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Large Resummation
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» Motivates work on showers
with better accuracy.
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» Motivates work on showers
with better accuracy.
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@ Analytical calculations:
» Higher accuracy calculations
exist.

@ Numerical (parton shower) side:

» Formally only lowest
approximation.
» Parton showers "are better
than formally expected”:
* e.g. momentum
conservation

@ No straightforward comparison
possible.
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Introduction General Setup Results An application

@ In this talk:

» Build a toy shower that emulates NLL resummation exactly.
= use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi
2004]
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Introduction General Setup Results An application

@ In this talk:

» Build a toy shower that emulates NLL resummation exactly.
= use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi
2004]

» Turn on different contributions step by step
= finally recover full parton shower.

» Determine sizes of individual contributions.
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Introduction General Setup Results An application

@ Start from gg pair — look at observables vanishing in two jet limit.

e Consider additive observable, i.e. in presence of several soft gluons (In
this talk = Thrust 1 — T):

V(ki, ... kn) =Y V(ki)
i=1
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@ CAESAR method in an nutshell:

» Parametrize observable in the presence of single emission
a
k —
V(ki) = (6) e bm



Introduction General Setup Results An application

@ CAESAR method in an nutshell:

» Parametrize observable in the presence of single emission
a
_ (& —b
\/(k’.) — (6) e bim

» Look at cumulative distribution (v) = 1/c [* dv 92
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Introduction General Setup Results An application

o CAESAR method in an nutshell:
» Parametrize observable in the presence of single emission
V(ki) = (%)2 e bmi
» Look at cumulative distribution (v) = 1/c [* dv 92
» For suitable observables = ¥ (v) = e_RNLL(")]-'( )
» Define ¢ = k2 (1 - z)_% — evolution variable, and write single
emission integral as

Ryee(v —2f02%’* {

25 22
fol dz as (5(12;2) +b) %@(h (IE/Z()Q;H)) _ as7(r§) CFBq:|
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o CAESAR method in an nutshell:
» Parametrize observable in the presence of single emission
V(ki) = (%)2 e bmi
» Look at cumulative distribution (v) = 1/c [* dv 92
» For suitable observables = ¥ (v) = e_RNLL(")]-'( )
» Define ¢ = k2 (1 - z)_% — evolution variable, and write single
emission integral as

2b 2a
€(1-2)7b ) a
Ruwi(v) = 2fQ2va+b 3 {fo ool (‘277) ) ifg@(ln Yo b) o CFBq]

» Evaluate ag in CMW scheme — cumulatively account for secondary
emissions from gluons = F (v) = limc_,0 F¢ (v),

Fe(v) = efwn(V)ine Z (H RuL( V)/ dC,) @<1 - é(j)

m=0
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Introduction General Setup Results An application

@ Parton Showers in a nutshell:

» No-branching probability, e.g. from collinear factorization of matrix
elements and unitarity: T(t/,t) = e~ Res(t:t)

& 2a
? Zmax as|&(1—z)ath e
Res(v) = 2[5, 2, € S dz % Cr [1%2 —(1+ z)] @(In %) .

Zmin
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@ Parton Showers in a nutshell:
» No-branching probability, e.g. from collinear factorization of matrix
elements and unitarity: N(t/,t) = e~ Res(®:)

Rps(v) = 2fQ2 % fzmax dz M Cr [L —(1+ Z)] @(In (1—z)aTab) .

2\,34% Zmin 2 1-z £/Q?
» = solve for new scale t’ based on starting scale t, practically done by
Sudakov veto algorithm
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elements and unitarity: T(t/,t) = e~ Res(t:t)

Rps(v) = 2fQ2 % fzmax dz M Cr [L —(1+ Z)] @(In (1—z)aTab) .

