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Parton Showers are central to the LHC programme: realistic event simulations
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Parton Showers are central to the LHC programme: realistic event simulations

Used in essentially all event generators



Resummations vs. Parton Showers

»  Both frameworks provide an all-order calculation for collider observables
»  Several differences in the way this is formulated

» The higher logarithmic accuracy of current resummations comes with a lower versatility
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- All calculations derived in the on-shell/ . Full momentum conservation necessary
singular limit (only logarithms) (e.g. initial condition for hadronisation)
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RESUMMATIONS

. Several simplifications: amplitudes,
phase space, observable

singular limit (only logarithms)

- Tailored to the observable, e.g. global
vs. non-global, specific approximations
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. All calculations derived in the on-shell/ .
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Provide full set of final-state momenta

Full momentum conservation necessary
(e.g. initial condition for hadronisation)

- A simple shower should be accurate for

a broad family of observables at once



Resummations vs. Parton Showers

»  Both frameworks provide an all-order calculation for collider observables
»  Several differences in the way this is formulated
» The higher logarithmic accuracy of current resummations comes with a lower versatility

RESUMMATIONS PARTON SHOWERS

. Several simplifications: amplitudes, < Radiation is described fully exclusively.
phase space, observable Provide full set of final-state momenta

- All calculations derived in the on-shell/ . Full momentum conservation necessary
singular limit (only logarithms) (e.g. initial condition for hadronisation)

- Tailored to the observable, e.g. global
vs. non-global, specific approximations
in each case

- A simple shower should be accurate for
a broad family of observables at once

. Higher logarithmic orders achieved . Currently unknown. The goal of this
thanks to the above simplifications in talk is to initiate a formal study of this
the formulation point




NLI. resummation

» To understand (and ultimately improve) the logarithmic accuracy of PS, crucial to build a
systematic connection to resummation

» Use the technology of numerical resummations to approach the problem

e.g. ete- -> q gbar + X at NLL

/ ] )
jH( i )dphd'zpq%qg( )dﬁb"')

Dl 2T

» collinear limit described by independent
emissions strongly ordered in angle

[Catani et al. ’91-’93; Banfi, Salam, Zanderighi ’01-’04] /

as dw; dQQN Z p1 - P2 \

(p1 - Kiy ) (kiy - Kiy) - (i, - p2)

Image by T. Becher et al. > soft wide angle limit described by a shower
of soft colour dipoles strongly ordered in
energy

3 \ [Dasgupta, Salam ’01; Banfi, Marchesini, Smye ’02] /




Parton Showers

» Main defining features (at least for LO showers)

1. Ordering variable: generate emissions in sequence according to a kinematic variable v (e.g.
kt, angle, virtuality).

2. Branching probability: state S, with n partons at a given v found with a probability P(S,,,v)

= This probability evolves with the ordering variable as

dP(S,,v)
dlnl/v

—[(Sn,v)P(Sn,v)

3. Kinematic mapping: state.S,,; obtained from a state ,S,, via a mapping M (S,, — S, 11;v)

= [s a function of all partons involved in the branching. It defines how the recoil is
absorbed by other partons in the event. E.g. for a local recoil scheme

Sn—l—l :M(S’nava 7/7.] ’ Z7¢ )
N~ N~
emitters emission

= The map is accompanied by the relative probabilities of all possible new states, i.e.

APy 1 [M?(Spt1)|

= Tdd, | M2(S,)]

dP(Sn,v';1,7,2,0) o
o / y Uy by Jy <y / .
1(S00) =3 [ 'z T 2 D o) S P (S i)
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A case study: dipole showers

» Several designs available...
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A case study: dipole showers

» Several designs available...
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»  We focus on ki-ordered dipole showers with local recoil
»  Most common design today

» Ability to reproduce non-global logarithms at LL, for which different solutions might fail
see e.g. [Banfi, Corcella, Dasgupta '06]

» Consider the designs of pythia8’s shower and Dire as a case study
[Sjostrand, Skands '04]

[Hoeche, Prestel ‘15]
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Dipole showers

» Events are viewed throughout as a collection of colour-anticolour dipole ends
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Dipole showers: evolution variable

