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Introduction General Setup Results An application
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Figure 7: Transverse momentum of the Higgs boson (left) and of the first jet (right) for di↵erent evolution
variables and recoil schemes. See Sec. 2 for details and definition of the schemes.
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Figure 8: Transverse momentum of the Higgs boson in absence of jets with pT > 30 GeV (left) and
pT > 50 GeV (right) for di↵erent evolution variables and recoil schemes. See Sec. 2 for details
and definitions of the schemes.
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[Höche, Krauss, Schönherr 2014]

Large Resummation
uncertainty:

I Motivates work on showers
with better accuracy.

Analytical calculations:
I Higher accuracy calculations

exist.

Numerical (parton shower) side:

I Formally only lowest
approximation.

I Parton showers ”are better
than formally expected”:

F e.g. momentum
conservation

No straightforward comparison
possible.
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Introduction General Setup Results An application

In this talk:

I Build a toy shower that emulates NLL resummation exactly.
⇒ use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi

2004]

I Turn on different contributions step by step
⇒ finally recover full parton shower.

I Determine sizes of individual contributions.
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Introduction General Setup Results An application

Outline

1 General Setup

2 Results

3 An application
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Introduction General Setup Results An application

Start from qq̄ pair → look at observables vanishing in two jet limit.

Consider additive observable, i.e. in presence of several soft gluons (In
this talk ⇒ Thrust 1− T ):

V (k1, . . . , kn) =
n∑

i=1

V (ki )

October 29, 2018 D Reichelt (Göttingen University) HARPS, Genova 4 / 24



Introduction General Setup Results An application

CAESAR method in an nutshell:
I Parametrize observable in the presence of single emission

V (ki ) =
(

kT
Q

)a
e−blηl

I Look at cumulative distribution Σ(v) = 1/σ
∫ v

dv̄ dσ
dv̄

I For suitable observables ⇒ Σ(v) = e−RNLL(v)F(v)
I Define ξ = k2

T (1− z)−
2b
a+b → evolution variable, and write single

emission integral as

RNLL(v) = 2
∫ Q2

Q2v
2

a+b

dξ
ξ

[ ∫ 1

0
dz

αs

(
ξ(1−z)

2b
a+b

)
2π

2 CF

1−z Θ

(
ln (1−z)

2a
a+b

ξ/Q2

)
− αs (ξ)

π CFBq

]
I Evaluate αs in CMW scheme → cumulatively account for secondary

emissions from gluons ⇒ F (v) = limε→0 Fε (v),

Fε (v) = eR
′
NLL(v) ln ε

∞∑
m=0

1

m!

(
m∏
i=1

R ′NLL(v)

∫ 1

ε

dζi
ζi

)
Θ

(
1−

m∑
j=1

ζj

)
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Introduction General Setup Results An application

Parton Showers in a nutshell:
I No-branching probability, e.g. from collinear factorization of matrix

elements and unitarity: Π(t ′, t) = e−RPS (t,t′)

RPS(v) = 2
∫ Q2

Q2v
2

a+b

dξ
ξ

∫ zmax

zmin
dz

αs

(
ξ(1−z)

2b
a+b

)
2π CF

[
2

1−z − (1 + z)
]

Θ

(
ln (1−z)

2a
a+b

ξ/Q2

)
.

I ⇒ solve for new scale t ′ based on starting scale t, practically done by
Sudakov veto algorithm

I To be able to reproduce to analytic result:

F Evaluate αs in CMW scheme → secondary gluon splittings are
accounted for (for Observables considered here) → do not explicitly
generate them

F Analyse Σ in parton shower.
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Introduction General Setup Results An application

Σ(v) in the parton shower:
I Probability for all splittings leading to a value of the observable

considered less than v .

Σ (v) =

∫
t0

dt1 . . .

exp (−R(Q, t1))︸ ︷︷ ︸
No splitting

between Q and t1.

−∂t1R(Q, t1)︸ ︷︷ ︸
Splitting at t1.

exp (−R(t1, t0))︸ ︷︷ ︸
No splitting

between t1 and t0.

