

# Logarithmic accuracy of parton showers 

Pier Francesco Monni CERN<br>1805.09327<br>in collaboration with<br>M. Dasgupta, F. A. Dreyer, K. Hamilton, G. P. Salam

HARPS meeting - Genova, 30 October 2018

- Percentage of ATLAS+CMS+LHCb papers citing a given article since Jan '14 (w/o self citations)

- Percentage of ATLAS+CMS+LHCb papers citing a given article since Jan '14 (w/o self citations)


Parton Showers are central to the LHC programme: realistic event simulations
Used in essentially all event generators

## Resummations vs. Parton Showers

- Both frameworks provide an all-order calculation for collider observables
- Several differences in the way this is formulated
, The higher logarithmic accuracy of current resummations comes with a lower versatility
RESUMMATIONS PARTON SHOWERS


## Resummations vs. Parton Showers

- Both frameworks provide an all-order calculation for collider observables
- Several differences in the way this is formulated
- The higher logarithmic accuracy of current resummations comes with a lower versatility



## Resummations vs. Parton Showers

- Both frameworks provide an all-order calculation for collider observables
- Several differences in the way this is formulated
- The higher logarithmic accuracy of current resummations comes with a lower versatility


## RESUMMATIONS

## PARTON SHOWERS

## Treatment of radiation

Observable dependence

- Several simplifications: amplitudes, phase space, observable
- All calculations derived in the on-shell/ singular limit (only logarithms)
- Tailored to the observable, e.g. global vs. non-global, specific approximations in each case
- Full momentum conservation necessary (e.g. initial condition for hadronisation)
- Radiation is described fully exclusively. Provide full set of final-state momenta
- A simple shower should be accurate for a broad family of observables at once


## Resummations vs. Parton Showers

- Both frameworks provide an all-order calculation for collider observables
- Several differences in the way this is formulated
- The higher logarithmic accuracy of current resummations comes with a lower versatility


## RESUMMATIONS

PARTON SHOWERS

## Treatment of radiation

Observable dependence

Logarithmic Accuracy

- Several simplifications: amplitudes, phase space, observable
- All calculations derived in the on-shell/ singular limit (only logarithms)
- Tailored to the observable, e.g. global vs. non-global, specific approximations in each case
- Higher logarithmic orders achieved thanks to the above simplifications in the formulation
- Radiation is described fully exclusively. Provide full set of final-state momenta
- Full momentum conservation necessary (e.g. initial condition for hadronisation)
- A simple shower should be accurate for a broad family of observables at once
- Currently unknown. The goal of this talk is to initiate a formal study of this point


## NLL resummation

- To understand (and ultimately improve) the logarithmic accuracy of PS, crucial to build a systematic connection to resummation
- Use the technology of numerical resummations to approach the problem

```
e.g. e+e- -> q qbar + X at NLL
```



$$
d P_{n} \simeq \frac{1}{n!} \prod_{i=1}^{n} \frac{\alpha_{s}}{\pi} \frac{d \omega_{i}}{\omega_{i}} \frac{d^{2} \Omega}{4 \pi} N_{c} \sum_{\pi_{n}} \frac{p_{1} \cdot p_{2}}{\left(p_{1} \cdot k_{i_{1}}\right)\left(k_{i_{1}} \cdot k_{i_{2}}\right) \ldots\left(k_{i_{n}} \cdot p_{2}\right)}
$$

* soft wide angle limit described by a shower of soft colour dipoles strongly ordered in energy


## Parton Showers

- Main defining features (at least for LO showers)

1. Ordering variable: generate emissions in sequence according to a kinematic variable $v$ (e.g. $k_{t}$, angle, virtuality).
2. Branching probability: state $S_{n}$ with $n$ partons at a given $v$ found with a probability $P\left(S_{n}, v\right)$

- This probability evolves with the ordering variable as

$$
\frac{d P\left(S_{n}, v\right)}{d \ln 1 / v}=-f\left(S_{n}, v\right) P\left(S_{n}, v\right)
$$

This evolution equation accounts for real and virtual corrections (unitarity)
3. Kinematic mapping: state $S_{n+1}$ obtained from a state $S_{n}$ via a mapping $\mathcal{M}\left(S_{n} \rightarrow S_{n+1} ; v\right)$
$\Rightarrow$ Is a function of all partons involved in the branching. It defines how the recoil is absorbed by other partons in the event. E.g. for a local recoil scheme

$$
S_{n+1}=\mathcal{M}(S_{n}, v ; \underbrace{i, j}_{\text {emitters }}, \underbrace{z, \phi}_{\text {emission }})
$$

