Strong coupling determination with grooming

Vincent Theeuwes

Georg-August-University Göttingen

In Collaboration with:

Jeremy Baron and Simone Marzani [arXiv:1803.04719] and

Simone Marzani, Daniel Reichelt, Steffen Schumann, Gregory Soyez [in Progress]

HARPS Genoa, 31-10-2018

Jet substructure

- Many jet substructure techniques developed; Grooming and Tagging
- Created with the purpose of distinguishing signal from background
- Removes soft wide-angle radiation
- Can also help reduce non-perturbative corrections

mMDT & Soft drop

Main technique we will deal with is soft drop:

[Larkoski, Marzani, Soyez, Thaler; '14]

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} > z_c \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

or at e^+e^- colliders:

$$\frac{\min\left[E_i, E_j\right]}{E_i + E_j} > z_{\text{cut}} \left(1 - \cos \theta_{ij}\right)^{\beta/2}$$

Makes use of Cambridge/Aachen clustering. [Dokshitzer, Leder, Moretti, Webber; '97][Wobisch, Wengler; '99]

Reduces to modified Mass Drop Tagger (mMDT) for $\beta = 0$ [Dasgupta, Fregoso, Marzani, Salam; '13]

Need for resummation

For boosted jets, great separation of scales $p_T \gg m$ leads to large logarithms:

$$\log\left(\frac{m_J^2}{p_T^2 R^2}\right)$$

Large logarithms need to be resummed.

[Larkoski, Marzani, Soyez, Thaler; '14]

Reduction in NP corrections

[Larkoski, Marzani, Soyez, Thaler; '14]

Further work

- Computation of soft drop using SCET at NNLL accuracy approximated for $e_2^{(2)} \ll z_{cut}$ [Frye, Larkoski, Schwartz, Yan; '16]
- Calculation in dQCD including finite z_{cut} effects [Marzani, Schunk, Soyez; '17]
- Including jet radius resummation in SCET [Kang, Lee, Liu, Ringer; '18]
- Good agreement to experiments [CMS;'17] [ATLAS;'17]
- Application to top quark mass measurements [Hoang, Mantry, Pathak, Stewart;'17]
- And $\alpha_{\rm s}$ measurements at LHC [Les Houches;'18] and e^+e^- [Baron, Marzani, VT; '18]

The importance of α_s

- Jet physics of great importance to the LHC
- Higher order perturbative corrections shown to be important scale with higher powers of $\alpha_{\rm s}$
- Higgs boson production scales as $\alpha_{\rm s}^2$

An accurate measurement of $\alpha_{\rm s}$ is necessary for precession LHC measurements

$\alpha_{\rm s}$ Measurement

[Particle Data Group; 16]

NP contributions

[Abbate, Fickinger, Hoang, Mateu, Stewart; '10]

Thrust

$$\tau = 1 - T = \min_{\vec{n}} \left(1 - \frac{\sum_{i} |\vec{n} \cdot \vec{p}_{i}|}{\sum_{i} |\vec{p}_{i}|} \right)$$

Minimize for thrust axis \vec{n}

[Abbate, Fickinger, Hoang, Mateu, Stewart; '10]

SD Distribution

Hemisphere jets at an e^+e^- collider \rightarrow Different soft drop condition:

Alternative definition

- Separation into two jets at the hand of thrust axis pre-softdrop
- After softdrop each hemisphere will have its own axis
- Each thrust axis is the jet axis

$$T_{\mathsf{SD}}' = \frac{\sum_{i \in \mathcal{H}_{\mathsf{SD}}} |\vec{n_L} \cdot \vec{p_i}|}{\sum_{i \in \mathcal{E}_{\mathsf{SD}}} |\vec{p_i}|} + \frac{\sum_{i \in \mathcal{H}_{\mathsf{SD}}} |\vec{n_R} \cdot \vec{p_i}|}{\sum_{i \in \mathcal{E}_{\mathsf{SD}}} |\vec{p_i}|}$$

MC studies

Non-perturbative corrections above 10% around $\tau\simeq 0.07$

MC studies with soft drop

Non-perturbative corrections above 10% around $\tau \simeq 0.001$ Reduction in non perturbative corrections.