2, 375 Zmin 27 -z T/
» = solve for new scale t’ based on starting scale t, practically done by
Sudakov veto algorithm
» To be able to reproduce to analytic result:

* Evaluate as in CMW scheme — secondary gluon splittings are
accounted for (for Observables considered here) — do not explicitly
generate them
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Introduction General Setup Results An application

@ Parton Showers in a nutshell:
» No-branching probability, e.g. from collinear factorization of matrix

elements and unitarity: T1(¢', t) = e~ Res(t:t)
26 2a
? Zmax as(§(1—z)ath _2)atB
RPS(V):ZIQ % f dzwcf_ [?22_(1+Z)] e(ln (15/()3;1:) )

2,525 Zmin
» = solve for new scale t’ based on starting scale t, practically done by
Sudakov veto algorithm
» To be able to reproduce to analytic result:
* Evaluate as in CMW scheme — secondary gluon splittings are
accounted for (for Observables considered here) — do not explicitly

generate them

* Analyse X in parton shower.
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Introduction General Setup Results An application

@ Y (v) in the parton shower:

» Probability for all splittings leading to a value of the observable
considered less than v.

Z(v):/tdtl...
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Introduction General Setup Results An application

@ Y (v) in the parton shower:

» Probability for all splittings leading to a value of the observable
considered less than v.

/dt1 exp (—R(Q, 1)) +

No splitting
between @ and t;.
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@ Y (v) in the parton shower:

» Probability for all splittings leading to a value of the observable
considered less than v.

Z(V) :/t dtl exp(—R(Q,tl)) —ath(Q,t]_) exp(—R(tl,to))—i—...

No splitting Splitting at ;. No splitting
between @ and t;. between t; and tg.
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Introduction General Setup Results An application

@ Y (v) in the parton shower:

» Probability for all splittings leading to a value of the observable
considered less than v.

Z(v):/t dts exp (—R(Q, 1)) —0uR(Q, t1) exp (—R(#1, 1))

No splitting Splitting at t;. No splitting
between Q and t;. between t; and tg.

x0|v— V(t) +...
~——
Value with splitting
at scale t;
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Z(v):/t dts exp (—R(Q, 1)) —0uR(Q, t1) exp (—R(#1, 1))

No splitting Splitting at t;. No splitting
between Q and t;. between t; and tg.
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——

Value with splitting
at scale t;

+/ dty dit, P(Q, t1)P(t1, t2) exp (—R(t2, tp))

to

><9(V—V(t1,t2))+...
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Introduction General Setup Results An application

@ Y (v) in the parton shower:

» Probability for all splittings leading to a value of the observable
considered less than v.

= / dty exp (~R(Q, 11)) —0, R(Q, t1) exp (~R(t1, 10))

No splitting Splitting at t;. No splitting
between Q and t;. between t; and tg.

X0 |v— V(tl)
~——
Value with splitting
at scale t;

n / dty dty P(Q, t1)P(t1, ) exp (—R(", 1))

to
X9(V— tl,tz

=exp(—R(Q / -0y, R(Q,t1)0 (v — V(t1)) + ..

Integral over all splittings
which lead to observable value less than v.
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Introduction General Setup Results An application

@ Parton Shower result:

() =0 K@ I H/‘“’ ofv-3 v

j=1
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Introduction General Setup Results An application

@ Parton Shower result:

Y (v) =exp[-R(Q, to ]Z (H/dt:

@ Analytic result:

X (v) =exp[-R (V)] F (v)
=exp [-R (v)+R'(v)In¢€]

x> % <HR (v)/
m=0 " \i=1
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@ Parton Shower result:

5 (v) =exp [ R(Q. to)lz (H / iR ) ( Zwm)
j=1

@ Analytic result:

T (v) =exp[=R (V)17 (v)
=exp [-R (v) +R'(v)In¢€]

S (fleo [ €)o (- £4)

m=0 i=1
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Introduction General Setup Results An application
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Introduction General Setup Results An application
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Introduction General Setup Results An application

Thrust variable 1 — T.

B 08—
s |-

06—

04 [~ .
= — AnalyticNLL e — 0
C Shower € = 0.00001

02— z(1-2) > kZT/Q
L same plus y° = B
r Shower € = 0.00001

o

z2(1-2) > K/Q45 >0
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e
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Ratio
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[}

@ choose Zyip/max as in PS — momentum conservation

@ do phase space sectorization as in PS — z5/

e additionally, we are now free to choose i = k2T everywhere
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Introduction General Setup Results An application

e Treatment of as (Cumulative):

P(1-T <o)

Ratio

—— Analytic NLL ¢ = 0

—+— Shower € = 0.001
2-loop only (> v, soft)

~—+— Shower e = 0.001
1-loop CMW (> 9, soft)

P(1-T <)

—— Analytic NLL ¢ = 0
Shower € = 0.001
2-loop (< v, soft)

o —+— Shower ¢ = 0.001
2-loop CMW

—+— 2-loop CMW (< v, soft)

Ratio

o 9 ¢
SN

o Lot 11

logyo(v)

T

o Left: Not using CMW and not using 2-Loop running.

