

Soft-Drop event shapes

Talk by Jeremy Baron University at Buffalo October 31st, 2018

Soft-Drop event shapes

Talk by Jeremy Baron University at Buffalo October 31st, 2018

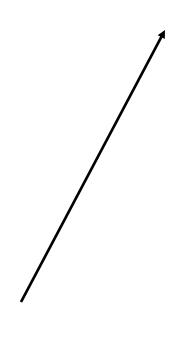
Soft-Drop event shapes

Talk by Jeremy Baron University at Buffalo October 31st, 2018

Outline

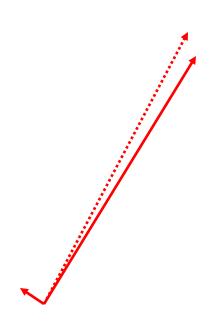
- Motivation
 - α_s extraction (see Vincent's talk)
 - Soft drop thrust
 - Bottom-up soft drop (BUSD)
- Fixed-order (EVENT2)
 - Other event shapes
 - Local BUSD vs Global BUSD
 - Modification of observables
- Monte Carlo (Pythia)
 - Reduction in NP effects

Introduction

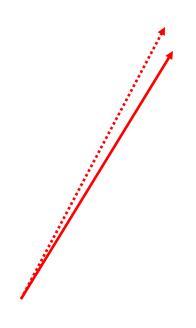

- Some α_s -extractions contaminated by N.P. effects
 - Often determined by event shapes from LEP
 - Results in tension with lattice QCD
- Soft drop useful for reduction of N.P. effects
 Invented and mostly used for LHC

Introduction

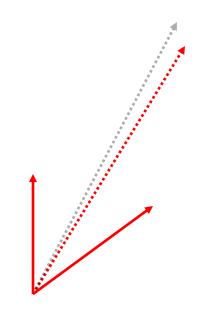
- Some α_s -extractions contaminated by N.P. effects
 - Often determined by event shapes from LEP
 - Results in tension with lattice QCD
- Soft drop useful for reduction of N.P. effects
 Invented and mostly used for LHC
- Is soft drop natural for event shapes?
 - Event shapes are event-wide parameters (global)
 - Soft drop is locally applied groomer
- Generalized grooming scheme for event shapes?
 Akin to CAESAR/ARES


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

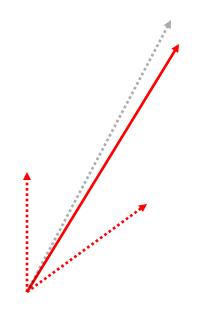
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Undo last step of clustering
- 2) Check Soft-Drop criterion
- 3) If fail, drop softer subjet and iterate
- 4) If pass, declare final jet and end


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Undo last step of clustering
- 2) Check Soft-Drop criterion
- 3) If fail, drop softer subjet and iterate
- 4) If pass, declare final jet and end


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Undo last step of clustering
- 2) Check Soft-Drop criterion
- 3) If fail, drop softer subjet and iterate
- 4) If pass, declare final jet and end


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Undo last step of clustering
- 2) Check Soft-Drop criterion
- 3) If fail, drop softer subjet and iterate
- 4) If pass, declare final jet and end

•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Undo last step of clustering
- 2) Check Soft-Drop criterion
- 3) If fail, drop softer subjet and iterate
- 4) If pass, declare final jet and end

Soft-Drop Thrust

• For an event *ε*, thrust is defined to be

$$T = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

• Soft-Drop thrust is defined as:

$$T_{\rm SD} = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon_{\rm SD}} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{\rm SD}} |\vec{p}_i|} \right)$$

Soft-Drop Thrust

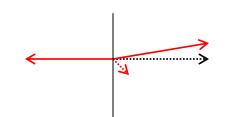
• For an event *ε*, thrust is defined to be

$$T = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

- Soft-Drop thrust is defined as:
 - 1. Calculate the the thrust axis
 - 2. Divide event into left/right hemispheres
 - 3. Apply soft-drop on each hemisphere separately
 - 4. The remaining particles constitute soft-dropped event ε_{SD}

$$T_{\rm SD} = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon_{\rm SD}} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{\rm SD}} |\vec{p}_i|} \right)$$

Soft-Drop Thrust (Redefined)


$$T_{\rm SD} = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon_{\rm SD}} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{\rm SD}} |\vec{p}_i|} \right)$$

Expect: T = 1 for 2-particle back-to-back event

• Small problem: consider 3-particle event..