$\Rightarrow$ The map is accompanied by the relative probabilities of all possible new states, i.e.

$$
f\left(S_{n}, v\right)=\sum_{i, j} \int d v^{\prime} d z d \phi \frac{d \mathcal{P}\left(S_{n}, v^{\prime} ; i, j, z, \phi\right)}{d v^{\prime} d z d \phi} \delta\left(\ln v^{\prime} / v\right) \quad \sum_{i, j} d \mathcal{P}\left(S_{n}, v ; i, j, z, \phi\right) \simeq \frac{d \Phi_{n+1}}{d \Phi_{n}} \frac{\left|M^{2}\left(S_{n+1}\right)\right|}{\left|M^{2}\left(S_{n}\right)\right|}
$$

## A case study: dipole showers

- Several designs available...


## A case study: dipole showers

- Several designs available...
- We focus on $\mathrm{k}_{t}$-ordered dipole showers with local recoil
- Most common design today
- Ability to reproduce non-global logarithms at LL, for which different solutions might fail
see e.g. [Banfi, Corcella, Dasgupta '06]
- Consider the designs of Pythia8’s shower and Dire as a case study


## Dipole showers

- Events are viewed throughout as a collection of colour-anticolour dipole ends



## Dipole showers: evolution variable

- Ordering variable $v$ : smallest $\mathrm{p}_{\perp}$ separation (resolution) between any pair of partons
- Zooming out to smaller $v$ values more partons get resolved



## Dipole showers: branching

- Branching probability: evolution equation solved in terms of a Sudakov form factor



## Dipole showers: branching

- Branching probability: evolution equation solved in terms of a Sudakov form factor



## Dipole showers: local recoil

- Kinematic mapping: to ensure momentum conservation, the recoil is assigned locally (within the dipole)
- the emitter i takes the recoil of k in the $\tilde{\mathrm{i}} \tilde{\mathrm{j}} \mathrm{C} . O . \mathrm{M}$. frame
- residual longitudinal recoil absorbed by the spectator j

$$
\tilde{p}_{i}+\tilde{p}_{j} \xrightarrow{\tilde{p}_{i} \rightarrow p_{i}+p_{k}} p_{i}+p_{j}+p_{k}
$$

$$
\begin{aligned}
p_{i}^{\mu} & =\tilde{z} \tilde{p}_{i}^{\mu}+y(1-\tilde{z}) \tilde{p}_{j}^{\mu}+k_{\perp} \\
p_{k}^{\mu} & =(1-\tilde{z}) \tilde{p}_{i}^{\mu}+y \tilde{z} \tilde{p}_{j}^{\mu}-k_{\perp}^{\mu} \\
p_{j}^{\mu} & =(1-y) \tilde{p}_{j}^{\mu}
\end{aligned}
$$

## Dipole showers: iterate



## Single soft emission

## Single emission: soft limit

- Both showers divide the dipole into two parts, at zero rapidity in the dipole's rest frame



## Single emission: soft limit

- Both showers divide the dipole into two parts, at zero rapidity in the dipole's rest frame

e.g. emission off the quark

Scale of the coupling should
Pythia be the physical dipole $\mathrm{k}_{\mathrm{t}}$

Pythia8 and Dire squared amplitudes


## Single emission: soft limit

Constant evolution variable contours in the Lund plane

- Pythia case:

$$
\eta=\frac{1}{2} \ln \left[\frac{(1-z)^{2}}{\rho_{\perp, \mathrm{evol}}^{2}}-1\right], \quad\left|p_{\perp}^{2}\right|=p_{\perp, \mathrm{evol}}^{2}\left(\frac{e^{2 \eta}}{1+e^{2 \eta}}\right)
$$



- Correct matrix element for a single emission is reproduced up to running coupling effects

$$
d \mathcal{P}_{q \rightarrow q g}+d \mathcal{P}_{\bar{q} \rightarrow \bar{q} g}=\frac{2 \alpha_{s} C_{F}}{\pi} \frac{d p_{\perp}}{p_{\perp}} d \eta
$$

