Transverse-momentum resummation at $\mathrm{N}^{3} \mathrm{LL}$

Paolo Torrielli

Università di Torino and INFN

Genova, HARPS meeting, 10/2018

Mainly based on
Monni, Re, PT, 1604. 02191
Bizon, Monni, Re, Rottoli, PT, 1705.09127
Bizon, Chen, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, Rottoli, PT, 1805.05916

Transverse observables in colour-singlet production

- Focus on global transverse observables V in colour-singlet production, e.g. p_{t}^{H} in gluon-fusion Higgs production, ϕ_{η}^{*} or $p_{t}\left(\ell^{+} \ell^{-}\right)$in Drell-Yan, $p_{t}\left(j_{1}\right), E_{T}, \ldots$
- Independent of the rapidity of radiation. $V \rightarrow 0$ for soft/collinear QCD radiation.
- Among these, restrict to inclusive observables

$$
V\left(k_{1}, \ldots, k_{n}\right)=V\left(k_{1}+\ldots+k_{n}\right) .
$$

- $k_{1}, \ldots, k_{n}=\mathrm{QCD}$ radiation off incoming partons.
- Directly probe the kinematics of the colour singlet.
- Drell-Yan transverse observables measured at the $\%$ level at the LHC.
- Need for very accurate theoretical prediction over the entire phase space.

Fixed-order vs resummation

- Fixed-order prediction for cumulative cross section Σ

$$
\Sigma(v)=\int_{0}^{v} d V \frac{d \sigma}{d V} \sim \alpha_{\mathrm{S}}^{b}[\underbrace{1}_{\mathrm{LO}}+\underbrace{\alpha_{\mathrm{S}}}_{\mathrm{NLO}}+\underbrace{\alpha_{\mathrm{S}}^{2}}_{\mathrm{NNLO}}+\ldots] .
$$

- In regions dominated by soft/collinear radiation, fixed order spoiled by large logarithms

$$
\frac{d \sigma}{d v} \sim \frac{1}{v} \alpha_{\mathrm{S}}^{n} L^{k}, \quad k \leq 2 n-1, \quad L=\ln (1 / v)
$$

- Enhanced logarithmic contributions to be resummed at all orders.
- Logarithmic accuracy defined on the logarithm of Σ :

$$
\ln \Sigma(v) \sim \underbrace{\mathcal{O}\left(\alpha_{\mathrm{S}}^{n} L^{n+1}\right)}_{\mathrm{LL}}+\underbrace{\mathcal{O}\left(\alpha_{\mathrm{S}}^{n} L^{n}\right)}_{\mathrm{NLL}}+\underbrace{\mathcal{O}\left(\alpha_{\mathrm{S}}^{n} L^{n-1}\right)}_{\mathrm{NNLL}}+\underbrace{\mathcal{O}\left(\alpha_{\mathrm{S}}^{n} L^{n-2}\right)}_{\mathrm{N}^{3} \mathrm{LL}}+\ldots
$$

Conjugate vs direct space

$$
\Sigma(v) \sim \sum_{n} \int d \Phi_{\mathrm{rad}, n}\left|M\left(k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(k_{1}, \ldots, k_{n}\right)\right) .
$$

- Traditional approach to resummation of V : find a conjugate space where observable dependence on multiple radiation factorises, and resum there.
- Not always possible. Observables may not factorise, or need several nested transforms.

Conjugate vs direct space

$$
\Sigma(v) \sim \sum_{n} \int d \Phi_{\mathrm{rad}, n}\left|M\left(k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(k_{1}, \ldots, k_{n}\right)\right) .
$$

- Traditional approach to resummation of V : find a conjugate space where observable dependence on multiple radiation factorises, and resum there.
- Not always possible. Observables may not factorise, or need several nested transforms.
- Observable factorisation not necessary. V resummable if recursive IRC (rIRC) safe [Banfi, Salam, Zanderighi, 0112156, 0304148, 0407286], allowing exponentiation of leading logarithms.
* Same soft/collinear scaling properties for any number of emissions.
* The more soft/collinear the emission, the less it contributes to the value of V.
- 'CAESAR/ARES' approach follows [Banfi et al., 1412.2126, 1607.03111, 1807.11487]: resummation of rIRC observables in direct space.
- Classes of interesting transverse observables e.g. p_{t}^{H} are rIRC-safe, but eluded resummation in direct space for some time. Why?