× θ

v − V (t1)︸ ︷︷ ︸
Value with splitting

at scale t1


+

∫
t0

dt1 dt2 P(Q, t1)P(t1, t2) exp (−R(t2, t0))

× θ (v − V (t1, t2)) + . . .

= exp (−R(Q, t0))

∫
t0

−∂t1R(Q, t1)θ (v − V (t1)) + . . .︸ ︷︷ ︸
Integral over all splittings

which lead to observable value less than v .
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Introduction General Setup Results An application

Parton Shower result:

Σ (v) =exp [−R(Q, t0)]
∞∑

m=0

1

m!

(
m∏
i=1

∫
dti
ti

R ′(ti )

)
Θ

v −
m∑
j=1

V (tj)



Analytic result:

Σ (v) =exp [−R (v)]F (v)

=
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Introduction General Setup Results An application

Σ (v) = exp

{
−
∫
v

dξ

ξ
R ′>v (ξ)−

∫ v

vmin

dξ

ξ
R ′<v (ξ)

}
×
∞∑

m=0

1

m!

(
m∏
i=1

∫
vmin

dξi
ξi

R ′<v (ξi )

)
Θ

(
v −

m∑
j=1

V (ξj)

)

R’≶v (ξ) =
α
≶v,soft
s

(
µ2
≶

)
π

∫ zmax
≶v,soft

zmin dz CF
1−z −

α
≶v,coll
s

(
µ2
≶v

)
π

∫ zmax
≶v,coll

zmin dz CF
1+z

2 .

Resummation Parton Shower Resummation Parton Shower

zmax
>v ,soft 1− (ξ/Q2)

a+b
2a zmax

>v ,coll 1 1− (ξ/Q2)
a+b
2a

µ2
>v ,soft ξ(1− z)

2b
a+b µ2

>v ,coll ξ ξ(1− z)
2b
a+b

α>v ,soft
s 2-loop CMW α>v ,coll

s 1-loop 2-loop CMW

zmax
<v ,soft 1− v

1
a 1− (ξ/Q2)

a+b
2a zmax

<v ,coll 0 1− (ξ/Q2)
a+b
2a

µ2
<v ,soft Q2v

2
a+b (1− z)

2b
a+b ξ(1− z)

2b
a+b µ2

<v ,coll n.a. ξ(1− z)
2b
a+b

α<v ,soft
s 1-loop 2-loop CMW α<v ,coll

s n.a. 2-loop CMW
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Introduction General Setup Results An application

Validation: Making all choices
resummation-like in the parton
shower reproduces
resummation.

Analytic NLL ǫ → 0
Shower ǫ = 0.001
Shower ǫ = 0.01
Shower ǫ = 0.1

10−1

1

P
(1

−
T

<
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-3
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D
ev
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ti

on
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3

Analytic NLL ǫ = 0.01

D
ev
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ti

on
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log10(v)
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on
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Introduction General Setup Results An application

Validation: In the soft limit the
showers reduce to the universal
form expected from the
analytic calculation.

Analytic

Resummation Shower

DGLAP Shower

CS Shower
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R
a
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Introduction General Setup Results An application
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1 General Setup

2 Results

3 An application
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Introduction General Setup Results An application

Analytic NLL ǫ → 0
Shower ǫ = 0.00001
z(1 − z) > k2

T/Q2

same plus µ2 = k2
T

Shower ǫ = 0.00001
z(1 − z) > k2

T/Q2, η > 0
same plus µ2 = k2

T

0

0.2

0.4

0.6

0.8

Thrust variable 1 − T.