Not true anymore with running coupling in the soft-wide-angle region (NNLL effect)

- Non-zero (although suppressed) probability to have an emission with zero transverse momentum even if $p_{\perp, \text { evol }} \neq 0$. This creates a new suppression mechanism in competition with the usual Sudakov suppression. In practice, unlikely to be of phenomenological interest


## Single emission: soft limit

Constant evolution variable contours in the Lund plane

- Dire case:

$$
\begin{aligned}
& \eta=\frac{1}{2} \ln \left[\frac{(1-z)^{2}}{\kappa^{2}}\right], \quad\left|p_{\perp}^{2}\right|=t \\
& d \mathcal{P}_{q \rightarrow q g}=\frac{2 \alpha_{s}(t) C_{F}}{\pi} \frac{d p_{\perp}}{p_{\perp}} d \eta\left(\frac{e^{2 \eta}}{1+e^{2 \eta}}\right)
\end{aligned}
$$



- Correct matrix element for a single emission is reproduced including running coupling effects*

$$
d \mathcal{P}_{q \rightarrow q g}+d \mathcal{P}_{\bar{q} \rightarrow \bar{q} g}=\frac{2 \alpha_{s}\left(\left|p_{\perp}^{2}\right|\right) C_{F}}{\pi} \frac{d p_{\perp}}{p_{\perp}} d \eta
$$

## Multiple soft emissions

## Multiple emissions: soft limit

- We now consider two soft-collinear emissions ( $g_{1}$ and $g_{2}$ with $v_{1}>v_{2}$ ) in the limit where they are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe observables.
- From the resummation one expects that both gluons are emitted off the initial $q \bar{q}$ dipole with

$$
d P_{2}=\frac{C_{F}^{2}}{2!} \prod_{i=1,2}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right)
$$

## Multiple emissions: soft limit

- We now consider two soft-collinear emissions ( $g_{1}$ and $g_{2}$ with $v_{1}>v_{2}$ ) in the limit where they are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe observables.
- From the resummation one expects that both gluons are emitted off the initial $q \bar{q}$ dipole with

$$
d P_{2}=\frac{C_{F}^{2}}{2!} \prod_{i=1,2}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right)
$$

- Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion of phase space in which it's collinear to the quarks: implications on logarithmic accuracy
e.g.
- start with an emission $\mathrm{g}_{1}$



## Multiple emissions: soft limit

- We now consider two soft-collinear emissions ( $g_{1}$ and $g_{2}$ with $v_{1}>v_{2}$ ) in the limit where they are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe observables.
- From the resummation one expects that both gluons are emitted off the initial $q \bar{q}$ dipole with

$$
d P_{2}=\frac{C_{F}^{2}}{2!} \prod_{i=1,2}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right)
$$

- Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion of phase space in which it's collinear to the quarks: implications on logarithmic accuracy
e.g.
- start with an emission $\mathrm{g}_{1}$
- add a branching $q g_{1}$-> $q g_{1} g_{2}$ (right dipole)



## Multiple emissions: soft limit

- We now consider two soft-collinear emissions ( $\mathrm{g}_{1}$ and $\mathrm{g}_{2}$ with $v_{1}>v_{2}$ ) in the limit where they are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe observables.
- From the resummation one expects that both gluons are emitted off the initial $q \bar{q}$ dipole with

$$
d P_{2}=\frac{C_{F}^{2}}{2!} \prod_{i=1,2}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right)
$$

- Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion of phase space in which it's collinear to the quarks: implications on logarithmic accuracy
e.g.
- start with an emission $\mathrm{g}_{1}$
- add a branching $q g_{1}->\mathrm{q}_{\mathrm{g}} \mathrm{g}_{2}$ (right dipole)

Start from dipole's rest frame


## Multiple emissions: soft limit

- We now consider two soft-collinear emissions ( $g_{1}$ and $g_{2}$ with $v_{1}>v_{2}$ ) in the limit where they are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe observables.
- From the resummation one expects that both gluons are emitted off the initial $q \bar{q}$ dipole with

$$
d P_{2}=\frac{C_{F}^{2}}{2!} \prod_{i=1,2}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} d \eta_{i} \frac{d \phi_{i}}{2 \pi}\right)
$$

- Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion of phase space in which it's collinear to the quarks: implications on logarithmic accuracy
e.g.
- start with an emission $g_{1}$