»  Ordering variable v : smallest p. separation (resolution) between any pair of partons

»  Zooming out to smaller v values more partons get resolved

V=V0 =Mz

\0)
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Dipole showers: branching

» Branching probability: evolution equation solved in terms of a Sudakov form factor

\0)

P[q dipole end doesn’t emit in vo— vi]

A, (vo,v1) = exp [_/ dPQ[Q]%qg[Q]]

U1

P[q dipole end doesn’t emit in vo — vi]

Vo
Ag (vo,v1) = exp [_/ dpq{q}ﬁqg[fﬂ]

U1

Plnothing in event emits in vo = vi]

A(Uo,vl) — H Ag (Uo,vl)

dipole
14 ends 7



Dipole showers: branching

» Branching probability: evolution equation solved in terms of a Sudakov form factor

A (vo,v1) dPglg—qglq + A (v0,v1) dPyig1-qg]q

VO V1 VO V1
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Dipole showers: local recoil

Kinematic mapping: to ensure momentum conservation, the recoil is assigned locally
(within the dipole)

the emitter i takes the recoil of k in the i j C.O.M. frame

residual longitudinal recoil absorbed by the spectator j

p; =Zp; +y(1—2)p; + ki
- ~ Di—pPi+D .~ ~ ~
pi + b; = i +Dj + b = (1= 2)pf +yZp) — K
p; =1 -y)p;
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Dipole showers: iterate

\0) V]
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Dipole showers: iterate

VO V1 V2
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Dipole showers: iterate

VO V1 V2 V3
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Dipole showers: iterate

VO V1 V2 V3 V4
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Dipole showers: iterate

VO V1 V2 V3 V4 V5
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\40)

Dipole showers: iterate
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Dipole showers: iterate
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Single soft emission
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Single emission: soft limit

» Both showers divide the dipole into two parts, at zero rapidity in the dipole’s rest frame

g g
recoiler emitter emitter recoiler
— > > —|— — > >
q q q q
od v
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Single emission: soft limit

» Both showers divide the dipole into two parts, at zero rapidity in the dipole’s rest frame

recoiler emitter emitter recoiler

q q q ] q

_|_

ol o
e.g. emission off the quark

Pythia

Pythia8 and Dire squared amplitudes
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Single emission: soft limit

Constant evolution variable contours in the Lund plane

» Pythia case: 0 , :
; ; Pythiam-
1 (1—2) 5 5 e<" 5 5
n = 2 In [pievol — 1] ; |p¢| = P evol m —2 7
—4
_|
w g
-
— —6
d'P . zaS(pi,evol)CF dpLd 6277 8 L. S ............ ............ ............ ............. ..........
q—q9g T D Ui 1+ 6277 : : : : : : :
—10
—10 -5 0 5 10
n

»  Correct matrix element for a single emission is reproduced up to running coupling effects

200,C'p dp |

» Non-zero (although suppressed) probability to have an emission with zero transverse
momentum even if P evol 7 0 . This creates a new suppression mechanism in competition with
the usual Sudakov suppression. In practice, unlikely to be of phenomenological interest
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Single emission: soft limit

Constant evolution variable contours in the Lund plane

Dire case:
1 (1 — Z)2 2
n:§ln[ 2 ]» pil=t

205(t)Cp dp . e
APq—qg = T DL dn < 1 4+ e2n

Correct matrix element for a single emission is reproduced including running coupling effects”

2a5(|p3 |)Cr dpy

qu—>qg + dPQ—Hig — . DL

dn

28 * CMW scheme available both in Pythia and Dire



Multiple soft emissions
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Multiple emissions: soft limit

We now consider two soft-collinear emissions (g: and g with v1 > v9) in the limit where they

are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe
observables.

From the resummation one expects that both gluons are emitted off the initial gq dipole with

2 204 Zd i, do;

T 2T
i=1,2 PLi
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Multiple emissions: soft limit

We now consider two soft-collinear emissions (g: and g with v1 > v9) in the limit where they

are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe
observables.