1 σ
dσ dτ

-3 -2.5 -2 -1.5 -1 -0.5 0

0.6

0.8

1

1.2

1.4

τ

R
at

io

choose zmin/max as in PS → momentum conservation

do phase space sectorization as in PS → zcollmax

additionally, we are now free to choose µ2 = k2
T everywhere
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Introduction General Setup Results An application

Treatment of αs (Cumulative):

Analytic NLL ǫ → 0
Shower ǫ = 0.001
2-loop only (> v, soft)
Shower ǫ = 0.001
1-loop CMW (> v, soft)

10−1

1

P
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−
T

<
v)

-2 -1.5 -1 -0.5 0
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1.4

log10(v)

R
at

io

Analytic NLL ǫ → 0
Shower ǫ = 0.001
2-loop (< v, soft)
2-loop CMW (< v, soft)
Shower ǫ = 0.001
2-loop CMW

10−1
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P
(1

−
T

<
v)
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0.6
0.7
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log10(v)

R
at

io

Left: Not using CMW and not using 2-Loop running.

Right: Not using CMW and not using 2-Loop running.
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Introduction General Setup Results An application

Treatment of αs (Differential):

Analytic NLL ǫ → 0
Shower ǫ = 0.00001
2-loop only (> v, soft)
Shower ǫ = 0.00001
1-loop CMW (> v, soft)
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Left: Not using CMW and not using 2-Loop running.

Right: Not using CMW and not using 2-Loop running.
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Introduction General Setup Results An application

Analytic NLL → 0
unitary Shower ǫ = 0.001
z(1 − z) > k2

T/Q2, η > 0
v from 4-momenta
soft kT & z definition
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Analytic NLL ǫ → 0
unitary Shower ǫ = 0.00001
z(1 − z) > k2

T/Q2, η > 0
v from 4-momenta
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io

added effect of all variations so far

calculate v from four momenta, rather than from soft approximation
(→ recoil)
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Introduction General Setup Results An application

DGLAP kT ordered
DGLAP ξ1−T ordered
Dipole kT ordered
incl. gluon splitting
Dipole kT ordered
NLL
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DGLAP ξ1−T ordered
Dipole kT ordered
incl. gluon splitting
Dipole kT ordered
Analytic NLL ǫ → 0
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compare to dipole showers
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Introduction General Setup Results An application

Understanding hadronization corrections for analytic calculations

Motivation:
I Applications of soft drop groomed observables in phenomenology

[Larkoski, Marzani, Soyez, Thaler 2014]

I e.g. soft-drop thrust [Baron, Marzani, Theeuwes]

I Usual findings: greatly reduces dependence on non-perturbative physics
modelling

I However: usually relying on MC parton level/hadron level comparison
→ the parton level input in analytic calculations can be very different
from the shower

I Naive analytic models/parametrizations of hadronization not working
for soft drop groomed observables
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Introduction General Setup Results An application

Soft Drop in e+e− → jets
(→ see also talks by Vincent and Jeremy):

I recluster jet/hemisphere into
two jets (usually using C/A)

I check if

min[Ei , Ej ]

Ei + Ej
> zcut

(
1− cos Θij

)β/2

I if not, disregard softer jet,
repeat

here: zcut = 0.1, β = 0.
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Figure: Sherpa with (HL) and without (PL) hadronization
effects taken into account.

Analytic hadronization model:
I Cumulative distribution Σ convoluted with function F parametrizing

non-perturbative effects.
I e.g. F (k) = 4k/Ω2 exp(−2k/Ω)
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Introduction General Setup Results An application

In phenomenological relevant region: momentum conservation gives
most relevant contribution

use this to extract perturbative ∆PS
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Introduction General Setup Results An application

If we understand the perturbative difference we can use the
hadronization models interchangeably
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[Plot by Vincent Theeuwes]
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Introduction General Setup Results An application

Outlook:
I Realistic calculation: (at least) matching to NLO
I Need to understand ∆PS at this level, or establish it is small
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[Plots by Vincent Theeuwes]
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Introduction General Setup Results An application

Summary:

I Constructed parton shower exactly emulating NLL resummation.

I Used to determine numerical size of individual contributions.

I Interpretation: inherent uncertainty in resummation and parton shower.

I Use this to understand how to consistently deduce hadronization
corrections from MC for soft drop groomed observables.
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