Line of zero rapidity
in the dipole's rest

- add a branching $q g_{1}->q g_{1} g_{2}$ (right dipole)



## Double strong ordering

- Start by considering the limit where (in addition to angles) the ordering variable is strongly ordered, i.e. the kinematic of $g_{1}$ is not affected by the much softer $g_{2}$

$$
v_{1} \gg v_{2}
$$

- However, the colour charge for the second emission depends on the above partitioning


## Correct radiation pattern



- This fact affects subleading colour corrections at different logarithmic orders

$$
\Sigma(L) \equiv \int_{0}^{e^{-L}} \frac{d V}{\sigma_{B}} \frac{d \sigma}{d V}=\exp \left[L g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\cdots\right]+\mathcal{O}\left(\alpha_{s} e^{-L}\right)
$$

$$
\text { for an observable } V(p,\{\text { Born momenta }\}) \propto p_{\perp}^{a} e^{-\left|\eta_{p}\right| b}
$$

- Observables with $b=0$ (e.g. $\mathrm{p}_{\mathrm{t}}, \mathrm{k}_{\mathrm{t}}$ jet rates,...) are affected at NLL
- Observables with $b \neq 0$ (e.g. thrust, jet mass, ...) are affected at LL


## Single strong ordering: kinematics

- When the ordering variables are of the same order ( $v_{1} \gtrsim v_{2}$ ) the first emission $g_{1}$ is affected by the second $\left(g_{2}\right)$ when this is far from $g_{1}$ in the lab frame
- The kinematics of the first emission is thus affected also by these recoil effects (transverse recoil + conservation of dipole's invariant mass)
- Eventually reflected in the observables
e.g.
- start with an emission $g_{1}$




## Single strong ordering: kinematics

- When the ordering variables are of the same order ( $v_{1} \gtrsim v_{2}$ ) the first emission $g_{1}$ is affected by the second $\left(g_{2}\right)$ when this is far from $g_{1}$ in the lab frame
- The kinematics of the first emission is thus affected also by these recoil effects (transverse recoil + conservation of dipole's invariant mass)
- Eventually reflected in the observables
impact of gluon-2 emission on gluon-1 momentum
e.g.
- start with an emission $g_{1}$
- add a second emission $\mathrm{g}_{2}$
$q\left[g_{1}\right] \rightarrow q g_{2}\left[g_{1}\right]: \boldsymbol{p}_{\perp, g_{1}}=\tilde{\boldsymbol{p}}_{\perp, g_{1}}, \eta_{g_{1}}=\tilde{\eta}_{g_{1}}$



## Single strong ordering: kinematics

- When the ordering variables are of the same order ( $v_{1} \gtrsim v_{2}$ ) the first emission $\mathrm{g}_{1}$ is affected by the second ( $\mathrm{g}_{2}$ ) when this is far from $\mathrm{g}_{1}$ in the lab frame
- The kinematics of the first emission is thus affected also by these recoil effects (transverse recoil + conservation of dipole's invariant mass)
- Eventually reflected in the observables
e.g.
- start with an emission $\mathrm{g}_{1}$
- add a second emission $\mathrm{g}_{2}$

$$
g_{1}[q] \rightarrow g_{1} g_{2}[q]: \boldsymbol{p}_{\perp, g_{1}}=\tilde{\boldsymbol{p}}_{\perp, g_{1}}-\boldsymbol{p}_{\perp, g_{2}},
$$

$$
\eta_{g_{1}}=\tilde{\eta}_{g_{1}}+\ln \frac{\left|\boldsymbol{p}_{\perp, g_{1}}\right|}{\left|\tilde{\boldsymbol{p}}_{\perp, g_{1}}\right|}
$$


$\mathrm{g}_{2}: \mathrm{v}_{2}=0.5 \mathrm{v}, \phi_{2}=0, \operatorname{scan}$ in $\eta_{2}$