From the resummation one expects that both gluons are emitted off the initial gq dipole with

C%, 2%(]92;@') dpy i , do;
APy = 5 H ( dn;

T Dl 2

» Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion

of phase space in which it’s collinear to the quarks: implications on logarithmic accuracy
e.g.

estart with an emission gi
g1
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Multiple emissions: soft limit

We now consider two soft-collinear emissions (g: and g with v1 > v9) in the limit where they

are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe
observables.

From the resummation one expects that both gluons are emitted off the initial gq dipole with

C%, 20%(Pi¢)6ﬁlgi do;
APy = 2!;II ( dn;

T Dl 2

» Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion

of phase space in which it’s collinear to the quarks: implications on logarithmic accuracy
e.g.

estart with an emission gi

gi
eadd a branching q g1 -> q g1 &

(right dipole)
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Multiple emissions: soft limit

We now consider two soft-collinear emissions (g: and g with v1 > v9) in the limit where they

are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe
observables.

From the resummation one expects that both gluons are emitted off the initial gq dipole with

2 204 Zd i, do;

T 2T
i=1,2 PLi

Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion
of phase space in which it’s collinear to the quarks: implications on logarithmic accuracy

e.g.
e start with an emission gi

e add a branching q g1 -> q g1 £

: , Start from dipole’s
(right dipole)

rest frame

17 = 0 in the dipole rest frame

g1

|33



Multiple emissions: soft limit

We now consider two soft-collinear emissions (g1 and g» with v1 > v2) in the limit where they

are strongly ordered in angle. This approximation is relevant at NLL for all global, rIRC safe
observables.

From the resummation one expects that both gluons are emitted off the initial gq dipole with

2 2058 2 ) .
dPs = % H ( <pJ_,z) dpJ_,z dnz d¢z>

T Dl 2T

Instead, the dipole-shower algorithm assigns the second emission to the first gluon in a portion
of phase space in which it’s collinear to the quarks: implications on logarithmic accuracy
e.g.
Line of zero rapidity

estart with an emission g in the dipole’s rest
frame, boosted into

eadd a branching q g1 -> q g1 £ the c.o.m. frame Unboost to lab
(right dipole)

q 34 1
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Double strong ordering

Start by considering the limit where (in addition to angles) the ordering variable is strongly
ordered, i.e. the kinematic of g1 is not affected by the much softer g»

V1 > U

However, the colour charge for the second emission depends on the above partitioning

i
- T — ol s~
|

Difference between
dipole and correct

Correct radiation |
pattern

4 AV do V]

Z(L) = / —W — €Xp [Lgl (OésL) + 92(04811) + Oéggg(CMSL) + .-
0 OB

for an observable V (p, {Born momenta}) o p® e~ Il

Observables with b = 0 (e.g. py, kt jet rates,...) are affected at NLL

Observables with b # 0 (e.g. thrust, jet mass, ...) are affected at LL
35



Single strong ordering: kinematics

When the ordering variables are of the same order (v; 2= v ) the first emission g is affected by

the second (g2) when this is far from g in the lab frame

The kinematics of the first emission is thus affected also by these recoil effects (transverse

recoil + conservation of dipole’s invariant mass)

Eventually reflected in the observables
e.g.

e start with an emission gi

3.5
g1

2.5

r]91

— - - 1.5

—_— —
—_— i

g1:v1=10Q, n1=23,¢1=0 ¢
g2:v2=0.5v1, ¢p2 =0, scanin 72

impact of gluon-2 emission on gluon-1 momentum

36
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Single strong ordering: kinematics

When the ordering variables are of the same order (v; 2= v ) the first emission g is affected by
the second (g2) when this is far from g in the lab frame

The kinematics of the first emission is thus affected also by these recoil effects (transverse
recoil + conservation of dipole’s invariant mass)

_ impact of gluon-2 emission on gluon-1 momentum
Eventually reflected in the observables P 9 9

—ftrr '+~ rrr> - rrT T rrrT 1
e. g . alg4]—Aa95[94] 94[a]—949-[q] g4[al—g495ldl
~— 1 HERDDE DD DR RREEDEe 0B ANO0NNNON T B
estart with an emission g 233
o