- $q\bar{q}g$ with $E_g \ll E_q \approx E_{\bar{q}}$

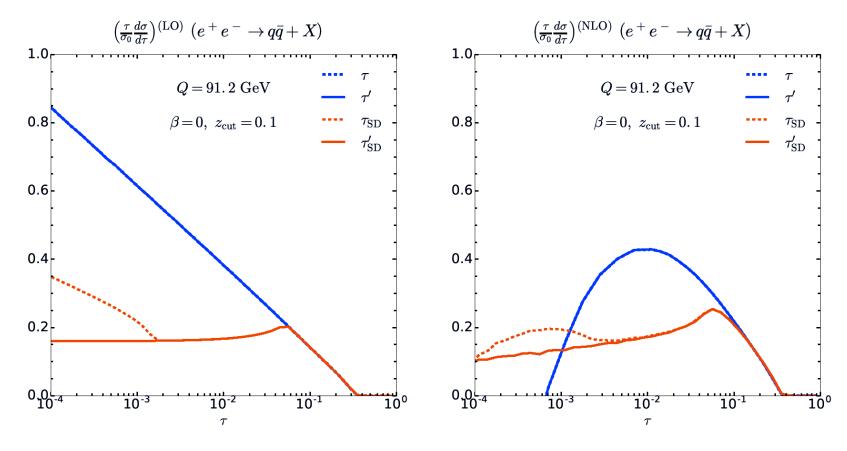
- E_g groomed away

Soft-Drop Thrust (Redefined)

$$T_{\rm SD} = \max_{\vec{n}} \left(\frac{\sum_{i \in \varepsilon_{\rm SD}} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{\rm SD}} |\vec{p}_i|} \right)$$

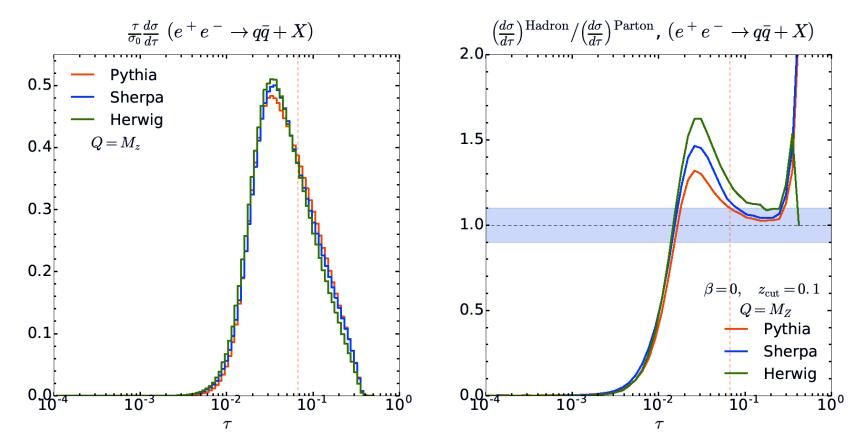
Expect: T = 1 for 2-particle back-to-back event

• Small problem: consider 3-particle event..