## Single strong ordering: kinematics

- When the ordering variables are of the same order ( $v_{1} \gtrsim v_{2}$ ) the first emission $\mathrm{g}_{1}$ is affected by the second ( $\mathrm{g}_{2}$ ) when this is far from $\mathrm{g}_{1}$ in the lab frame
- The kinematics of the first emission is thus affected also by these recoil effects (transverse recoil + conservation of dipole's invariant mass)
- Eventually reflected in the observables
e.g.
- start with an emission $\mathrm{g}_{1}$
- add a second emission $\mathrm{g}_{2}$

$$
g_{1}[\bar{q}] \rightarrow g_{1} g_{2}[\bar{q}]: \boldsymbol{p}_{\perp, g_{1}}=\tilde{\boldsymbol{p}}_{\perp, g_{1}}-\boldsymbol{p}_{\perp, g_{2}},
$$

$$
\eta_{g_{1}}=\tilde{\eta}_{g_{1}}-\ln \frac{\left|\boldsymbol{p}_{\perp, g_{1}}\right|}{\left|\tilde{\boldsymbol{p}}_{\perp, g_{1}}\right|}
$$


$\mathrm{g}_{2}: \mathrm{v}_{2}=0.5 \mathrm{v} 1, \phi_{2}=0, \operatorname{scan}$ in $\eta_{2}$

## Single strong ordering: kinematics

- When the ordering variables are of the same order ( $v_{1} \gtrsim v_{2}$ ) the first emission $\mathrm{g}_{1}$ is affected by the second ( $\mathrm{g}_{2}$ ) when this is far from $\mathrm{g}_{1}$ in the lab frame
- The kinematics of the first emission is thus affected also by these recoil effects (transverse recoil + conservation of dipole's invariant mass)
- Eventually reflected in the observables
e.g.
- start with an emission $\mathrm{g}_{1}$
- add a second emission $\mathrm{g}_{2}$
$\bar{q}\left[g_{1}\right] \rightarrow \bar{q} g_{2}\left[g_{1}\right]: \boldsymbol{p}_{\perp, g_{1}}=\tilde{\boldsymbol{p}}_{\perp, g_{1}}, \eta_{g_{1}}=\tilde{\eta}_{g_{1}}$




## Single strong ordering: matrix element

- As a consequence, starting from second order, the effective matrix element differs from the NLL prediction
- Effects can be large for observables sensitive to exclusive regions of phase space
- This mechanism affects the pattern of subsequent real radiation, and virtual corrections, at all higher orders
$\rightarrow$ E.g. $r=1,|\Delta \phi|> \pm 2 \pi / 3:$

e.g. at $\alpha_{s}^{2}$
dipole-shower double-soft ME / correct result



## Single strong ordering

- Occurs in a region relevant to NLL (leading colour) for all rIRC safe, global observables
e.g. 3-jet resolution in Cambridge algorithm
(angular ordered clustering of soft and/or collinear radiation)

$$
\begin{gathered}
\delta \Sigma^{(2 \text { emissions })}(L)=\left(C_{F} \frac{2 \alpha_{s}}{\pi}\right)^{2} \int_{0}^{1} \frac{d v_{1}}{v_{1}} \int_{\ln v_{1}}^{\ln 1 / v_{1}} d \eta_{1} \int_{0}^{v_{1}} \frac{d v_{2}}{v_{2}} \int_{\ln v_{2}}^{\ln 1 / v_{2}} d \eta_{2} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \times \\
\times\left[\Theta\left(e^{-L}-V\left(p_{1}^{\text {shower }}, p_{2}\right)\right)-\Theta\left(e^{-L}-V\left(p_{1}^{\text {correct }}, p_{2}\right)\right)\right] \\
V\left(p_{1}^{\text {correct }}, p_{2}\right)=v_{1} \quad V\left(p_{1}^{\text {shower }}, p_{2}\right)=\max \left(v_{2}, \sqrt{v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2} \cos \phi_{12}}\right) \\
\delta \Sigma^{\text {cam }}(L)=-0.18277 \bar{\alpha}^{2} L^{2}+\mathcal{O}\left(\bar{\alpha}^{2} L\right)
\end{gathered}
$$

## Single strong ordering

- Occurs in a region relevant to NLL (leading colour) for all rIRC safe, global observables
e.g. for a sample of observables

Observable $\mathrm{NLL}_{\ln \Sigma}$ discrepancy

$$
1-T \quad 0.116_{-0.004}^{+0.004} \bar{\alpha}^{3} L^{3}
$$

vector $p_{t}$ sum $\quad-0.349_{-0.003}^{+0.003} \bar{\alpha}^{3} L^{3}$
$B_{T} \quad-0.0167335 \bar{\alpha}^{2} L^{2}$
$y_{3}^{\mathrm{cam}} \quad-0.18277 \bar{\alpha}^{2} L^{2}$
$\mathrm{FC}_{1} \quad-0.066934 \bar{\alpha}^{2} L^{2}$