. . S X * . . 1 |
e add a second emission g 2 05 LT — Spanmntcn |
o} ! u’%‘ 2° ]

: 1 : :ln ::. Dire =

- - | g Uon J_ momen um °n  pge° P thla
Q[gl] — qg2[gl] : pJ_,g1 — pJ_,gl s Mg = Mgy pl— y| P———
4T 7771 " "1 7 ° T "~ " T T
qalg11—a92[91] o4[ql—94900G] 9411~ 94192ld]
3.5 o 7
° a
g1 3 n.nﬁllllllllllll“- -
2 25 7
OIEEEEDEDDEDNDEEEEDOe [i-&-oo/oloo/oooobom -
2 ] N
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Single strong ordering: kinematics

When the ordering variables are of the same order (v; 2= v ) the first emission g is affected by
the second (g2) when this is far from g in the lab frame

The kinematics of the first emission is thus affected also by these recoil effects (transverse
recoil + conservation of dipole’s invariant mass)

Eventually reflected in the observables
e.g.
e start with an emission gi

e add a second emission g

g1lq] = g192|q] : Py g =P1,g —DPlLg,>
~ ’pJ_ gl‘
Ng, = Mg, + 10—
g1 g1 ’pj_,gl‘
gi
g2

g1:v1=10Q, n1=23,¢1=0 ¢

g2:v2=0.5v1, ¢p2=0, scanin n2

pL,g1 /5¢,91

r]91

0.5 |

3.5

2.5

1.5

38

impact of gluon-2 emission on gluon-1 momentum
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Single strong ordering: kinematics

When the ordering variables are of the same order (v; 2= v ) the first emission g is affected by
the second (g2) when this is far from g in the lab frame

The kinematics of the first emission is thus affected also by these recoil effects (transverse
recoil + conservation of dipole’s invariant mass)

_ impact of gluon-2 emission on gluon-1 momentum
Eventually reflected in the observables P 9 9

' 1 ' ' ' ' 1 B B B B 1 B B ' ' 1 ' ' 1 ' 1 ' ' '
[ dlg4]—dgalg4] g4[a]—g490[a] | algq]—agalgq] ]
e.g.
. . . 1= B e -EIIARRAREATT
e start with an emission gi 24
o
e add a second emission g @ ' lo) |
— 05 HHHJDDUHHHHHHHH 'ﬂ
} | " | Dire ®
_ _ ~ = ae
91|q] — 91927 +P1,g =P1g, —Pl,g,> " gluon 1 L momentum o oo Pythia °
1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 a1 | 1 1 1 1 | 1 1 1
. p o
Mgy = Tl — In } ~J_,g1’ 4 ] _I.— 1 1 _: |_’
pL,gl‘ 3.5 alg41—a9.(94] . 94[a]—9192(d] alg41—ag,lg4]
a
g]‘ 3 HHHHUDDDDDDUUUU#
2 25
(-« o clfofepe el fefefe oo -0 -0 olojojo/o/oooobem -]
2 {
) 15 o gggu-lllﬂ::n Dire = i
- — - = = = - gluon 1 rapidity g° Pythia °
1 T T R T T T B N S T TR T Erary - S BT B
g1:v1=106Q, n1=23,¢p1=0 14 10 5 0 5 10
g2:v2=0.5v1, ¢p2 =0, scanin 72 39 "o,



Single strong ordering: kinematics

»  When the ordering variables are of the same order (vi 2 v2 ) the first emission g; is affected by
the second (g2) when this is far from g in the lab frame

» The kinematics of the first emission is thus affected also by these recoil effects (transverse
recoil + conservation of dipole’s invariant mass)

