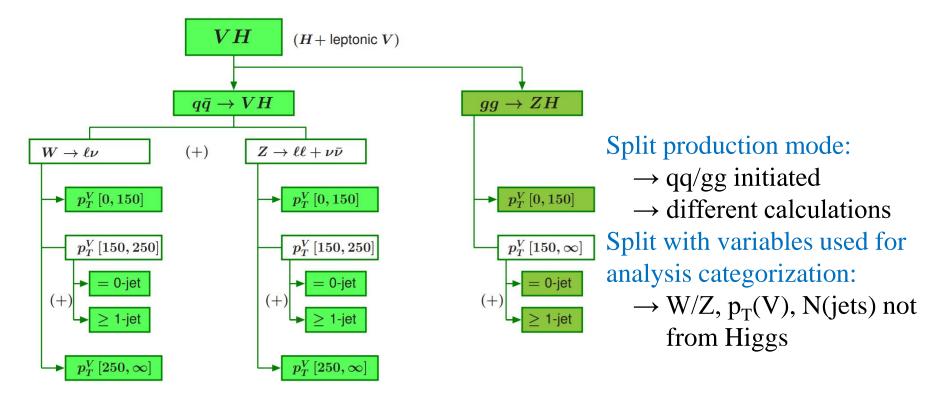
Signal uncertainties in STXS stage 1 for VH(bb)

Thomas CALVET, Milène Calvetti, Valerio Dao, Paolo Francavilla, Carlo Pandini, Changqiao Li, Giovanni Marchiori, Tatsuya Masubushi

Fiducial/STXS subgroup meeting May 17th, 2018

Introduction: STXS binning

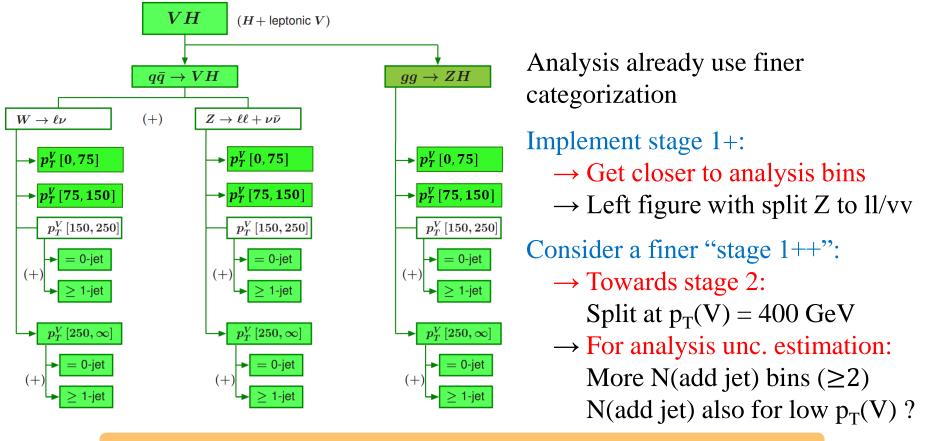
- Stage 1: truth binning based on VH(bb) analysis categories
 - > Reduce impact of theory on the measurement (no acceptance, ...)



Original plan: LHC report 4 (click me)

Introduction: STXS binning

- Stage 1: truth binning based on VH(bb) analysis categories
 - > Reduce impact of theory on the measurement (no acceptance, ...)



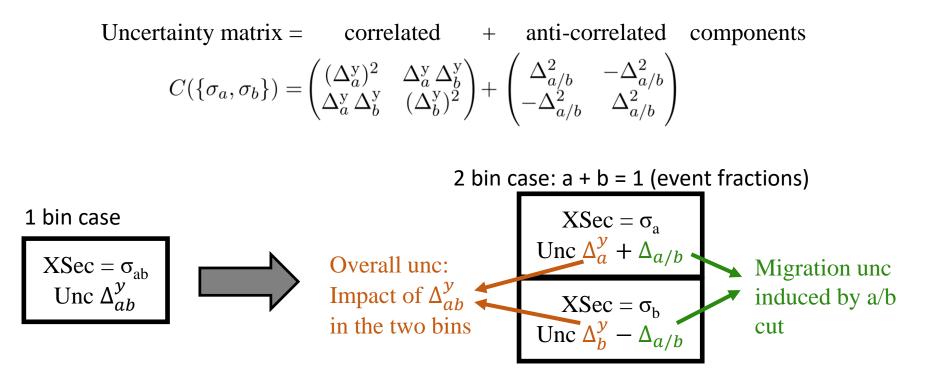
Goal: derive uncertainties for stage 1++ and merge where needed