$z_{\rm cut} \& \beta$ values

Different values of β do not offer improvement

$z_{\rm cut} \& \beta$ values

Smaller values of z_{cut} offer more data in the relevant region with only a slight increase in non-perturbative corrections. For more observables [talk Jeremy Baron]

Factorization

Factorization for $au \ll z_{
m cut} \ll 1$ [Frye, Larkoski, Schwartz, Yan; '16]:

$$\frac{d\sigma}{d\tau} = H\left(Q\right) S_G\left(z_{\text{cut}},\beta\right) \left[S_C\left(\tau, z_{\text{cut}},\beta\right) \otimes J\left(\tau\right)\right]^2$$

Computed in Laplace space and inverted leading to:

$$\Sigma(\tau) = \left[1 + \left(\frac{\alpha_{\rm s}}{\pi}\right)C^{(1)} + \cdots\right] \exp\left[\frac{1}{\alpha_{\rm s}}g_1\left(-\lambda_{\tau},\lambda_{z_{\rm cut}}\right) + g_2\left(-\lambda_{\tau},\lambda_{z_{\rm cut}}\right) + \cdots\right]$$

for $\lambda_x = \alpha_{\rm s} b_0 \log x$ and confirmed using dQCD. With matching:

$$\tau \frac{d\sigma^{\rm LO+NLL'}}{d\tau} = \tau \frac{d\sigma^{\rm LO}}{d\tau} + \left[\tau \frac{d\sigma^{\rm NLL'}}{d\tau} - \tau \frac{d\sigma^{\rm NLL'|_{\rm LO}}}{d\tau}\right]$$

Analytic computation

Additional calculation for contributions where $\tau \sim z_{\rm cut}$ at NLL' accuracy:

$$\frac{\alpha_{\rm s}}{\pi} C_F \left(\beta + 2\right) {\rm Li}_2 \left[\frac{1}{2} \left(\frac{2\tau}{z_{\rm cut}} \right)^{\frac{2}{\beta+2}} \right]$$

Can be neglected for $\tau \ll z_{\rm cut}$, but offers a constant contribution near the transition point $\tau = z_{\rm cut}/2$.

Additional corrections for the end-point of the resummation and expansion.

Resummation results

- Expansion offers a good approximation for fixed order
- Transition corrections are important for thrust

Alternative observables

Other observables allow for a reduction in transition point effects.

Higher accuracy for fit

Some changes in the setup:

- Matching to NLO
- End point corrections from plain thrust applied over full range
- · Additional transition point effect from multiple emissions

$$\begin{split} \Sigma_{\rm res}|_{\tau > z_{\rm cut}/2} &= C \frac{e^{R(\tau) + \gamma_E R'(\tau)}}{\Gamma(1 - R'(\tau))} \exp\left[R'(\tau) \frac{z_{\rm cut}}{2\tau} {}_3F_2\left(1, 1, 1 + R'(\tau); 2, 2; \frac{z_{\rm cut}}{2\tau}\right)\right] \\ &\times \exp\left[\log\left(\frac{2\tau}{z_{\rm cut}}\right) \left\{R''(\tau) - R''(\tau = z_{\rm cut}/2, z_{\rm cut})\right\}\right] \end{split}$$

End point corrections

[Catani, Trentadue, Turnock, Webber;'93] [Jones, Ford, Salam, Stenzel, Wicke;'03] Modification of the logarithm:

$$\log(x_L\tau) \to -\frac{1}{p}\log\left(\frac{1}{(x_L\tau)^p} - \frac{1}{(x_L\tau_{\max})^p} + 1\right)$$

And Resummation:

$$\Sigma = C \exp \left[\tilde{R} \left(\tau \right) - \frac{\tau}{\tau_{\max}} \tilde{R}' \left(\tau \to \tau_{\max} \right) \log \bar{\tau} \right]$$

Ensures that $\frac{d\sigma}{d\tau}\left(\tau_{\mathrm{max}}\right)=0$ for resummation and expansion

Fitting setup

- Fit to ALEPH data for thrust [ALEPH;'04]
- Fit to MEPS@NLO 2-5j Sherpa result for soft drop [Schumann, Krauss;'07] [Gehrmann, Hoche, Krauss, Schonherr, Siegert;'12] Assume ALEPH uncertainty with $\sqrt{\sigma}$ scaling
- Minimization of chi-squared
- Neglect any correlation effects in chi-squared
- Using range $\tau \in [0.06, 0.25]$
- Experimental uncertainty at the hand of $\Delta\chi^2=1$
- Theoretical uncertainty based on 500 random variations:
 - Variation of μ_R and x_L with $1/2 < \mu_R x_L/Q < 2$
 - Variation of end-point \boldsymbol{p} variable 1 or 2
 - Switch between matching scheme: Multiplicative, additive and Multiplicative expanded out

