Comparing parton showers and NLL resummation

Daniel Reichelt Work done in collaboration with Stefan Höche and Frank Siegert, [arXiv:1711.03497]

October 31, 2018 High Accuracy Resummation and Parton Showers, Genova

Higgs boson transverse momentum

[Höche, Krauss, Schönherr 2014]

Higgs boson transverse momentum

[Höche, Krauss, Schönherr 2014]

Large Resummation uncertainty:

 Motivates work on showers with better accuracy.

Higgs boson transverse momentum

- Analytical calculations:
 - Higher accuracy calculations exist.

[Höche, Krauss, Schönherr 2014]

Large Resummation uncertainty:

 Motivates work on showers with better accuracy.

[Höche, Krauss, Schönherr 2014]

Large Resummation uncertainty:

 Motivates work on showers with better accuracy. • Analytical calculations:

- Higher accuracy calculations exist.
- Numerical (parton shower) side:
 - Formally only lowest approximation.
 - Parton showers "are better than formally expected":
 - ★ e.g. momentum conservation

[Höche, Krauss, Schönherr 2014]

Large Resummation uncertainty:

 Motivates work on showers with better accuracy. • Analytical calculations:

- Higher accuracy calculations exist.
- Numerical (parton shower) side:
 - Formally only lowest approximation.
 - Parton showers "are better than formally expected":
 - e.g. momentum conservation
- No straightforward comparison possible.

• In this talk:

- In this talk:
 - ▶ Build a toy shower that emulates NLL resummation exactly. ⇒ use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi 2004]

- In this talk:
 - ▶ Build a toy shower that emulates NLL resummation exactly. ⇒ use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi 2004]
 - ► Turn on different contributions step by step ⇒ finally recover full parton shower.

- In this talk:
 - ▶ Build a toy shower that emulates NLL resummation exactly. ⇒ use semi-analytic CAESAR method as reference. [Banfi, Salam, Zanderighi 2004]
 - ► Turn on different contributions step by step ⇒ finally recover full parton shower.
 - Determine sizes of individual contributions.

Outline

- Start from $q \bar{q}$ pair ightarrow look at observables vanishing in two jet limit.
- Consider additive observable, i.e. in presence of several soft gluons (In this talk \Rightarrow Thrust 1 T):

$$V(k_1,\ldots,k_n)=\sum_{i=1}^n V(k_i)$$

- CAESAR method in an nutshell:
 - Parametrize observable in the presence of single emission $V(k_i) = \left(\frac{k_T}{Q}\right)^a e^{-b_i \eta_i}$

- CAESAR method in an nutshell:
 - Parametrize observable in the presence of single emission $V(k_i) = \left(\frac{k_T}{Q}\right)^a e^{-b_i \eta_i}$
 - Look at cumulative distribution $\Sigma(v) = 1/\sigma \int^v d\bar{v} \frac{d\sigma}{d\bar{v}}$

- CAESAR method in an nutshell:
 - Parametrize observable in the presence of single emission $V(k_i) = \left(\frac{k_T}{Q}\right)^a e^{-b_i \eta_i}$
 - Look at cumulative distribution $\Sigma(v) = 1/\sigma \int^v d\bar{v} \frac{d\sigma}{d\bar{v}}$
 - For suitable observables $\Rightarrow \Sigma(v) = e^{-R_{NLL}(v)} \mathcal{F}(v)$

• CAESAR method in an nutshell:

- Parametrize observable in the presence of single emission $V(k_i) = \left(\frac{k_T}{Q}\right)^a e^{-b_i \eta_i}$
- Look at cumulative distribution $\Sigma(v) = 1/\sigma \int^v d\bar{v} \frac{d\sigma}{d\bar{v}}$
- For suitable observables $\Rightarrow \Sigma(v) = e^{-R_{NLL}(v)} \mathcal{F}(v)$
- Define $\xi = k_T^2 (1-z)^{-\frac{2b}{a+b}} \rightarrow \text{evolution variable, and write single emission integral as}$

$$\mathsf{R}_{NLL}(v) = 2 \int_{Q^2 v}^{Q^2} \frac{d\xi}{\xi} \left[\int_0^1 dz \; \frac{\alpha_s \left(\xi (1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \frac{2 C_F}{1-z} \Theta\left(\ln \frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2} \right) - \frac{\alpha_s(\xi)}{\pi} C_F B_q \right]$$

• CAESAR method in an nutshell:

- Parametrize observable in the presence of single emission $V(k_i) = \left(\frac{k_T}{Q}\right)^a e^{-b_i \eta_i}$
- Look at cumulative distribution $\Sigma(v) = 1/\sigma \int^v d\bar{v} \frac{d\sigma}{d\bar{v}}$
- For suitable observables $\Rightarrow \Sigma(v) = e^{-R_{NLL}(v)} \mathcal{F}(v)$
- Define $\xi = k_T^2 (1-z)^{-\frac{2b}{a+b}} \rightarrow$ evolution variable, and write single emission integral as

$$\mathsf{R}_{NLL}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \left[\int_0^1 dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \frac{2C_F}{1-z} \Theta\left(\ln \frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2} \right) - \frac{\alpha_s(\xi)}{\pi} C_F B_q \right]$$

Evaluate α_s in CMW scheme → cumulatively account for secondary emissions from gluons ⇒ F (v) = lim_{ϵ→0} F_ϵ (v),

$$\mathcal{F}_{\epsilon}(\mathbf{v}) = e^{R'_{\mathrm{NLL}}(\mathbf{v})\ln\epsilon} \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^{m} R'_{\mathrm{NLL}}(\mathbf{v}) \int_{\epsilon}^{1} \frac{d\zeta_{i}}{\zeta_{i}} \right) \Theta\left(1 - \sum_{j=1}^{m} \zeta_{j}\right)$$

- Parton Showers in a nutshell:
 - ► No-branching probability, e.g. from collinear factorization of matrix elements and unitarity: $\Pi(t', t) = e^{-R_{PS}(t,t')}$

$$\mathsf{R}_{PS}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\min}}^{z_{\max}} dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \, \mathcal{C}_F\left[\frac{2}{1-z} - (1+z)\right] \, \Theta\left(\ln \frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2}\right)$$

- Parton Showers in a nutshell:
 - ► No-branching probability, e.g. from collinear factorization of matrix elements and unitarity: $\Pi(t', t) = e^{-R_{PS}(t,t')}$

$$\mathsf{R}_{PS}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\min}}^{z_{\max}} dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \, C_F\left[\frac{2}{1-z} - (1+z)\right] \, \Theta\left(\ln\frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2}\right)$$

► ⇒ solve for new scale t' based on starting scale t, practically done by Sudakov veto algorithm

- Parton Showers in a nutshell:
 - ► No-branching probability, e.g. from collinear factorization of matrix elements and unitarity: $\Pi(t', t) = e^{-R_{PS}(t,t')}$

$$\mathsf{R}_{PS}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\min}}^{z_{\max}} dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \, C_F\left[\frac{2}{1-z} - (1+z)\right] \, \Theta\left(\ln\frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2}\right)$$

- ► ⇒ solve for new scale t' based on starting scale t, practically done by Sudakov veto algorithm
- To be able to reproduce to analytic result:

- Parton Showers in a nutshell:
 - ► No-branching probability, e.g. from collinear factorization of matrix elements and unitarity: $\Pi(t', t) = e^{-R_{PS}(t,t')}$

$$\mathsf{R}_{PS}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\min}}^{z_{\max}} dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \, C_F\left[\frac{2}{1-z} - (1+z)\right] \, \Theta\left(\ln\frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2}\right)$$

- ► ⇒ solve for new scale t' based on starting scale t, practically done by Sudakov veto algorithm
- To be able to reproduce to analytic result:
 - ★ Evaluate α_s in CMW scheme \rightarrow secondary gluon splittings are accounted for (for Observables considered here) \rightarrow do not explicitly generate them

- Parton Showers in a nutshell:
 - ► No-branching probability, e.g. from collinear factorization of matrix elements and unitarity: $\Pi(t', t) = e^{-R_{PS}(t,t')}$

$$\mathsf{R}_{PS}(v) = 2 \int_{Q^2 v^{\frac{2}{a+b}}}^{Q^2} \frac{d\xi}{\xi} \int_{z_{\min}}^{z_{\max}} dz \; \frac{\alpha_s \left(\xi(1-z)^{\frac{2b}{a+b}}\right)}{2\pi} \, C_F\left[\frac{2}{1-z} - (1+z)\right] \, \Theta\left(\ln\frac{(1-z)^{\frac{2a}{a+b}}}{\xi/Q^2}\right)$$

- ► ⇒ solve for new scale t' based on starting scale t, practically done by Sudakov veto algorithm
- To be able to reproduce to analytic result:
 - ★ Evaluate α_s in CMW scheme \rightarrow secondary gluon splittings are accounted for (for Observables considered here) \rightarrow do not explicitly generate them
 - ★ Analyse Σ in parton shower.