: impact of gluon-2 emission on gluon-1 momentum
» Eventually reflected in the observables P J J

i 1 i i i i 1 ' ' ' ' 1 ' ' ' ' 1 ' ' 1 ' 1 ' ' '
e.g. 94191919241 9411~ 94192ld] qlg1]—agalgq] ]
. . 5 1 HERDDEE DR RRERREEDEe (--bislajeisleiplolbbon
e start with an emission gi 24
o
° . . 1) '. .'
add a second emission g o5t m"____“.% I
a | o Dire ®
o°n ge
B B 5 B [ gluon 1 1L momentum °n | me Pvthia * |]
qlg1]l = qg2l91] : D1 g, = P1 g s Ngr = Tgn 0 e —— Loe
4 " 1 ! ! ! ! 1 ' ' ' ' 1 ' ' ' ' | ' ' 1 ' 1 ' ' '
35 - 94191949241 ° 9411~ 94192ld] alg4]1—ag2[91]
g1 3 ﬂﬂllllllllll.lﬁ-
2 25
RN DNERREEDOe oEANNONNONNONaTI" =™
2T |
g2 . .
00000+ — — 1.5 luon 1 rapidit u"e-g“““n“ Dlre N
L0 0Togor — — = = = 9 pidity " Pythia °
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q gl:vi=10°Q, n1=23,¢p1=0 -10 -5 0 5 10
g2:v2=0.5v1, ¢p2 =0, scanin 72 40 "o



Single strong ordering: matrix element

e.g. at o
dipole-shower double-soft ME / correct result

» As a consequence, starting from second 1

order, the effective matrix element differs
from the NLL prediction

» Effects can be large for observables |
sensitive to exclusive regions of phase space : '

» This mechanism affects the pattern of
subsequent real radiation, and virtual
corrections, at all higher orders

]
1
—_

.| (and'ed)pe“ODV\”/Zl (qud'ed)m/\/\oqsv\”

0.05 |- Applies to "diamond" rapidity region - -

-TT -T2 0 /2 T
g A P2

»>tor=110¢|>+21/3: g’u%—»qq 41-DE.g.|Aq§|:in,r>O.5: . 0<‘k(£
g2

o

A 0Q




Single strong ordering

Occurs in a region relevant to NLL (leading colour) for all rIRC safe, global observables

e.g. 3-jet resolution in Cambridge algorithm

(angular ordered clustering of soft and/or collinear radiation)

L 2 s In 1/1)1 U1 In 1/’02 27 d 27
52(2 emlssmns) ( ) (CF Q ) / . / dnl / d??g / ¢1 / d¢2
1 In vy In vo

shovver7 p2 @ V( correct7p2))]

V(piorrect’pQ) — V(pihowerij) — max (’02, \/U% + ’U% — 2”01’02 COS ¢12>

SR (L) =—0.18277a°L*+O (&°L)

42



Single strong ordering

» Occurs in a region relevant to NLL (leading colour) for all rIRC safe, global observables

e.g. for a sample of observables . i
Occasionally the effect is

postponed to NNLL at second order
after azimuthal integration, and it

Observa,ble NLLIHZ dlsCI'epaIle shows up at NLL at third order

+0.004
vector p; sum  —0.349 8883 as L3

B —0.0167335 a* L2

ysam —0.18277 a* L*

FC, —0.066934 a2 L2
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Conclusions

A single shower must be accurate for different observables

» necessary to develop a correspondence ingredients of the shower (branching probability,
mapping, ordering), all-order amplitudes, and the logarithmic order

We initiated such a study considering the family of dipole showers with local recoil

» Asymptotic limits of the shower equations to establishing a connection to resummation

» Differences in regions of phase space relevant for LL (subleading N¢) and NLL (leading Nc)
in global, rIRC safe observables

Ideally future developments should come with statements about how a given choice affect
the all-order logarithmic structure

»  Further developments necessary to test the accuracy of a shower at all orders
» Establish a solid basis for the development of algorithms with higher accuracy

Impact of tuning and pre-asymptotic effects important (perhaps dominant for some designs
in phenomenological applications). Still a lot to understand

44



‘1'hank you for listening
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CAESAR: ordering variable

The study of the logarithmic accuracy of parton showers requires a careful comparison with
resummed calculations. The starting point is to build a resummation framework that is suitable
for a MC formulation

global and recursively IRC safe observables at NLL: CAESAR (Banfi, Salam, Zanderighi '01-°04]

»  resummation given by a shower of independent emissions off the Born legs strongly ordered in angle

e.g. ete- -> p1 p2 + X Use observable vi = V(ki) as evolution variable
(not strictly necessary, it leads to a simpler structure)