Example: Higgs production at small p_{t}

- Two dynamical mechanisms compete in the small- p_{t} region:

- Left. Commensurate transverse momentum for all emissions: $\max k_{t i} \equiv k_{t 1} \sim p_{t} \sim 0$.
- Sudakov limit, sensible $\ln \left(M / p_{t}\right)$ counting, exponential suppression of $\Sigma\left(p_{t}\right)$ at small p_{t}
$\Longrightarrow \quad$ included by CAESAR/ARES approach.

Example: Higgs production at small p_{t}

- Two dynamical mechanisms compete in the small- p_{t} region:

- Left. Commensurate transverse momentum for all emissions: $\max k_{t i} \equiv k_{t 1} \sim p_{t} \sim 0$.
- Sudakov limit, sensible $\ln \left(M / p_{t}\right)$ counting, exponential suppression of $\Sigma\left(p_{t}\right)$ at small p_{t}

$$
\Longrightarrow \quad \text { included by CAESAR/ARES approach. }
$$

- Right. Large azimuthal cancellations: $k_{t 1} \gg p_{t} \sim 0$.
- $p_{t} \rightarrow 0$ away from the Sudakov limit, $\Sigma\left(p_{t}\right) \sim p_{t}^{2}$ at small p_{t} [Parisi, Petronzio, 1979].
- Power-like suppression from the region $k_{t i} \gg p_{t}$ dominates over Sudakov.

$$
\Longrightarrow \quad \text { not included by CAESAR/ARES approach. }
$$

Example: Higgs production at small p_{t}

- $\ln \left(M / p_{t}\right)$ hierarchy not sensible at small p_{t} : neglected power effects dominate the limit.
- Impossible to recover power behaviour at a given order in $\ln \left(M / p_{t}\right)$. Standard (logarithmically-correct) direct-space resummed formula diverges at finite p_{t} since it misses $k_{t 1} \gg p_{t}$ contributions.
- Beyond LL in $\ln \left(M / p_{t}\right)$, resummation in p_{t} space cannot be simultaneously free of subleading terms and of spurious singularities [Frixione, Nason, Ridolfi, 9809367].
- Limitation bypassed [Monni, Re, PT, 1604.02191], [Bizon, Monni, Re, Rottoli, pr, 1705.09127] (see also [Ebert, Tackmann, 1611.08610]).

Direct-space resummation: all-order structure

- Consider $v=p_{t} / M$, with M the invariant mass of the colour singlet.

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

Direct-space resummation: all-order structure

- Consider $v=p_{t} / M$, with M the invariant mass of the colour singlet.
$\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)$
- $\mathcal{V}\left(\Phi_{B}\right)=$ all-order virtual form factor (see [Dixon, Magnea, Sterman, 0805.3515]).

For example, quark form factor:

Direct-space resummation: all-order structure

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- $\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=$ all-order real radiation.
- $\Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)=\Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right|\right)=$ measurement function.

Direct-space resummation: all-order structure

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- $\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=$ all-order real radiation.
- $\Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)=\Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right|\right)=$ measurement function.
- Multi-emission amplitude organised into n-particle-correl. ($n \mathrm{PC}$) blocks $\left|\tilde{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2}$.
- For example $n=2$ particles k_{a} and k_{b} emitted off incoming gluons:

$$
\frac{\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{a}, k_{b}\right)\right|^{2}}{\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2}}=\frac{1}{2!}\left|M\left(k_{a}\right)\right|^{2}\left|M\left(k_{b}\right)\right|^{2}+
$$

$$
\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}
$$

- Log. hierarchy of the blocks (rIRC-safety): the more correlated, the more subleading.

$$
\mathcal{O}\left(\alpha_{\mathrm{S}}^{2} L^{4}\right) \quad+\quad \mathcal{O}\left(\alpha_{\mathrm{S}}^{2} L^{3}\right)
$$

Direct-space resummation: all-order structure

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- $\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=$ all-order real radiation.
- Multi-emission amplitude organised into n-particle-correl. ($n \mathrm{PC}$) blocks $\left|\tilde{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2}$.