Setup is similar to a combination of methods from

[Abbate, Fickinger, Hoang, Mateu, Stewart;'12] and [Gehrmann, Luisoni , Monni;'12]

Non-perturbative corrections

For the non-perturbative model use a shift in τ and $z_{\rm cut}$ from

[Dasgupta, Fregoso, Marzani, Salam;'13] [Marzani, Schunk, Soyez;'17]

- Shift in τ from non-perturbative emission within a cone defined by thrust
- Shift in $z_{\rm cut}$ from non-perturbative emission that reduces energy leading to it being groomed
- Both are computed in a $2 \rightarrow 2 + \mathrm{NP}$ with small τ limit configuration
- More detailed calculation can be performed as a better approximation

Variation of $z_{\rm cut}$ and β

Significant reduction in hadronization uncertainty and shift

NNLO corrections

[Marzani, Reichelt, Schumann, Soyez, VT; In Preparation]

Using NNLO corrections [Kardos, Somogyi, Trócsányi;'18] Reduction of uncertainty and stabilization for NLL corrections

Effect of smearing NP corrections

Smearing does not impact fit significantly at this accuracy, helps reduce uncertainty

Reduction of NP uncertainty

Significant reduction in correlation between $\alpha_{\rm s}$ and Ω

Fit using MC for hadronziation effects

If Parton level agrees well with resummation [talk Daniel Reichelt], can make use of hadronization model of Monte Carlo:

• Sherpa MEPS@NLO 2-3j results

[Schumann, Krauss;'07] [Gehrmann, Hoche, Krauss, Schonherr, Siegert;'12]

- Sherpa's Cluster model [Winter, Krauss, Soff;'03]
- Pythia's Lund string model in Sherpa [Sjostrand, Mrenna, Skands;'06]
- Uncertainty given by difference and value is average

For soft drop thrust with $z_{\rm cut} = 0.1$ and $\beta = 0$:

 $\alpha_{\rm s} = 0.1163 \pm 0.0008 (\exp) \pm 0.0030 (had) \pm 0.0042 (th)$

Compared to: $\alpha_{\rm s} = 0.1128 \pm 0.0007 (\exp) \pm 0.0006 (had) \pm 0.0038 (th)$

Other observables

This approach can also be applied to heavy hemisphere mass. There is tension for thrust and heavy hemisphere mass without grooming [Chien, Schwartz;'10]

For soft drop heavy hemisphere mass (for $\rho_+ \in [0.08, 0.18]$):

 $\alpha_{\rm s} = 0.1159 \pm 0.0060 (\exp) \pm 0.0011 (had) \pm 0.0036 (th)$

Compared to thrust: $\alpha_{\rm s} = 0.1163 \pm 0.0008 (\exp) \pm 0.0030 (had) \pm 0.0042 (th)$

Leading to a combined fit: $\alpha_{\rm s}=0.1160\pm0.0005(\exp)\pm0.0019({\rm had})\pm0.0039({\rm th})$

No tension in the two fits

Summary

Conclusions

- Soft drop can help reduce dependence on non-perturbative corrections for thrust
- Can help break degeneracy between non-perturbative contributions and $\alpha_{\rm s}$ in fit leading to significant reduction in hadronization uncertainty
- Can help reduce tension between different observables
- Higher order corrections can help further reduce uncertainty and increase stability

Future work

- Heavy hemisphere mass with non-perturbative shift
- More precise calculation of shift
- Potential use of ΔPS for other values of $z_{\rm cut}$ and β

Summary

Further future work

- Explore an increased fitting range
- Move to NNLL accuracy including transition point effects
- Analyze different types of observables
- Potential to simultaneously study two or more independent observables
- Hopefully one day a full measurement

Summary

Further future work

- Explore an increased fitting range
- Move to NNLL accuracy including transition point effects
- Analyze different types of observables
- Potential to simultaneously study two or more independent observables
- Hopefully one day a full measurement

Thank you for your attention

Comparison HL to fit

[Marzani, Reichelt, Schumann, Soyez, VT; In Preparation]

Comparison HL/PL to fit

[Marzani, Reichelt, Schumann, Soyez, VT; In Preparation]