C CMW p
AP, ~ n' —1 ( %%71%%%—)% Zd??% ~e (L)FNLL (Oés )
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Dipole showers: mapping

» The map is defined by (local recoil)

~ ~ Di—PitDpk
pi T Dj » Di + Dj T+ Dk
Pythia
Evolution variable and branching:
U = P evol
2 o pa_,evol . pﬁ_,evol ~ (1 - Z) <Z2 o pievol)
PL,evol = 7= ~ \9 — ) Z = 5
! (Pi + D) z(1 - 2) 2 (1= 2) = P evol

PL evol <z < 1 — P1 evol

kt and rapidity of emission w.r.t. the emitter
2
1-2)Q (22 = P evet) (1 = 2° = PR evan)

( 5
77:111 9 ’kJ_| —
‘kl’ (Z (1 — Z) o piev01)2

47

Pt =Epl oy (1= 2)p + ko
p, = (1 —2)p; +yzp; — kY
Py = (1-y)p;
see backup for branching probabilities
Dire
Evolution variable and branching:
v =t
2 t y — K2 5 z—1Y
(pi + ;) 1—2z’ 1—y
1 1 1 1
_ g2y 2
TR R I

kt: and rapidity of emission w.r.t. the emitter

(1-2)Q z(1—2z) — K2

K l=1-
|kL| ) | J_| ( Z) (1_2_/{/2)2

n = lIn



Dipole showers: branchings

»  We focus on ki-ordered dipole showers with local recoil (most common design today)

» Consider the designs of pythia8’s shower and Dire. The map is defined by
) p; =Zp; +y(1—2)p; + ko
Bi + pj 2 by py i Py = (1—2)p +yzp — k!
py =1 —y)p;

Pythia
Qg (pi evol) dpa_ 1 dgb 1+ 22
d — ) (SAYO) d
Pims 2 P 2T\ T2
dP _ (pJ_ evol) dpj_evol Az d¢ CA 1+ 23
97799 2m Dol 2m 2 |1—2
(pJ_ l) dp dgb n TR
d R ,E€VO J_evold f DM —25(1 — 3
Pg—qq 9 pLeVOl o | Z( Z)]
D=(1-2)*(1+2), a:z(]?f—wzk)j
(s + D)
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Dipole showers: branchings

»  We focus on ki-ordered dipole showers with local recoil (most common design today)

» Consider the designs of Pythia8’s shower and Dire. The map is defined by

~ ~

p; =Zp; +y(1—2)p; + ki
~ ~ Di—pi+Dp ~ ~ ~ ~
Pi + P > p; + pj + Dk Py =1 —-2)p +yzp — kY
Py =1 —y)py

Dire
ag(t) dt . do 1—z2
— — 2 — (1
WPa—ag 2t 4z 27 CF [ (1 —2)%+ K2 (1+ z)]
L ag(t) dt | do Cy 1—2
Woas = 5 T P or 5 [2(1 —oriee 2 tA Z)]
s(t) dt . d T
dPs—qqg — as(?) dz ¢ nylr [1—22(1 — 2)]

2t 2T 2
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Difference between shower and N1.1.

o 9 o In1/vq V1 In1/v2 27Td 27rd
5Z(Qem1881ons)( ) (CF Q > / / dnl/ / d772/ ¢1/ gbz
U1 lnUl lnv2
) 2

shower @ correct o ) ) }

o 201 d v1 v2 In1/vq In1/vs In1/v3
52(3em1381ons)( ) <CF & ) / ?)1/ UZ/ US/ d771/ d772/ d773><
In v In v2 In v3
/27‘(‘ d¢1 /27'(' d¢2 /27‘(’ d¢3

> {@ pihower’ p%hower7 p3)) L @(G_L L V(piorrect’pgorrectjpg))

. @(6 V( shower,p2)) + @(6_ V(p(lzorrectjpz))
. @(6 V( shower,pg)) + @(6_ V(piorrectjp3))
_ @(

e~ V( showerjpg)) 4+ O (6_ V(pgorrectjpg)) }
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