$$
\begin{aligned}
& \text { e.g. n soft partons case (analogous considerations for hard-collinear) }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\sum_{a>b} \frac{1}{(n-2)!}\left(\prod_{\substack{i=1 \\
i \neq a, b}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\bar{M}\left(k_{a}, k_{b}\right)\right|^{2}+\right.} \\
& \left.\sum_{a>b} \sum_{\substack{c>d \\
c, d \neq a, b}} \frac{1}{(n-4)!2!}\left(\prod_{\substack{i=1 \\
i \neq a, b, c, d}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2}\left|\tilde{M}\left(k_{c}, k_{d}\right)\right|^{2}+\ldots\right] \\
& \left.+\left[\sum_{a>b>c} \frac{1}{(n-3)!}\left(\prod_{\substack{i=1 \\
i \neq a, b, c}}^{n}\left|M\left(k_{i}\right)\right|^{2}\right)\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2}+\ldots\right]+\ldots\right\},
\end{aligned}
$$

2-particle-correlated (i.e. 2 real emissions) squared amplitude defined in terms of cut webs

- Higher-orders in α_{S} at fixed n or larger $n \Longrightarrow$ logarithmically subleading

Direct-space resummation: all-order structure

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- $\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=$ all-order real radiation.
- Multi-emission amplitude organised into n-particle-correl. ($n \mathrm{PC}$) blocks $\left|\tilde{M}\left(k_{1}, \ldots, k_{n}\right)\right|^{2}$.
- For inclusive observables $V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)=V\left(\{\tilde{p}\}, k_{1}+\ldots+k_{n}\right)$, integrate $n \mathrm{PC}$ blocks inclusively prior to evaluating the observable:

$$
\begin{aligned}
& \left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \\
& \qquad \begin{aligned}
& \times \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
&\left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\} \\
&=\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \frac{1}{n!} \prod_{i=1}^{n}\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2}
\end{aligned}
\end{aligned}
$$

Direct-space resummation: cancellation of IRC singularities

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right)\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- Virtual and real radiation separately IRC divergent: need cancellation of singularities.
- Introduce a slicing parameter $\epsilon k_{t 1}$, ($k_{t 1}$ hardest emission).
- Blocks with $k_{t i}<\epsilon k_{t 1}$ are unresolved, those with $k_{t i}>\epsilon k_{t 1}$ are resolved.

Direct-space resummation: cancellation of IRC singularities

$$
\Sigma\left(p_{t}\right)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right)\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)
$$

- Virtual and real radiation separately IRC divergent: need cancellation of singularities.
- Introduce a slicing parameter $\epsilon k_{t 1}$, ($k_{t 1}$ hardest emission).
- Blocks with $k_{t i}<\epsilon k_{t 1}$ are unresolved, those with $k_{t i}>\epsilon k_{t 1}$ are resolved.
- Unresolved contribute negligibly to V : drop them in $\Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)$. Correct up to $\epsilon^{p} k_{t 1}$ terms by rIRC safety.
- Unresolved exponentiate and regularise the virtuals \Longrightarrow Sudakov form factor:

$$
\begin{aligned}
& \mathcal{V}\left(\Phi_{B}\right) \sum_{m=0}^{\infty} \frac{1}{m!} \int \prod_{i=2}^{m}\left[d k_{i}\right]\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2} \Theta\left(\epsilon k_{t 1}-k_{t i}\right) \propto H e^{-R\left(\epsilon k_{t 1}\right)} \\
& R\left(\epsilon k_{t 1}\right)=\sum_{\ell=1}^{2} \int_{\epsilon k_{t 1}}^{M} \frac{d k_{t}}{k_{t}} R_{\ell}^{\prime}\left(k_{t}\right)=\sum_{\ell=1}^{2} \int_{\epsilon k_{t 1}}^{M} \frac{d k_{t}}{k_{t}}\left(A_{\ell}\left(\alpha_{\mathrm{S}}\left(k_{t}\right)\right) \ln M^{2} / k_{t}^{2}+B_{\ell}\left(\alpha_{\mathrm{S}}\left(k_{t}\right)\right)\right)
\end{aligned}
$$

- A and B known up to N^{3} LL [Davies, Stirling, 1984], [de Florian, Grazzini, 0008152], [Becher, Neubert, 1007.4005], [Li, Zhu, 1604.01404], [Moch, et al., 1805.09638].