3 signal uncertainty sets to discuss:

-> Scale -> PDF -> PS / UE

Scale Variations: The Big Guys

- Problematic: how to deal with bin migration/correlation
- > 2 bins (a and b) case: the generic parametrization



LHC report 4 (click me) for more details

Scale Variations: The Big Guys

Parametrization in the VH(bb) stage 1 case

Showing WH here, in stage 1 same table for ZH (from Les Houches 2017, click me)

		QCD uncer	rtainties		
$q\bar{q}' ightarrow W$	$\Delta_{ m WH}^{ m y}$	$\Delta^{ m WH}_{150}$	$\Delta^{ m WH}_{250}$	$\Delta_{0/1}^{\mathrm{WH}}$	
$p_T^V [0,150]$	x_1	-1	-y		$unc_{[0,150]} = x_1 \Delta_{WH}^{y} - \Delta_{150}^{WH} - y_2 \Delta_{250}^{WH}$
p_T^V [150,250]	x_2	+1 - y	-(1-y)	0	$unc_{[150,250]} = x_2 \Delta_{WH}^{y} + (1 - y_1)\Delta_{150}^{WH} - y_2 \Delta_{250}^{WH}$
= 0-jet	$x_2 z$	+(1-y)z	$-(1\!-\!y)z$	+1	
\geq 1-jet	$x_2(1-z)$	$+(1\!-\!y)(1\!-\!z)$	$-(1\!-\!y)(1\!-\!z)$	-1	
p_T^V [250, ∞]	x_3	y	+1		$unc_{[250,\infty]} = x_3 \Delta_{WH}^{y} + y_1 \Delta_{150}^{WH} + \Delta_{250}^{WH}$

➢ How to compute all parameters ?

Original proposal:
$$x_{[250,\infty]} = \Delta_{[250,\infty]}^{y} / \Delta^{y}$$

 $\Delta_{250}^{y} \sim \Delta_{[250,\infty]}^{y}$
 \diamond Over-enhancement issue:
 $unc_{[250,\infty]} = (\Delta_{250}^{y} / \Delta^{y}) \Delta^{y} + y_{1} \Delta_{150} + \Delta_{250}$

Can new scheme
solve this ?

Parameter Calculation Proposal

> Calculating the $x_i/y/z$:

	Δ	Δ ₇₅	Δ ₁₅₀	∆ 250	Δ ₁₅₀ J	∆ 250J
0-75	У _[0,75] / УТоtal	-1	- y _[0,75] / y _[0,150]	- y _[0,75] / y _[0,250]		
75-150	у _[75,150] / Утоtal	y _[75,150] / y _[75,∞]	- y _[75,150] / y[0,150]	- y _[75,150] / y[0,250]		
150-250 0J	Y[150,250]+0J ∕ y _{Total}	y[150,250]+0J ∕y[_{75,∞]}	y[150,250]+0J / y _[150,∞]	- y _{[150,250]+0J} / y _[0,250]	-1	
150-250 1J+	У[150,250]+1J+ ∕у _{Тоtal}	У[150,250]+1J+ /у _[75,∞]	Y[150,250]+1J+ /y[150,∞]	- y _{[150,250]+1J+} / y _[0,250]	1	"у
250+ 0J	y _{[250,∞]+0J} / Y⊺otal	y _{[250,∞]+0J} / y _[75,∞]	y _{[250,∞]+0J} / y[150,∞]	y _{[250,∞]+0J} / y _[250,∞]		-1
250+ 1J+	y _{[250,∞]+1J+} / y⊺otal	y _{[250,∞]+1J+} / y _[75,∞]	y _{[250,∞]+1J+} / y[150,∞]	y _{[250,∞]+1J+} / y[250,∞]		1
Sum to	1	0	0	0	0	0