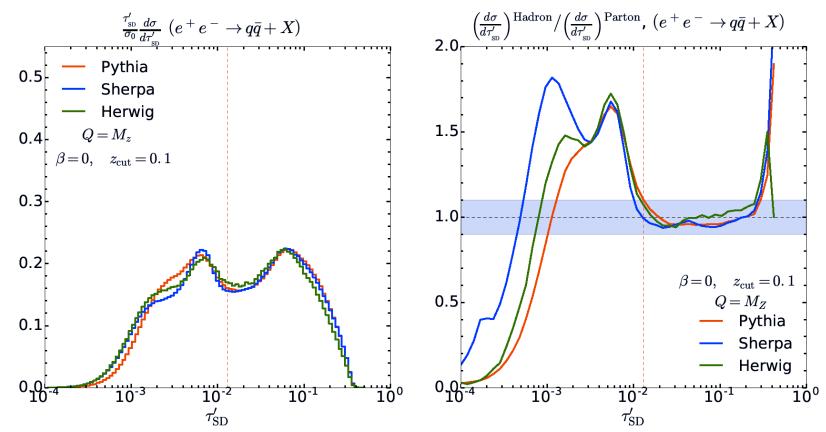

- $q\bar{q}g$ with $E_g \ll E_q \approx E_{\bar{q}}$

- E_g groomed away
- $T_{SD} \neq 1$ for remaining 2-particle event (bad!!!)
- Redefine:

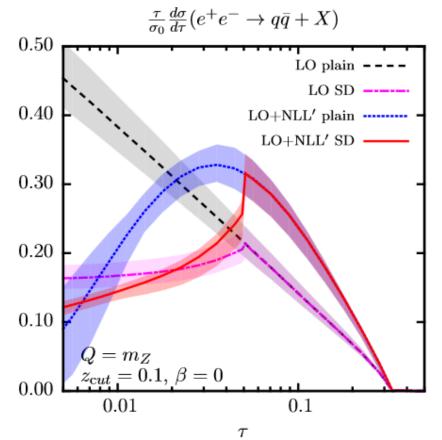
$$T_{\rm SD}' = \frac{\sum_{i \in \mathcal{H}_{\rm SD}^{\rm L}} |\vec{n}_L \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{SD}} |\vec{p}_i|} + \frac{\sum_{i \in \mathcal{H}_{\rm SD}^{\rm R}} |\vec{n}_R \cdot \vec{p}_i|}{\sum_{i \in \varepsilon_{SD}} |\vec{p}_i|}$$


- $\vec{n}_{\rm L}$ and $\vec{n}_{\rm R}$ are jet axes.
- $\mathcal{H}^L, \mathcal{H}^R$ are left and right hemispheres

Fixed Order

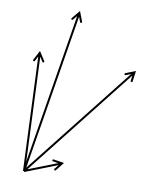

JB, Marzani, Theeuwes Soft Drop Thrust (2018)

Parton Shower

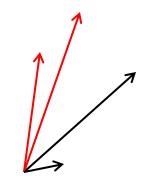

JB, Marzani, Theeuwes Soft Drop Thrust (2018)

Parton Shower

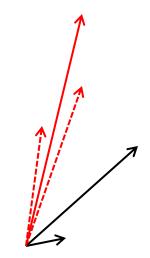
JB, Marzani, Theeuwes Soft Drop Thrust (2018)


Resummation+Matching

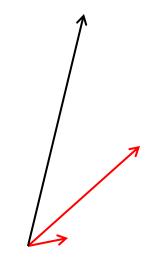
JB, Marzani, Theeuwes Soft Drop Thrust (2018)


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e$

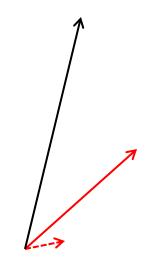
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e$

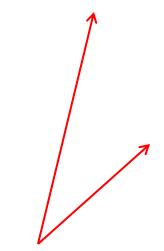
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^{-\beta/2}$

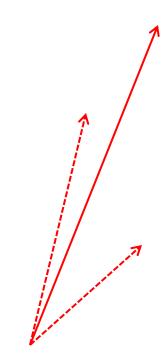
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > Z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^{-\beta/2}$

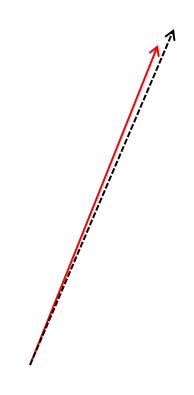
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > Z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e$