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\Sigma(v) = \int_{t_0} dt_1 \dots$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\Sigma(v) = \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q, t_1)\right)}_{\text{No splitting}} + \dots$$

between Q and t_1 .

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\Sigma(v) = \int_{t_0} dt_1 \underbrace{\exp(-R(Q, t_1))}_{\text{No splitting}} \underbrace{-\partial_{t_1}R(Q, t_1)}_{\text{Splitting at } t_1.} + \dots$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\Sigma(v) = \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q, t_1)\right)}_{\substack{\text{No splitting} \\ \text{between } Q \text{ and } t_1.}} \underbrace{-\partial_{t_1}R(Q, t_1)}_{\text{Splitting at } t_1.} \underbrace{\exp\left(-R(t_1, t_0)\right)}_{\substack{\text{No splitting} \\ \text{between } t_1 \text{ and } t_0.}}$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\begin{split} \Sigma\left(v\right) &= \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q,t_1)\right)}_{\text{No splitting between } Q \text{ and } t_1.} \underbrace{-\partial_{t_1}R(Q,t_1)}_{\text{Splitting at } t_1.} \underbrace{\exp\left(-R(t_1,t_0)\right)}_{\text{No splitting between } t_1 \text{ and } t_0.} \\ &\times \theta\left(v - \underbrace{V(t_1)}_{\text{Value with splitting at scale } t_1}\right) + \dots \end{split}$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\begin{split} \Sigma\left(\nu\right) &= \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q,t_1)\right)}_{\substack{\text{No splitting} \\ \text{between } Q \text{ and } t_1.}} \underbrace{-\partial_{t_1}R(Q,t_1)}_{\substack{\text{Splitting at } t_1.}} \underbrace{\exp\left(-R(t_1,t_0)\right)}_{\substack{\text{No splitting} \\ \text{between } t_1 \text{ and } t_0.}} \\ &\times \theta\left(\nu - \underbrace{V(t_1)}_{\substack{\text{Value with splitting} \\ \text{at scale } t_1}}}\right) \\ &+ \int_{t_0} dt_1 \, dt_2 \, P(Q,t_1) P(t_1,t_2) \exp\left(-R(t_2,t_0)\right) \\ &\times \theta\left(\nu - V(t_1,t_2)\right) + \dots \end{split}$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\begin{split} \Sigma(v) &= \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q, t_1)\right)}_{\substack{\text{No splitting} \\ \text{between } Q \text{ and } t_1.}} \underbrace{-\partial_{t_1}R(Q, t_1)}_{\substack{\text{Splitting at } t_1.}} \underbrace{\exp\left(-R(t_1, t_0)\right)}_{\substack{\text{No splitting} \\ \text{between } t_1 \text{ and } t_0.}} \\ &\times \theta \left(v - \underbrace{V(t_1)}_{\substack{\text{Value with splitting} \\ \text{at scale } t_1}} \right) \\ &+ \int_{t_0} dt_1 \, dt_2 \, P(Q, t_1) P(t_1, t_2) \exp\left(-R(t_2, t_0)\right) \\ &\times \theta \left(v - V(t_1, t_2)\right) + \dots \end{split}$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\begin{split} \Sigma(v) &= \int_{t_0} dt_1 \underbrace{\exp\left(-R(Q, t_1)\right)}_{\substack{\text{No splitting} \\ \text{between } Q \text{ and } t_1.}} \underbrace{-\partial_{t_1}R(Q, t_1)}_{\substack{\text{Splitting at } t_1.}} \underbrace{\exp\left(-R(t_1, t_0)\right)}_{\substack{\text{No splitting} \\ \text{between } t_1 \text{ and } t_0.}} \\ &\times \theta \left(v - \underbrace{V(t_1)}_{\substack{\text{Value with splitting} \\ \text{at scale } t_1}} \right) \\ &+ \int_{t_0} dt_1 \, dt_2 \, P(Q, t_1) P(t_1, t_2) \exp\left(-R(t_2, t_0)\right) \\ &\times \theta \left(v - V(t_1, t_2)\right) + \dots \end{split}$$

- $\Sigma(v)$ in the parton shower:
 - Probability for all splittings leading to a value of the observable considered less than v.