Direct-space resummation: logarithmic counting

$\Sigma\left(p_{t}\right) \approx \int d \Phi_{B}\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \int\left[d k_{1}\right] e^{-R\left(\epsilon k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\epsilon k_{t 1}} \prod_{i=2}^{n}\left[d k_{i}\right]\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)$

- All resolved $k_{t i}$ are $\sim k_{t 1}$ but not necessarily $\sim p_{t}$: all configurations ($k_{t i} \sim p_{t}$ and $k_{t i} \gg p_{t}$) correctly accounted for, no assumptions on the hierarchy between $k_{t i}$ and p_{t}.
- $k_{t i} \gg p_{t}$ region included \Longrightarrow spurious singularity at finite p_{t} is gone.
- Standard CAESAR/ARES would choose ϵp_{t} as slicing, missing $k_{t i} \gg p_{t}$.

Direct-space resummation: logarithmic counting

$\Sigma\left(p_{t}\right) \approx \int d \Phi_{B}\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \int\left[d k_{1}\right] e^{-R\left(\epsilon k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\epsilon k_{t 1}} \prod_{i=2}^{n}\left[d k_{i}\right]\left|M_{\mathrm{inc}}\left(k_{i}\right)\right|^{2} \Theta\left(p_{t}-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n}\right)\right)$

- All resolved $k_{t i}$ are $\sim k_{t 1}$ but not necessarily $\sim p_{t}$: all configurations ($k_{t i} \sim p_{t}$ and $k_{t i} \gg p_{t}$) correctly accounted for, no assumptions on the hierarchy between $k_{t i}$ and p_{t}.
- $k_{t i} \gg p_{t}$ region included \Longrightarrow spurious singularity at finite p_{t} is gone.
- Standard CAESAR/ARES would choose ϵp_{t} as slicing, missing $k_{t i} \gg p_{t}$.
- Logarithmic counting defined in terms of $\ln \left(M / k_{t i}\right)$.
* In the Sudakov limit, where the hierarchy in $\ln \left(M / p_{t}\right)$ makes sense, $k_{t i} \sim p_{t} \sim 0$. Logarithmic accuracy in $\ln \left(M / k_{t i}\right)$ translates into the same accuracy in $\ln \left(M / p_{t}\right)$ plus subleading terms ...
* ... the subleading terms necessary to remove the spurious singularity.

Direct-space resummation: master formula at NLL

$$
\begin{aligned}
\frac{d \Sigma_{\mathrm{NLL}}\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} k_{t 1} \frac{\partial}{\partial k_{t 1}}\left(-e^{-R\left(\epsilon k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t i}\right)\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)
\end{aligned}
$$

- Expand around $k_{t 1}$ (as opposed to around p_{t}) in Sudakov and resolved radiation up to the desired logarithmic accuracy:

$$
\begin{aligned}
R\left(\epsilon k_{t 1}\right) & =R\left(k_{t 1}\right)+R^{\prime}\left(k_{t 1}\right) \ln 1 / \epsilon+\frac{1}{2} R^{\prime \prime}\left(k_{t 1}\right) \ln ^{2} 1 / \epsilon+\ldots \\
R^{\prime}\left(k_{t i}\right) & =\underbrace{R^{\prime}\left(k_{t 1}\right)}_{\text {NLL }}+\underbrace{R^{\prime \prime}\left(k_{t 1}\right)}_{\text {NNLL }} \underbrace{\ln k_{t 1} / k_{t i}}_{\text {small }}+\ldots
\end{aligned}
$$

- Subleading terms in the expansions of $R^{\prime}\left(k_{t i}\right)$ needed only for few resolved blocks: $0,1,2, \ldots$ at NLL, NNLL, $\mathrm{N}^{3} \mathrm{LL}, \ldots$

$$
\begin{aligned}
\frac{d \Sigma_{\mathrm{NLL}}\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} k_{t 1} \frac{\partial}{\partial k_{t 1}}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \underbrace{e^{-R^{\prime}\left(k_{t 1}\right) \ln 1 / \epsilon} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right)\right)}_{\equiv \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right]} \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right) .
\end{aligned}
$$

- $\int d \mathcal{Z} \Theta$ finite as $\epsilon \rightarrow 0$: real vs virtual cancellation, no leftover ϵ dependence.