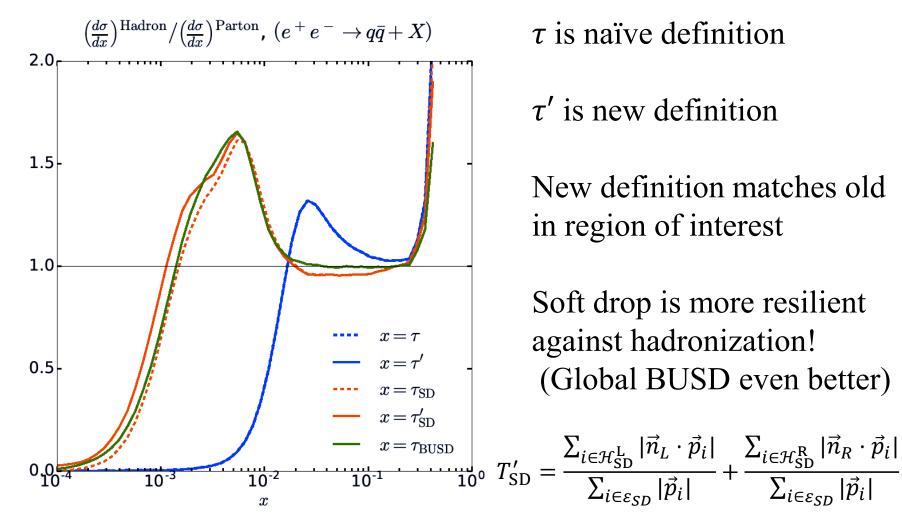
- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > Z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet


•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^{-\beta/2}$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet



•
$$\frac{\min(E_1, E_2)}{E_1 + E_2} > z_{\text{cut}} (1 - \cos(\theta_{12}))^{\beta/2}$$
 for $e^+ e^-$

- $\frac{\min(p_{T_1}, p_{T_2})}{p_{T_1} + p_{T_2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta} \qquad \text{for pp}$
- 1) Find closest pair of particles with C/A
- 2) Check Soft drop criterion
- 3) If fail, drop softer and iterate
- 4) If pass, combine particles and iterate
- 5) End with one final jet

Bottom-up soft drop thrust

Thrust

•
$$\tau = \min_{\vec{n}} \left(1 - \frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

Thrust, Jet broadening

•
$$\tau = \min_{\vec{n}} \left(1 - \frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

•
$$B = B_L + B_R = \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^L} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} + \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^R} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|}$$

Thrust, Jet broadening, C-parameter

•
$$\tau = \min_{\vec{n}} \left(1 - \frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

•
$$B = B_L + B_R = \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^L} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} + \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^R} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|}$$

•
$$C = 3 \frac{\sum_{i \le j \in \varepsilon} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_{i \in \varepsilon} |\vec{p}_i|)^2}$$

Thrust, Jet broadening, C-parameter, and heavy hemisphere jet mass

•
$$\tau = \min_{\vec{n}} \left(1 - \frac{\sum_{i \in \varepsilon} |\vec{n} \cdot \vec{p}_i|}{\sum_{i \in \varepsilon} |\vec{p}_i|} \right)$$

•
$$B = B_L + B_R = \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^L} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \mathcal{E}} |\vec{p}_i|} + \frac{1}{2} \frac{\sum_{i \in \mathcal{H}^R} |\vec{n} \times \vec{p}_i|}{\sum_{i \in \mathcal{E}} |\vec{p}_i|}$$