$$\Sigma(\mathbf{v}) = \int_{t_0} dt_1 \underbrace{\exp\left(-R(\mathbf{Q}, t_1)\right)}_{\text{No splitting}} \underbrace{-\partial_{t_1}R(\mathbf{Q}, t_1)}_{\text{Splitting at } t_1.} \underbrace{\exp\left(-R(t_1, t_0)\right)}_{\text{No splitting}} \\ \times \theta \left(\mathbf{v} - \underbrace{V(t_1)}_{\text{Value with splitting}} \right) \\ + \int_{t_0} dt_1 dt_2 P(\mathbf{Q}, t_1) P(t_1, t_2) \exp\left(-R(t_2, t_0)\right) \\ \times \theta \left(\mathbf{v} - V(t_1, t_2)\right) + \dots \\ = \exp\left(-R(\mathbf{Q}, t_0)\right) \underbrace{\int_{t_0} -\partial_{t_1}R(\mathbf{Q}, t_1)\theta\left(\mathbf{v} - V(t_1)\right) + \dots}_{\text{No splitting}}$$

• Parton Shower result:

$$\Sigma(v) = \exp\left[-R(Q, t_0)\right] \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^m \int \frac{dt_i}{t_i} R'(t_i)\right) \Theta\left(v - \sum_{j=1}^m V(t_j)\right)$$

• Parton Shower result:

$$\Sigma(v) = \exp\left[-R(Q, t_0)\right] \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^m \int \frac{dt_i}{t_i} R'(t_i)\right) \Theta\left(v - \sum_{j=1}^m V(t_j)\right)$$

• Analytic result:

$$\Sigma(\mathbf{v}) = \exp\left[-R(\mathbf{v})\right] \mathcal{F}(\mathbf{v})$$

= exp [-R(\mathbf{v}) + R'(\mathbf{v}) ln \epsilon]
$$\times \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^{m} R'(\mathbf{v}) \int_{\epsilon} \frac{d\zeta_i}{\zeta_i}\right) \Theta\left(1 - \sum_{j=1}^{m} \zeta_j\right)$$

• Parton Shower result:

$$\boldsymbol{\Sigma}(\boldsymbol{v}) = \exp\left[-\boldsymbol{R}(\boldsymbol{Q}, t_0)\right] \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^m \int \frac{dt_i}{t_i} \boldsymbol{R}'(t_i)\right) \Theta\left(\boldsymbol{v} - \sum_{j=1}^m \boldsymbol{V}(t_j)\right)$$

• Analytic result:

$$\Sigma(\mathbf{v}) = \exp\left[-R(\mathbf{v})\right]\mathcal{F}(\mathbf{v})$$

= $\exp\left[-R(\mathbf{v}) + R'(\mathbf{v})\ln\epsilon\right]$
 $\times \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^{m} R'(\mathbf{v}) \int_{\epsilon} \frac{d\zeta_i}{\zeta_i}\right) \Theta\left(1 - \sum_{j=1}^{m} \zeta_j\right)$

$$\Sigma(\mathbf{v}) = \exp\left\{-\int_{\mathbf{v}} \frac{d\xi}{\xi} R'_{>\mathbf{v}}(\xi) - \int_{\mathbf{v}_{\min}}^{\mathbf{v}} \frac{d\xi}{\xi} R'_{<\mathbf{v}}(\xi)\right\}$$
$$\times \sum_{m=0}^{\infty} \frac{1}{m!} \left(\prod_{i=1}^{m} \int_{\mathbf{v}_{\min}} \frac{d\xi_i}{\xi_i} R'_{<\mathbf{v}}(\xi_i)\right) \Theta\left(\mathbf{v} - \sum_{j=1}^{m} V(\xi_j)\right)$$
$$(\mathbf{v}) = \frac{\alpha_s^{\leq \mathbf{v}, \text{soft}}(\mu_s^2)}{\epsilon_s^{\leq \mathbf{v}, \text{soft}}} \int_{\mathbf{v}_{\infty}} \frac{\alpha_s^{\leq \mathbf{v}, \text{coll}}(\mu_s^2)}{\epsilon_s^{\leq \mathbf{v}, \text{coll}}} \int_{\mathbf{v}_{\infty}} \frac{\alpha_s^{< \mathbf{v}, \text{coll}}(\mu_s^2)}{\epsilon_s^{\leq \mathbf{v}, \text{coll}}} \int_{\mathbf{$$

$$\mathsf{R}'_{\leq \nu}(\xi) = \frac{\alpha_s^{\leq \nu, \text{soft}}(\mu_{\leq}^2)}{\pi} \int_{z^{\min}}^{z_{\leq \nu, \text{soft}}^{\max}} dz \, \frac{C_{\mathrm{F}}}{1-z} - \frac{\alpha_s^{\leq \nu, \text{coll}}(\mu_{\leq \nu}^2)}{\pi} \int_{z^{\min}}^{z_{\leq \nu, \text{coll}}^{\max}} dz \, C_{\mathrm{F}} \frac{1+z}{2} \, .$$