Finiteness in four dimensions, NLL case

$$
\begin{aligned}
\frac{d \Sigma_{\mathrm{NLL}}\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} k_{t 1} \frac{\partial}{\partial k_{t 1}}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \underbrace{\epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right)\right)}_{\equiv \int d \mathcal{Z}\left\{\left\{R^{\prime}, k_{i}\right\}\right]} \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right) .
\end{aligned}
$$

- Luminosity $\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)=\sum_{a, b} \frac{d\left|M_{B}\right|_{a b}^{2}}{d \Phi_{B}} f_{a}\left(x_{1}, k_{t 1}\right) f_{b}\left(x_{2}, k_{t 1}\right)$.
- $\int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta$ finite as $\epsilon \rightarrow 0$:

$$
\begin{aligned}
& \epsilon^{R^{\prime}\left(k_{t 1}\right)}=1-R^{\prime}\left(k_{t 1}\right) \ln (1 / \epsilon)+\ldots=1-\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t}}{k_{t}} R^{\prime}\left(k_{t 1}\right)+\ldots, \\
& \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta= {\left[1-\int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t}}{k_{t}} R^{\prime}\left(k_{t 1}\right)+\ldots\right]\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t 2}}{k_{t 2}} R^{\prime}\left(k_{t 1}\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)+\ldots\right] } \\
&= \Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)+\int_{0}^{2 \pi} \frac{d \phi_{2}}{2 \pi} \underbrace{\int_{0}^{k_{t 1}} \frac{d k_{t 2}}{k_{t 2}} R^{\prime}\left(k_{t 1}\right) \underbrace{\left[\Theta\left(p_{t}-\left|\vec{k}_{t 1}+\vec{k}_{t 2}\right|\right)-\Theta\left(p_{t}-\left|\vec{k}_{t 1}\right|\right)\right]}_{\text {finite: real-virtual cancellation }}+\ldots}_{\epsilon \rightarrow 0}
\end{aligned}
$$

Singularity at finite p_{t} in the CAESAR/ARES approach

$$
\begin{aligned}
\frac{d \Sigma_{\mathrm{NLL}}\left(p_{t}\right)}{d \Phi_{B}}= & \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} k_{t 1} \frac{\partial}{\partial k_{t 1}}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right) \times \\
& \times \epsilon^{R^{\prime}\left(k_{t 1}\right)} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(k_{t 1}\right)\right) \Theta\left(p_{t}-\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t(n+1)}\right|\right)
\end{aligned}
$$

- Expand up to NLL all $k_{t i}$ around p_{t} instead of expanding around $k_{t 1}$ (OK logarithmically, but missing all non-logarithmic configurations $k_{t i} \gg p_{t}$)

$$
\begin{aligned}
& R\left(k_{t i}\right)=R\left(p_{t}\right)+R^{\prime}\left(p_{t}\right) \ln p_{t} / k_{t i}+\ldots, \quad R^{\prime}\left(k_{t i}\right)=R^{\prime}\left(p_{t}\right)+\ldots \\
& \frac{d \Sigma_{\mathrm{NLL}}\left(p_{t}\right)}{d \Phi_{B}} \sim \mathcal{L}_{\mathrm{NLL}}\left(p_{t}\right) e^{-R\left(p_{t}\right)} R^{\prime}\left(p_{t}\right) \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi}\left(\frac{k_{t 1}}{p_{t}}\right)^{R^{\prime}\left(p_{t}\right)} \times \\
& \times \\
& \times \underbrace{\epsilon^{R^{\prime}\left(p_{t}\right)} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} R^{\prime}\left(p_{t}\right)\right) \Theta p_{t}}_{\sim\left(\frac{p_{t}}{k_{t 1}}\right)^{2}} .
\end{aligned}
$$

- $k_{t 1}$ integrand goes as $k_{t 1}^{R^{\prime}\left(p_{t}\right)-3}$, singularity for $R^{\prime}\left(p_{t}\right)=2$. Conversely, expanding around $k_{t 1}$ one has $e^{-R\left(k_{t 1}\right)}$, which makes it converge.