Replace:
"relative unc fraction"

$$x_{[250,\infty]} = \Delta^{y}_{[250,\infty]} / \Delta^{y}$$

Ids fractions (bin acceptance)"

$$x_{[250,\infty]} = y_{[250,\infty]} / y_{[0,\infty]}$$

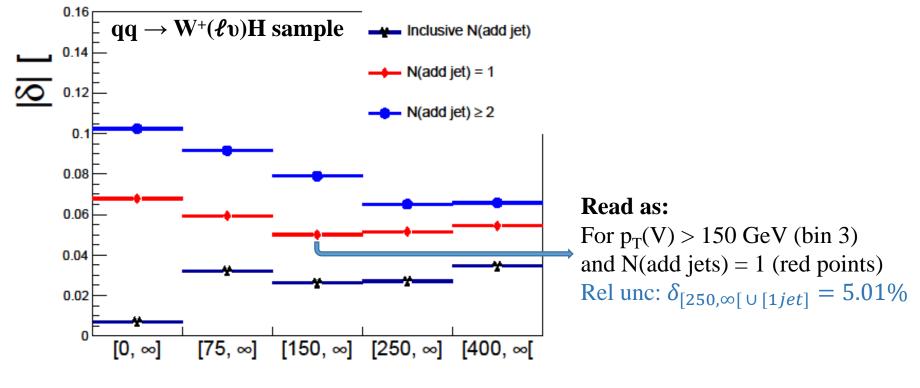
In the [250, ∞ [(without considering N(jet) split) $unc_{[250,\infty]} = \Delta * \frac{y_{[250,\infty[}}{y_{[0,\infty[}} + \Delta_{75} \frac{y_{[250,\infty[}}{y_{[75,\infty[}} + \Delta_{150} \frac{y_{[250,\infty[}}{y_{[150,\infty[}} + \Delta_{250} \frac{y_{[250,\infty[}} + \Delta_{250} \frac{y$

Estimations of Δs

Available ingredients:

 \rightarrow Overall relative unc. δ from NNLO QCD cross-section in YR4

→ Relative uncertainties $\delta_{[a,b]}$ on $y_{[a,b]}$ from Powheg+MINLO with non-diagonal scale variation by a factor of 2



Estimations of Δs

- > Available ingredients:
 - \rightarrow Overall relative unc. δ from YR4
- → Relative uncertainties $\delta_{[a,b]}$ on $y_{[a,b]}$ from Powheg+MINLO
- > Proposal for Δs :
 - $\rightarrow \text{ In our same example:}$ $y_{[250,\infty[} * \delta_{[250,\infty[} = \Delta * \frac{y_{[250,\infty[}}{y_{[0,\infty[}} + \Delta_{75} \frac{y_{[250,\infty[}}{y_{[75,\infty[}} + \Delta_{150} \frac{y_{[250,\infty[}}{y_{[150,\infty[}} + \Delta_{250} \frac{y_{[250,\infty[}} + \Delta_{250} \frac{y$
 - \rightarrow When solving the equations (with approximations):

$$\Delta = y_{tot} \cdot \delta$$

$$\Delta_{75} = y_{[75,\infty[} \cdot (\delta_{[75,\infty[} \ominus \delta))$$

$$\Delta_{150} = y_{[150,\infty[} \cdot (\delta_{[150,\infty[} \ominus \delta_{[75,\infty[}))])$$

$$\Delta_{250} = y_{[250,\infty[} \cdot (\delta_{[250,\infty[} \ominus \delta_{[150,\infty[}))])$$

$$\Delta_{150J} = y_{[150,\infty[\cup [\ge 1]et]}$$

$$\cdot (\delta_{[150,\infty[\cup [\ge 1]et]} \ominus \delta_{[150,\infty[}))$$

$$\Delta_{250J} = y_{[250,\infty[\cup [\ge 1]et]}$$

$$\cdot (\delta_{[250,\infty[\cup [\ge 1]et]} \ominus \delta_{[250,\infty[}))$$

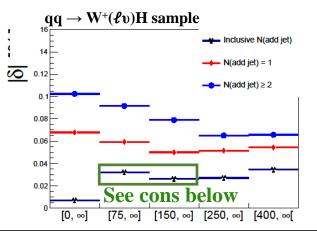
Pro

Quadrature subtraction naturally remove some double-counting

Cons

Ill defined if relative uncertainty reduce with $p_T(V)$ or N(add jet) Δ_{150} for us