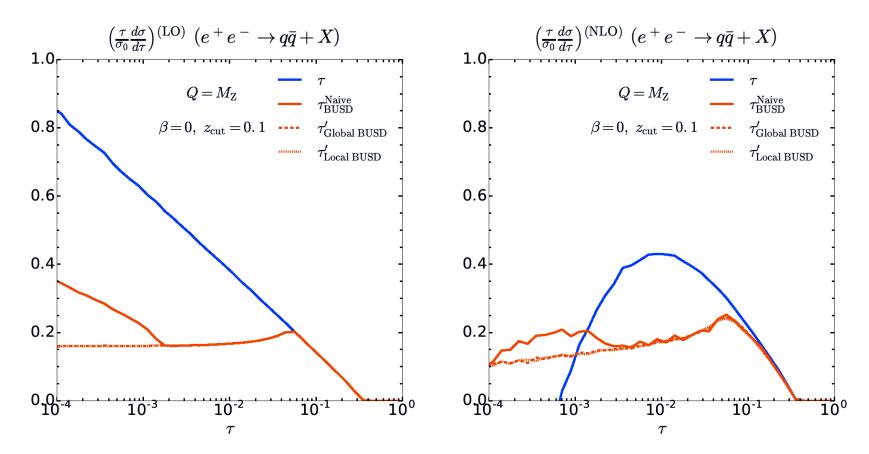
•
$$C = 3 \frac{\sum_{i \le j \in \varepsilon} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_{i \in \varepsilon} |\vec{p}_i|)^2}$$

•
$$\rho = \max(\rho_L, \rho_R); \quad \rho_i = \frac{m_i^2}{E_i^2}$$

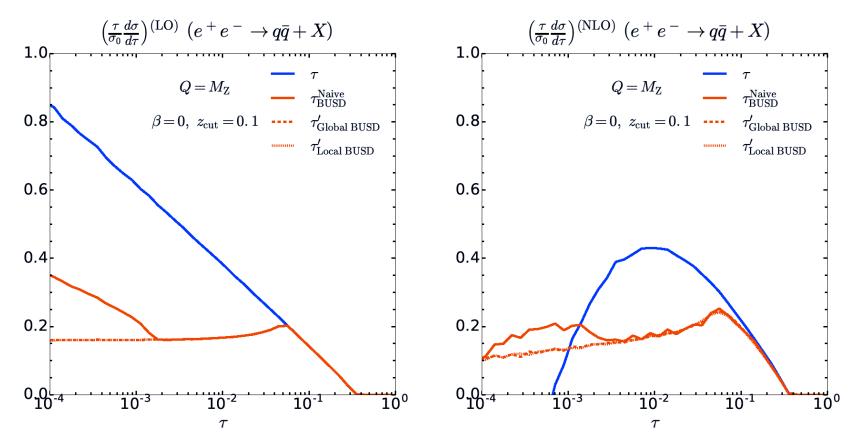
Local vs Global BUSD

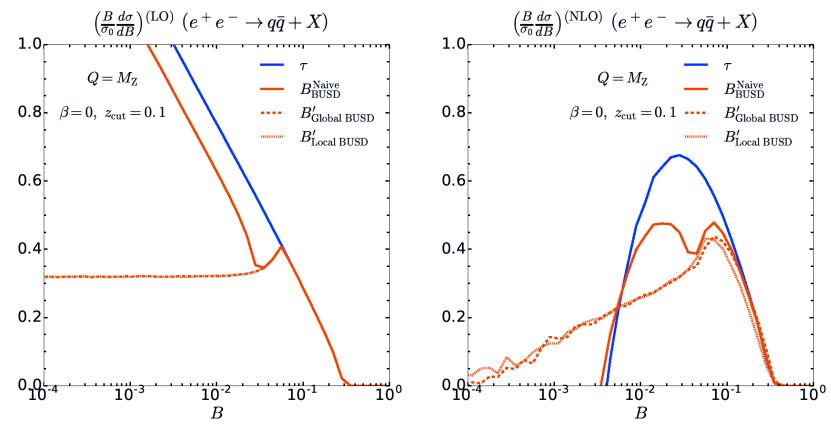
- Local BUSD clusters a single *jet* into one C/A tree
- Global BUSD clusters the entire *event* into one C/A tree