	Resummation	Parton Shower		Resummation	Parton Shower
$z_{>v,soft}^{max}$	$1-(\xi/Q^2)^{rac{a+b}{2a}}$		$z_{>v,coll}^{max}$	1	$1-(\xi/Q^2)^{rac{a+b}{2a}}$
$\mu^2_{>v,\text{soft}}$	$\xi(1-z)^{rac{2b}{a+b}}$		$\mu^2_{>v,\text{coll}}$	ξ	$\xi(1-z)^{\frac{2b}{a+b}}$
$\alpha_s^{>v,\text{soft}}$	2-loop CMW		$\alpha_s^{>v,\text{coll}}$	1-loop	2-loop CMW
$z_{$	$1 - v^{\frac{1}{a}}$	$1-(\xi/Q^2)^{rac{a+b}{2a}}$	$z_{$	0	$1 - (\xi/Q^2)^{\frac{a+b}{2a}}$
$\mu^2_{$	$Q^2 v^{\frac{2}{a+b}} (1-z)^{\frac{2b}{a+b}}$	$\xi(1-z)^{rac{2b}{a+b}}$	$\mu^2_{<\mathbf{v},\mathrm{coll}}$	n.a.	$\xi(1-z)^{\frac{2b}{a+b}}$
$\alpha_s^{<\mathbf{v},\mathrm{soft}}$	1-loop	2-loop CMW	$\alpha_s^{<\mathbf{v},\mathrm{coll}}$	n.a.	2-loop CMW

• Validation: Making all choices resummation-like in the parton shower reproduces resummation.

 Validation: In the soft limit the showers reduce to the universal form expected from the analytic calculation.

Outline

- choose $z_{min/max}$ as in PS \rightarrow momentum conservation
- do phase space sectorization as in PS $\rightarrow z_{max}^{coll}$
- additionally, we are now free to choose $\mu^2 = k_T^2$ everywhere

• Treatment of α_s (Cumulative):

- Left: Not using CMW and not using 2-Loop running.
- Right: Not using CMW and not using 2-Loop running.

```
• Treatment of \alpha_s (Differential):
```


- Left: Not using CMW and not using 2-Loop running.
- Right: Not using CMW and not using 2-Loop running.

- added effect of all variations so far
- calculate v from four momenta, rather than from soft approximation (\rightarrow recoil)

• compare to dipole showers

Outline

- Understanding hadronization corrections for analytic calculations
- Motivation:
 - Applications of soft drop groomed observables in phenomenology [Larkoski, Marzani, Soyez, Thaler 2014]
 - e.g. soft-drop thrust [Baron, Marzani, Theeuwes]
 - Usual findings: greatly reduces dependence on non-perturbative physics modelling
 - ► However: usually relying on MC parton level/hadron level comparison → the parton level input in analytic calculations can be very different from the shower
 - Naive analytic models/parametrizations of hadronization not working for soft drop groomed observables

- Soft Drop in $e^+e^-
 ightarrow \mathrm{jets}$
 - (\rightarrow see also talks by Vincent and Jeremy):
 - recluster jet/hemisphere into two jets (usually using C/A)
 - check if

$$\frac{\min[E_i, E_j]}{E_i + E_j} > z_{\text{cut}} \left(1 - \cos \Theta_{ij}\right)^{\beta/2}$$

 if not, disregard softer jet, repeat

• here: $z_{cut} = 0.1, \beta = 0.$

Figure: Sherpa with (HL) and without (PL) hadronization effects taken into account.

- Analytic hadronization model:
 - Cumulative distribution Σ convoluted with function F parametrizing non-perturbative effects.

• e.g.
$$F(k) = 4k/\Omega^2 \exp(-2k/\Omega)$$

- In phenomenological relevant region: momentum conservation gives most relevant contribution
- use this to extract perturbative ΔPS

• If we understand the perturbative difference we can use the hadronization models interchangeably

[Plot by Vincent Theeuwes]

October 29, 2018 | D Reichelt (Göttingen University) | HARPS, Genova

- Outlook:
 - Realistic calculation: (at least) matching to NLO
 - \blacktriangleright Need to understand $\Delta \mathrm{PS}$ at this level, or establish it is small

• Summary:

- ► Constructed parton shower *exactly* emulating NLL resummation.
- ► Used to determine *numerical* size of individual contributions.
- ► Interpretation: inherent uncertainty in resummation and parton shower.
- Use this to understand how to consistently deduce hadronization corrections from MC for soft drop groomed observables.