/2)(\lambda_1 - \lambda_2 + \epsilon/2)}{(\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)}$$

and further recurrence equations involving shifts of k_a contiguous relations

4.1 Outlook: Hypergeometrics and CFT



Dolan-Osborn Casimir differential equation for CPW

is eigenvalue equation for CS Hamiltonian (for BC₂) [Isachenkov,VS] Through connection with CS we can construct CPWs

for external long multiplets 4D supersymmetric CFTs

4.2 Conclusions & Open Questions

Modern mathematical theory of HO Hypergeometrics provides rich class functions satisfying KZ-equations & recurrence relations

Does this beautiful theory possess non-trivial applications in perturbative quantum field theory ?