Local vs Global BUSD


- Local BUSD clusters a single *jet* into one C/A tree
- Global BUSD clusters the entire *event* into one C/A tree
- Split event shapes into two hemispheres
 Apply BUSD to each hemisphere independently (Local BUSD)
- Or: apply BUSD to entire event (Global BUSD)

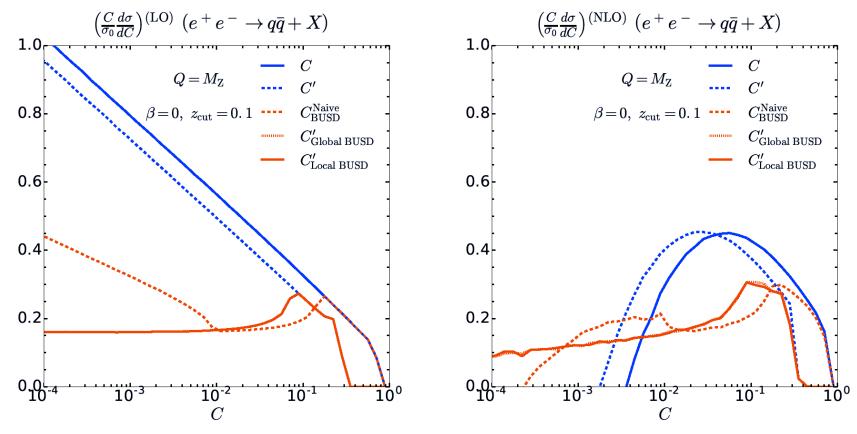
Local vs Global BUSD


- Local BUSD clusters a single *jet* into one C/A tree
- Global BUSD clusters the entire *event* into one C/A tree
- Split event shapes into two hemispheres
 Apply BUSD to each hemisphere independently (Local BUSD)
- Or: apply BUSD to entire event (Global BUSD)
- Local BUSD slightly more aggressive (at Fixed order)

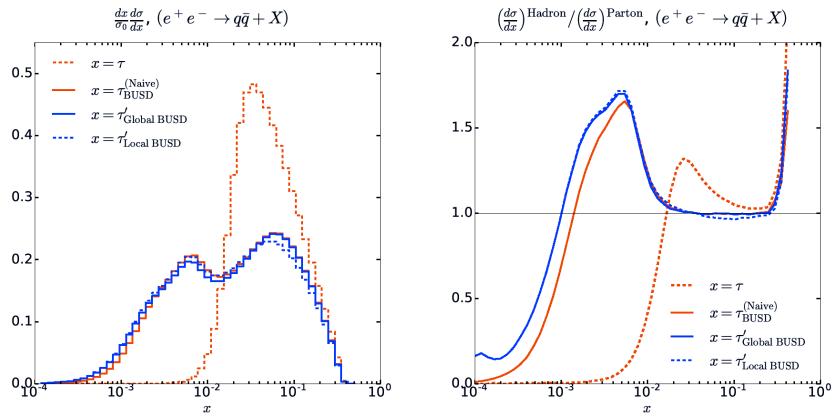

EVENT2

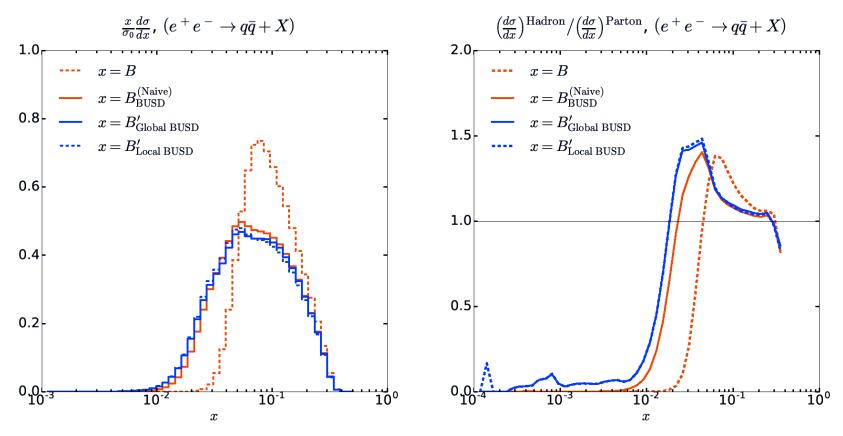

NB: Naïve BUSD is Global BUSD on old definition


- Single log expectance broken with BUSD
- Same fix as regular SD
- Local & Global BUSD perform very similarly!