## Conclusions

- A single shower must be accurate for different observables
- necessary to develop a correspondence ingredients of the shower (branching probability, mapping, ordering), all-order amplitudes, and the logarithmic order
- We initiated such a study considering the family of dipole showers with local recoil
- Asymptotic limits of the shower equations to establishing a connection to resummation
- Differences in regions of phase space relevant for LL (subleading $N_{c}$ ) and NLL (leading $N_{c}$ ) in global, rIRC safe observables
- Ideally future developments should come with statements about how a given choice affect the all-order logarithmic structure
- Further developments necessary to test the accuracy of a shower at all orders
- Establish a solid basis for the development of algorithms with higher accuracy
- Impact of tuning and pre-asymptotic effects important (perhaps dominant for some designs in phenomenological applications). Still a lot to understand


## Thank you for listening

## CAESAR: ordering variable

- The study of the logarithmic accuracy of parton showers requires a careful comparison with resummed calculations. The starting point is to build a resummation framework that is suitable for a MC formulation
- global and recursively IRC safe observables at NLL: CAESAR
[Banfi, Salam, Zanderighi '01-'04]
- resummation given by a shower of independent emissions off the Born legs strongly ordered in angle
e.g. e+e- $->p_{1} p_{2}+x$

$$
\begin{gathered}
\text { Use observable } \mathrm{v}_{\mathrm{i}}=\mathrm{V}\left(\mathrm{k}_{\mathrm{i}}\right) \text { as evolution variable } \\
\text { (not strictly necessary, it leads to a simpler structure) }
\end{gathered}
$$

Sudakov radiator $R(v)$ computed at NLL
Effect of multiple emissions evaluated with LL (soft-collinear) matrix elements and observable

$$
\begin{gathered}
d P_{n}=\frac{C_{F}^{n}}{n!} \prod_{i=1}^{n}\left(\frac{2 \alpha_{s}\left(p_{\perp, i}^{2}\right)}{\pi} \frac{d p_{\perp, i}}{p_{\perp, i}} \frac{d z_{i}}{1-z_{i}} \frac{d \phi_{i}}{2 \pi}\right) \\
\mathcal{F}_{\mathrm{NLL}}(v)=\left\langle\Theta\left(1-\lim _{v \rightarrow 0} \frac{V_{\mathrm{Sc}}\left(\{\tilde{p}\},\left\{k_{i}\right\}\right)}{v}\right)\right\rangle
\end{gathered}
$$

## Dipole showers: mapping

- The map is defined by (local recoil)

$$
\tilde{p}_{i}+\tilde{p}_{j} \xrightarrow{\tilde{p}_{i} \rightarrow p_{i}+p_{k}} p_{i}+p_{j}+p_{k}
$$

$$
\begin{aligned}
p_{i}^{\mu} & =\tilde{z} \tilde{p}_{i}^{\mu}+y(1-\tilde{z}) \tilde{p}_{j}^{\mu}+k_{\perp} \\
p_{k}^{\mu} & =(1-\tilde{z}) \tilde{p}_{i}^{\mu}+y \tilde{z}^{\mu} \tilde{p}_{j}^{\mu}-k_{\perp}^{\mu} \\
p_{j}^{\mu} & =(1-y) \tilde{p}_{j}^{\mu}
\end{aligned}
$$

see backup for branching probabilities

## Pythia

Evolution variable and branching:

$$
\begin{gathered}
v \equiv p_{\perp, \mathrm{evol}} \\
\rho_{\perp, \mathrm{evol}}^{2}=\frac{p_{\perp, \mathrm{evol}}^{2}}{\left(\tilde{p}_{i}+\tilde{p}_{j}\right)^{2}}, \quad y=\frac{\rho_{\perp, \mathrm{evol}}^{2}}{z(1-z)}, \quad \tilde{z}=\frac{(1-z)\left(z^{2}-\rho_{\perp \mathrm{evol}}^{2}\right)}{z(1-z)-\rho_{\perp \mathrm{evol}}^{2}} \\
\rho_{\perp, \mathrm{evol}} \leq z \leq 1-\rho_{\perp, \mathrm{evol}}
\end{gathered}
$$