O



Estimations of Δs

Frank's proposal: if ill defined use 0.5*relative variation

- > Applied also to sub-sequent Δ 's
- > Also consider applying it only to ill defined Δ 's
- > Which error propagation is the more correct ?

$$\begin{split} \Delta &= y_{tot} \cdot \delta \\ \Delta_{75} &= y_{[75,\infty[} \cdot (\delta_{[75,\infty[} \ominus \delta) \\ \Delta_{150} &= y_{[150,\infty[} \cdot (\delta_{[150,\infty[} \ominus \delta_{[75,\infty[}) \\ \Delta_{250} &= y_{[250,\infty[} \cdot (\delta_{[250,\infty[} \ominus \delta_{[150,\infty[}) \\ \Delta_{150J} &= y_{[150,\infty[\cup [\geq 1jet]} \\ & \cdot (\delta_{[150,\infty[\cup [\geq 1jet]} \ominus \delta_{[150,\infty[}) \\ \Delta_{250J} &= y_{[250,\infty[\cup [\geq 1jet]} \\ & \cdot (\delta_{[250,\infty[\cup [\geq 1jet]} \ominus \delta_{[250,\infty[}) \\ \end{split}$$

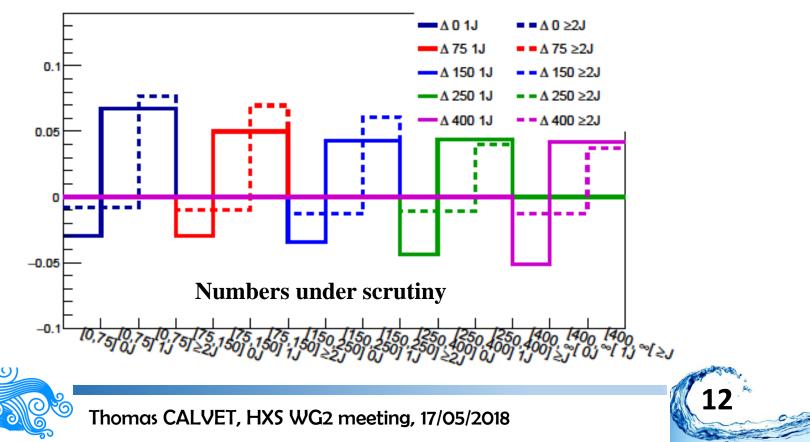
$$\begin{array}{ll} \Delta &= y_{tot} \cdot \delta \\ \Delta_{75} &= y_{[75,\infty[} \cdot (\delta_{[75,\infty[} \ominus \delta) \\ \Delta_{150} &= y_{[150,\infty[} \cdot (0.5) \cdot \delta_{[150,\infty[} \\ \Delta_{250} &= y_{[250,\infty[} \cdot (0.5) \cdot \delta_{[250,\infty[} \\ \Delta_{150J} &= y_{[150,\infty[} \cup [\geq 1jet] \\ & \cdot \left(\delta_{[150,\infty[} \cup [\geq 1jet] \ominus \delta_{[150,\infty[} \right) \\ \Delta_{250J} &= y_{[250,\infty[} \cup [\geq 1jet] \\ & \cdot \left(\delta_{[250,\infty[} \cup [\geq 1jet] \ominus \delta_{[250,\infty[} \right) \\ \end{array} \right) \end{array}$$

Result for the Δs

- Frank's proposal: if ill defined use 0.5*relative variation
 - > Applied also to sub-sequent Δ 's
- > Impact of Δ 's in the stage1++ bins:
 - > Showing here no add jet bin for $qq \rightarrow W^+(\ell v)H$
 - Other bins available \triangleright WpH_0J_pt_scale_unc WpH 0J Deltay 0.05 WpH_0J_Delta75 0.04 WpH_0J_Delta150 0.03 WpH_0J_Delta250 0.02 WpH 0J Delta400 0.01 Here impact of Δ_{250} is ~1.3% -0.01 If keep subtraction def ~0.7% 250-400 forward -0.02 75-150 0-75 150-250 >400 -0.03 FWD 0-75 GeV 75-150 GeV 150-250 GeV 250-400 GeV >400 GeV