- Single log expectance also broken with broadening
- Same fix as thrust
- Difference b/w Global & Local BUSD more pronounced

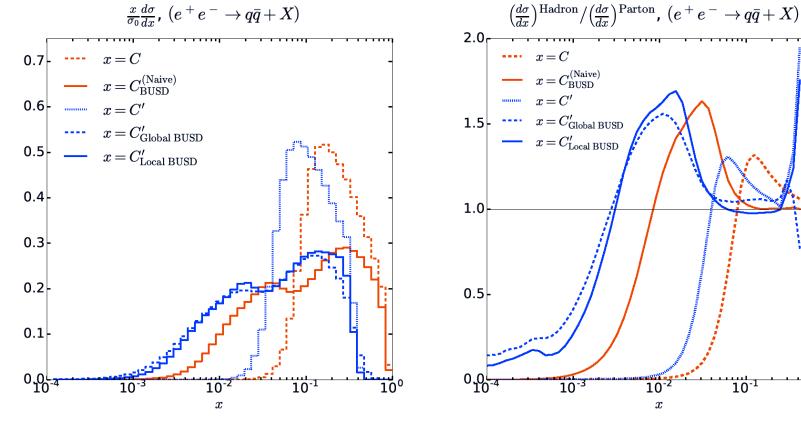

Single log expectance holds!


- Single log expectance broken with regular C
- Single log expectance holds with C'!
- ... but comes at price of extra kink in ungroomed C' ⊗

Pythia

Global BUSD performs better than Local BUSD

Pythia



- BUSD gives modest improvement
- Broadening in general not good with soft drop?

Local BUSD better than Global BUSD

Pythia

- C with naïve BUSD is best
- Local BUSD preferred for C'