$k_{t}$ and rapidity of emission w.r.t. the emitter
$\eta=\ln \frac{(1-\tilde{z}) Q}{\left|k_{\perp}\right|}, \quad\left|k_{\perp}^{2}\right|=\frac{\left(z^{2}-\rho_{\perp \text { evol }}^{2}\right)\left((1-z)^{2}-\rho_{\perp \mathrm{evol}}^{2}\right)}{\left(z(1-z)-\rho_{\perp \mathrm{evol}}^{2}\right)^{2}}$

## Dire

Evolution variable and branching:

$$
v \equiv \sqrt{t}
$$

$$
\begin{gathered}
\kappa^{2}=\frac{t}{\left(\tilde{p}_{i}+\tilde{p}_{j}\right)^{2}}, \quad y=\frac{\kappa^{2}}{1-z}, \quad \tilde{z}=\frac{z-y}{1-y} \\
\frac{1}{2}-\sqrt{\frac{1}{4}-\kappa^{2}} \leq z \leq \frac{1}{2}+\sqrt{\frac{1}{4}-\kappa^{2}}
\end{gathered}
$$

$\mathrm{k}_{\mathrm{t}}$ and rapidity of emission w.r.t. the emitter

$$
\eta=\ln \frac{(1-\tilde{z}) Q}{\left|k_{\perp}\right|}, \quad\left|k_{\perp}^{2}\right|=(1-z) \frac{z(1-z)-\kappa^{2}}{\left(1-z-\kappa^{2}\right)^{2}} t
$$

## Dipole showers: branchings

- We focus on $\mathrm{k}_{\mathrm{t}}$-ordered dipole showers with local recoil (most common design today)
- Consider the designs of Pythia8's shower and Dire. The map is defined by

$$
\tilde{p}_{i}+\tilde{p}_{j} \xrightarrow{\tilde{p}_{i} \rightarrow p_{i}+p_{k}} p_{i}+p_{j}+p_{k}
$$

$$
\begin{aligned}
p_{i}^{\mu} & =\tilde{z} \tilde{p}_{i}^{\mu}+y(1-\tilde{z}) \tilde{p}_{j}^{\mu}+k_{\perp} \\
p_{k}^{\mu} & =(1-\tilde{z}) \tilde{p}_{i}^{\mu}+y \tilde{z}^{\mu} \tilde{p}_{j}^{\mu}-k_{\perp}^{\mu} \\
p_{j}^{\mu} & =(1-y) \tilde{p}_{j}^{\mu}
\end{aligned}
$$

## Pythia

$$
\begin{array}{r}
d \mathcal{P}_{q \rightarrow q g}=\frac{\alpha_{s}\left(p_{\perp, \mathrm{evol}}^{2}\right)}{2 \pi} \frac{d p_{\perp \mathrm{evol}}^{2}}{p_{\perp \mathrm{evol}}^{2}} d z \frac{d \phi}{2 \pi} C_{F}\left(\frac{1+z^{2}}{1-z}\right) \\
d \mathcal{P}_{g \rightarrow g g}=\frac{\alpha_{s}\left(p_{\perp, \mathrm{evol}}^{2}\right)}{2 \pi} \frac{d p_{\perp \mathrm{evol}}^{2}}{p_{\perp \mathrm{evol}}^{2}} d z \frac{d \phi}{2 \pi} \frac{C_{A}}{2}\left[\frac{1+z^{3}}{1-z}\right] \\
d \mathcal{P}_{g \rightarrow q \bar{q}}=\frac{\alpha_{s}\left(p_{\perp, \mathrm{evol}}^{2}\right)}{2 \pi} \frac{d p_{\perp \mathrm{evol}}^{2}}{p_{\perp \mathrm{evol}}^{2}} d z \frac{d \phi}{2 \pi} \frac{n_{f} T_{R}}{2} \mathcal{D}[1-2 \tilde{z}(1-\tilde{z})] \\
\mathcal{D}=(1-x)^{2}(1+x), \quad x \equiv \frac{\left(p_{i}+p_{k}\right)^{2}}{\left(\tilde{p}_{i}+\tilde{p}_{j}\right)^{2}}
\end{array}
$$