Result for the Δs

- > Frank's proposal: if ill defined use 0.5*relative variation
 - > Applied also to sub-sequent Δ 's
- > Impact of Δ 's in the stage1++ bins:
 - > Showing here no add jet bin for $qq \rightarrow W^+(\ell v)H$
 - Other bins available



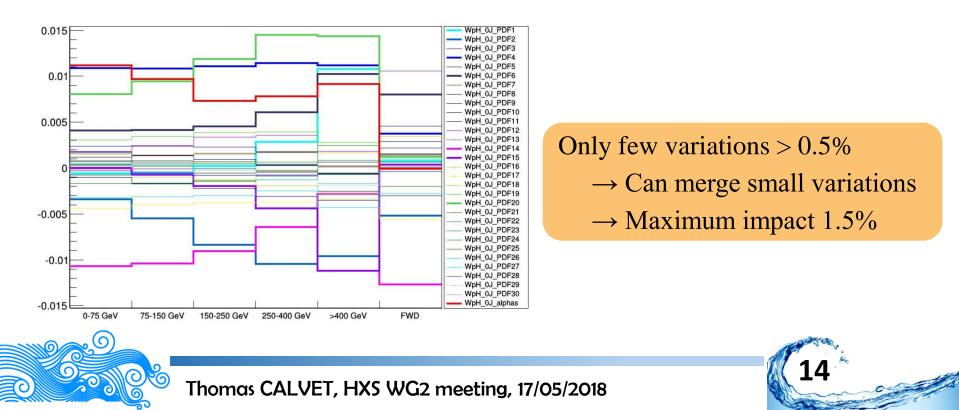
2 signal uncertainty sets left to discuss:

-> Scale -> PDF -> PS / UE

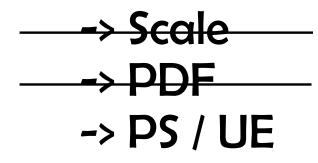
PDF uncertainties

- > Want to use the relative PDF variation in each stage1++ bin:
 - Use PDF4LHC_nlo_30_pdfas (click me) set
 - Compute variation w.r.t first weight
 - > Use yields per in each bin: $var[i] = \frac{y_pdf[i] y_pdf[0]}{y_pdf[0]} \forall i \in [1,30]$

> α_s uncertainty as average of up/down relative uncertainties on yields.

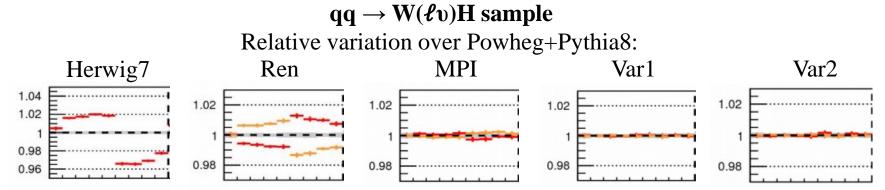


1 signal uncertainty set left to discuss:



Parton Shower / UE uncertainties

- Important source of uncertainty for EPS:
 - Acceptance uncertainty
- Estimated comparing different samples across STXS bins:
 - Powheg+Pythia8 (nom), Powheg+Herwig7, MPI up/down, Ren up/down, Var1 and Var2 up/down (primordial-kT and ISR-cutoff variations).



Binning: [foward] – [N(add jets)=0]x([0, 75] [75, 150] [150, 250] [250, ∞]) – [N(add jets)≥1]x([0, 75] [75, 150] [150, 250] [250, ∞])

Now talking of only 2-4% effects

 \rightarrow Main effect on N(jets)

Note: expect bigger impact from shape/acceptance

Conclusion

Conclusion

- First implementation of the stage 1++ scale uncertainties ~ready to go:
 - Calculation based on inclusive bin acceptances (y's) and their associated relative uncertainties (δ's)
 - > Still some tunable items: " δ -subtraction" and " δ *0.5"
 - > Final uncertainties Δ 's showing ~1 to 4% effects
- PDFs/alpha_S based on standard approach:
 - > Relative uncertainties on yields following recommendations
 - > Unc < 1.5% with $p_T(V)$ and N(jet) trends.
- PS/UE uncertainties:
 - Sample differences across the STXS bins
 - $> \sim 2/4\%$ with N(jet slope)
 - Still stage 1+ (don't expect new conclusions with 1++)

Q

Thank you for your attention