@ Right: Not using CMW and not using 2-Loop running.
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Introduction General Setup Results An application

e Treatment of as (Differential):
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o Left: Not using CMW and not using 2-Loop running.

@ Right: Not using CMW and not using 2-Loop running.
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Introduction General Setup Results An application

Thrust variable 1 — T.

— ——— ——— ——— ——— e -
B 35 osh
B 1f . [
- f E o6 [
& F B L
] 04—
—+— Analytic NLL — 0 i [
—+— unitary Shower € = 0.001 0n

z(1-2) > K/Q% >0 “F —— Analytic NLL e — 0
107! —+— o from 4-momenta [ — unitary Shower e = 0.00001,

~—+— soft kr & z definition 2(1-2)>KB/Q% >0

—— o from 4-momenta
e b b b by
8|

I

-2.5 -2 -1.5 -1 -0.5 o

Ratio
o9 Q0 9on
a4 o o

Ratio

& e

@ added effect of all variations so far

@ calculate v from four momenta, rather than from soft approximation
(— recoil)
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Introduction General Setup Results An application

P(1-T <o)

Ratio
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Thrust variable 1 — T.

~+— DGLAP kr ordered
DGLAP §_r ordered

—+— Dipole kr ordered
incl. gluon splitting
Dipole kr ordered

1do
Tdr

08
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~—— DGLAP &,_; ordered

—— Dipole ky ordered
incl. gluon splitting
Dipole ky ordered
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= E 4

=] P | P = B b b b b bvw iy

2 5 B o5 o 3 25 2 5 o o5
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@ compare to dipole showers
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Introduction General Setup Results An application

@ Understanding hadronization corrections for analytic calculations

@ Motivation:

>

Applications of soft drop groomed observables in phenomenology
[Larkoski, Marzani, Soyez, Thaler 2014]
e.g. soft-drop thrust [Baron, Marzani, Theeuwes]

Usual findings: greatly reduces dependence on non-perturbative physics
modelling

However: usually relying on MC parton level /hadron level comparison
— the parton level input in analytic calculations can be very different
from the shower

Naive analytic models/parametrizations of hadronization not working
for soft drop groomed observables
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Introduction General Setup Results An application

@ Soft Drop in eTe™ — jets T T i
(— see also talks by Vincent and Jeremy): ' DTt
» recluster jet/hemisphere into :
two jets (usually using C/A) e
» check if i
. e b b b e b b
%HEJEJ] > zeut (1— cos@,'/-)B/2 ;_é i% M
EY
» if not, disregard softer jet, 88 Floc bbb b
repeat
@ here: zoyt = 0.1, B =0. Figure: Sherpa with (HL) and without (PL) hadronization

effects taken into account.

@ Analytic hadronization model:

» Cumulative distribution ¥ convoluted with function F parametrizing
non-perturbative effects.
> eg. F(k) = 4k/Q%exp(—2k/Q)
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Introduction General Setup Results An application

@ In phenomenological relevant region: momentum conservation gives
most relevant contribution
@ use this to extract perturbative APS
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Introduction General Setup Results An application

o If we understand the perturbative difference we can

hadronization models interchangeably
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Introduction General Setup Results An application

o Outlook:

» Realistic calculation: (at least) matching to NLO
» Need to understand APS at this level, or establish it is small
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Introduction General Setup Results An application

@ Summary:

» Constructed parton shower exactly emulating NLL resummation.
» Used to determine numerical size of individual contributions.
> Interpretation: inherent uncertainty in resummation and parton shower.

» Use this to understand how to consistently deduce hadronization
corrections from MC for soft drop groomed observables.
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