## Dipole showers: branchings

- We focus on $\mathrm{k}_{\mathrm{t}}$-ordered dipole showers with local recoil (most common design today)
- Consider the designs of Pythia8's shower and Dire. The map is defined by

$$
\tilde{p}_{i}+\tilde{p}_{j} \xrightarrow{\tilde{p}_{i} \rightarrow p_{i}+p_{k}} p_{i}+p_{j}+p_{k}
$$

$$
\begin{aligned}
p_{i}^{\mu} & =\tilde{z} \tilde{p}_{i}^{\mu}+y(1-\tilde{z}) \tilde{p}_{j}^{\mu}+k_{\perp} \\
p_{k}^{\mu} & =(1-\tilde{z}) \tilde{p}_{i}^{\mu}+y \tilde{z} \tilde{p}_{j}^{\mu}-k_{\perp}^{\mu} \\
p_{j}^{\mu} & =(1-y) \tilde{p}_{j}^{\mu}
\end{aligned}
$$

$$
\begin{gathered}
\text { Dire } \\
d \mathcal{P}_{q \rightarrow q g}=\frac{\alpha_{s}(t)}{2 \pi} \frac{d t}{t} d z \frac{d \phi}{2 \pi} C_{F}\left[2 \frac{1-z}{(1-z)^{2}+\kappa^{2}}-(1+z)\right] \\
d \mathcal{P}_{g \rightarrow g g}=\frac{\alpha_{s}(t)}{2 \pi} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{C_{A}}{2}\left[2 \frac{1-z}{(1-z)^{2}+\kappa^{2}}-2+z(1-z)\right] \\
d \mathcal{P}_{g \rightarrow q \bar{q}}=\frac{\alpha_{s}(t)}{2 \pi} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{n_{f} T_{R}}{2}[1-2 z(1-z)]
\end{gathered}
$$

## Difference between shower and NLL

$$
\begin{aligned}
& \delta \Sigma^{(2 \text { emissions })}(L)=\left(C_{F} \frac{2 \alpha_{s}}{\pi}\right)^{2} \int_{0}^{1} \frac{d v_{1}}{v_{1}} \int_{\ln v_{1}}^{\ln 1 / v_{1}} d \eta_{1} \int_{0}^{v_{1}} \frac{d v_{2}}{v_{2}} \int_{\ln v_{2}}^{\ln 1 / v_{2}} d \eta_{2} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \times \\
& \times\left[\Theta\left(e^{-L}-V\left(p_{1}^{\text {shower }}, p_{2}\right)\right)-\Theta\left(e^{-L}-V\left(p_{1}^{\text {correct }}, p_{2}\right)\right)\right] \\
& \delta \Sigma^{(3 \text { emissions })}(L)=\left(C_{F} \frac{2 \alpha_{s}}{\pi}\right)^{3} \int_{0}^{1} \frac{d v_{1}}{v_{1}} \int_{0}^{v_{1}} \frac{d v_{2}}{v_{2}} \int_{0}^{v_{2}} \frac{d v_{3}}{v_{3}} \int_{\ln v_{1}}^{\ln 1 / v_{1}} d \eta_{1} \int_{\ln v_{2}}^{\ln 1 / v_{2}} d \eta_{2} \int_{\ln v_{3}}^{\ln 1 / v_{3}} d \eta_{3} \times \\
& \times \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \int_{0}^{2 \pi} \frac{d \phi_{3}}{2 \pi} \times \\
& \times {\left[\Theta\left(e^{-L}-V\left(p_{1}^{\text {shower }}, p_{2}^{\text {shower }}, p_{3}\right)\right)-\Theta\left(e^{-L}-V\left(p_{1}^{\text {correct }}, p_{2}^{\text {correct }}, p_{3}\right)\right)\right.} \\
&-\Theta\left(e^{-L}-V\left(p_{1}^{\text {shower }}, p_{2}\right)\right)+\Theta\left(e^{-L}-V\left(p_{1}^{\text {correct }}, p_{2}\right)\right) \\
&-\Theta\left(e^{-L}-V\left(p_{1}^{\text {shower }}, p_{3}\right)\right)+\Theta\left(e^{-L}-V\left(p_{1}^{\text {correct }}, p_{3}\right)\right) \\
&\left.-\Theta\left(e^{-L}-V\left(p_{2}^{\text {shower }}, p_{3}\right)\right)+\Theta\left(e^{-L}-V\left(p_{2}^{\text {correct }}, p_{3}\right)\right)\right]
\end{aligned}
$$