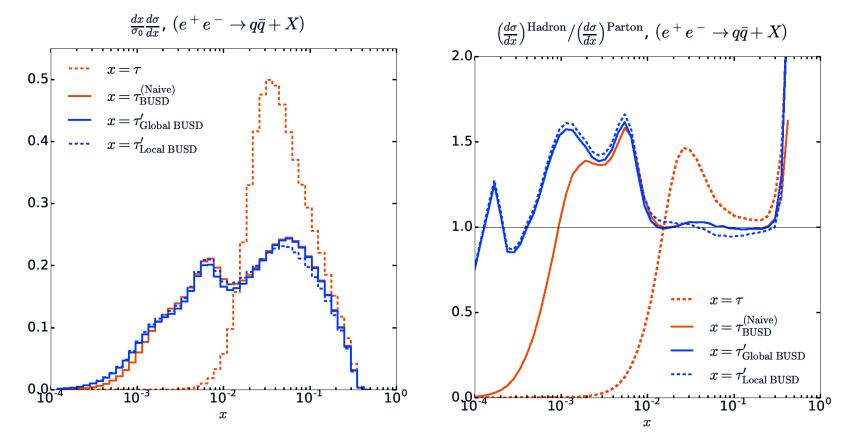
100

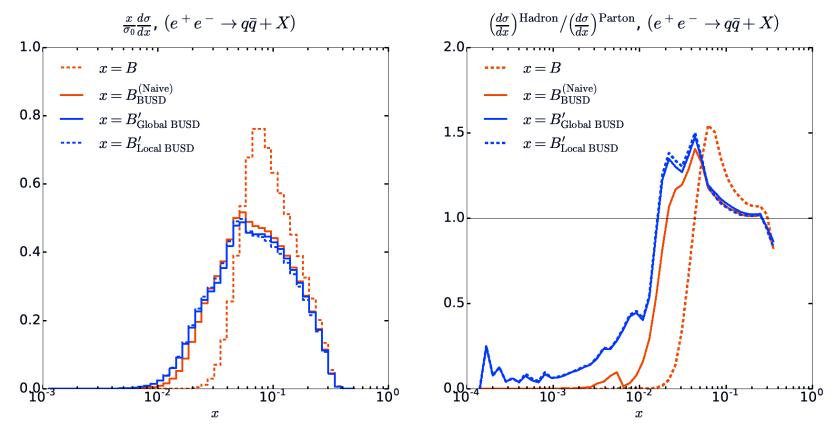
Conclusions

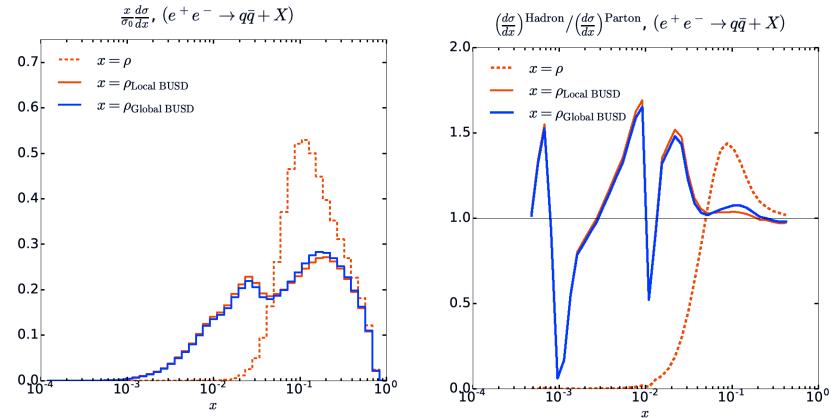
- Need a way to groom general event shapes
 - BUSD is a natural choice
 - Option to apply globally or locally
 - But which event shapes are best to use?

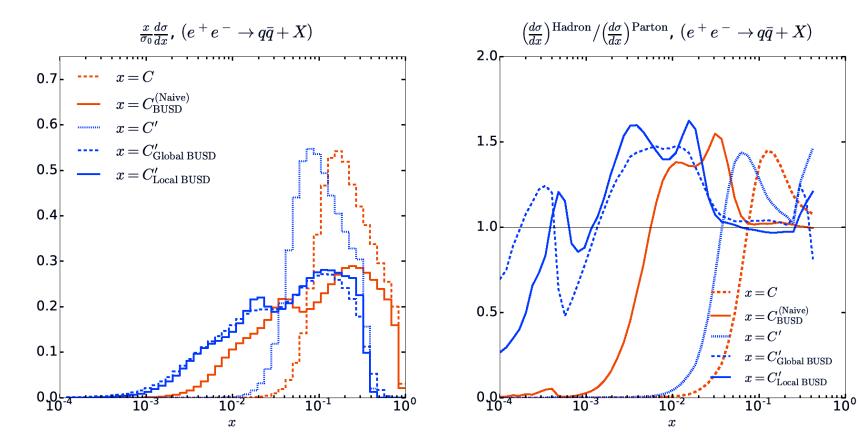
Conclusions

- Need a way to groom general event shapes
 - BUSD is a natural choice
 - Option to apply globally or locally
 - But which event shapes are best to use?
- Outlook:
 - Analytic understanding of F.O. needed (in the works)
 - More event shapes? (D-param, E-param, etc.)
 - Resummation? (CAESAR, ARES)


Conclusions


- Need a way to groom general event shapes
 - BUSD is a natural choice
 - Option to apply globally or locally
 - But which event shapes are best to use?
- Outlook:
 - Analytic understanding of F.O. needed (in the works)
 - More event shapes? (D-param, E-param, etc.)
 - Resummation? (CAESAR, ARES)


Thank you for your attention!!



Backup Slides