Direct-space resummation: master formula at $\mathrm{N}^{3} \mathrm{LL}$

$$
\left.\begin{array}{l}
\frac{d \Sigma(v)}{d \Phi_{B}}=\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} k_{t 1} \frac{\partial}{\partial k_{t 1}}\left(-e^{-R\left(k_{t 1}\right)} \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\left(k_{t 1}\right)\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)+ \\
+\int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s}}{\zeta_{s}} \frac{d \phi_{s}}{2 \pi}\left\{\left(R^{\prime}\left(k_{t 1}\right) \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-k_{t 1} \frac{\partial}{\partial k_{t 1}} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)\right)\right. \\
\times\left(R^{\prime \prime}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}+\frac{1}{2} R^{\prime \prime \prime}\left(k_{t 1}\right) \ln ^{2} \frac{1}{\zeta_{s}}\right)-R^{\prime}\left(k_{t 1}\right)\left(k_{t 1} \frac{\partial}{\partial k_{t 1}} \mathcal{L}_{\mathrm{NNLL}}\left(k_{t 1}\right)-2 \frac{\beta_{0}}{\pi} \alpha_{s}^{2}\left(k_{t 1}\right) \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) \ln \frac{1}{\zeta_{s}}\right) \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\}\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+ \\
+\frac{1}{2} \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \int_{0}^{1} \frac{d \zeta_{s 1}}{\zeta_{s 1}} \frac{d \phi_{s 1}}{2 \pi} \int_{0}^{1} \frac{d \zeta_{s 2}}{\zeta_{s 2}} \frac{d \phi_{s 2}}{2 \pi} R^{\prime}\left(k_{t 1}\right) \\
\times\left\{\mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\left(R^{\prime \prime}\left(k_{t 1}\right)\right)^{2} \ln \frac{1}{\zeta_{s 1}} \ln \frac{1}{\zeta_{s 2}}-k_{t 1} \frac{\partial}{\partial k_{t 1}} \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right) R^{\prime \prime}\left(k_{t 1}\right)\left(\ln \frac{1}{\zeta_{s 1}}+\ln \frac{1}{\zeta_{s 2}}\right)\right. \\
\left.+\frac{\alpha_{s}^{2}\left(k_{t 1}\right)}{\pi^{2}} \hat{P}^{(0)} \otimes \hat{P}^{(0)} \otimes \mathcal{L}_{\mathrm{NLL}}\left(k_{t 1}\right)\right\} \\
\times\left\{\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}, k_{s 2}\right)\right)-\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 1}\right)\right)-\right. \\
\left.\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}, k_{s 2}\right)\right)+\Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)\right\}+\mathcal{O}\left(\alpha_{s}^{n} \ln 2 n-6\right. \\
v
\end{array}\right) .
$$

- Luminosities $\left(\mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}, \mathcal{L}_{\mathrm{NNLL}}, \mathcal{L}_{\mathrm{NLL}}\right)$ include hard H and coefficient C functions.
- Finite in four dimensions ($\int d \mathcal{Z}$ and difference of Θ 's)

Features of the master formula at $\mathrm{N}^{3} \mathrm{LL}$

- Reproduces analytically resummation in impact-parameter b space ([Parisi, Petronzio, 1979], [Collins, Soper, Sterman, 1985], [Bozzi et al., 0508068], [Becher, Neubert, Wilhelm, 1212.2621]).

Features of the master formula at $\mathrm{N}^{3} \mathrm{LL}$

- Reproduces analytically resummation in impact-parameter b space ([Parisi, Petronzio, 1979], [Collins, Soper, Sterman, 1985], [Bozzi et al., 0508068], [Becher, Neubert, Wilhelm, 1212.2621]).
- Reproduces the correct $\Sigma\left(p_{t}\right) \sim p_{t}^{2}$ scaling at small p_{t}. No singularities at finite p_{t}.
* NLL (DY and $n_{f}=4$) gives exactly the original [Parisi, Petronzio, 1979] result:

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d p_{t} d \Phi_{B}}=4 \frac{d \sigma_{B}}{d \Phi_{B}} p_{t} \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} \simeq 2 \frac{d \sigma_{B}}{d \Phi_{B}} p_{t}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}} .
$$

* Control of logarithms $\ln \left(M / k_{t i}\right)$ up to $\mathrm{N}^{3} \mathrm{LL} \Longrightarrow$ improve the perturbative prediction for the coefficient in front of p_{t} (non-perturbative effects not included).
* Each subleading order in $\ln \left(M / k_{t i}\right)$ induces a relative $\mathcal{O}\left(\alpha_{S}\right)$ correction w.r.t. the previous in the coefficient of p_{t} : region $k_{t i} \gg p_{t}$ under control.

Features of the master formula at $N^{3} \mathrm{LL}$

- Reproduces analytically resummation in impact-parameter b space ([Parisi, Petronzio, 1979], [Collins, Soper, Sterman, 1985], [Bozzi et al., 0508068], [Becher, Neubert, Wilhelm, 1212.2621]).
- Reproduces the correct $\Sigma\left(p_{t}\right) \sim p_{t}^{2}$ scaling at small p_{t}. No singularities at finite p_{t}.
* NLL (DY and $n_{f}=4$) gives exactly the original [Parisi, Petronzio, 1979] result:

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d p_{t} d \Phi_{B}}=4 \frac{d \sigma_{B}}{d \Phi_{B}} p_{t} \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} \simeq 2 \frac{d \sigma_{B}}{d \Phi_{B}} p_{t}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{M^{2}}\right)^{\frac{16}{25} \ln \frac{41}{16}} .
$$

* Control of logarithms $\ln \left(M / k_{t i}\right)$ up to $\mathrm{N}^{3} \mathrm{LL} \Longrightarrow$ improve the perturbative prediction for the coefficient in front of p_{t} (non-perturbative effects not included).
* Each subleading order in $\ln \left(M / k_{t i}\right)$ induces a relative $\mathcal{O}\left(\alpha_{\mathrm{S}}\right)$ correction w.r.t. the previous in the coefficient of p_{t} : region $k_{t i} \gg p_{t}$ under control.
* Formula implemented in Monte-Carlo framework.
* Resolved radiation $d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right]$ generated as a simplified shower over secondary emissions.
* $\epsilon k_{t 1}$ is a correct resolution scale for all observables with the same LL as p_{t}.
* A single generator can compute them all $\left(p_{t}^{H}, \phi_{\eta}^{*}\right.$ in Drell Yan, $\left.p_{t}\left(j_{1}\right), E_{T}, \ldots\right)$.
* Formulae implemented in MC code RadISH (Radiation off Initial-State Hadrons): fully differential in the Born phase space.

Multiplicative matching to fixed order

$$
\Sigma_{\text {mult }}^{\operatorname{MAT}}(v)=\frac{\Sigma^{\mathrm{N}^{3} \mathrm{LL}}(v)}{\sum_{\text {asym. }}^{\mathrm{N}^{3} \mathrm{LL}}}\left[\Sigma_{\text {asym. }}^{\mathrm{N}^{3} \mathrm{LL}} \frac{\Sigma^{\mathrm{N}^{3} \mathrm{LO}}(v)}{\Sigma^{\mathrm{EXP}}(v)}\right]_{\text {EXPANDED TO } \mathrm{N}^{3} \mathrm{LO}}
$$

where

$$
\begin{aligned}
\Sigma^{\mathrm{N}^{3} \mathrm{LO}}(v) & =\sigma_{p p \rightarrow X}^{\mathrm{N}^{3} \mathrm{LO}}-\int_{v}^{\infty} d v^{\prime} \frac{d \sigma_{p p \rightarrow X j}^{\mathrm{NNLO}}\left(v^{\prime}\right)}{d v^{\prime}} \\
\Sigma_{\text {asym. }}^{\mathrm{N}^{3} \mathrm{LL}} & =\int_{\text {with cuts }} d \Phi_{B}\left(\lim _{\ln \left(Q / k_{t}\right) \rightarrow 0} \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\right)=\lim _{\text {large } v} \Sigma^{\mathrm{N}^{3} \mathrm{LL}}(v)
\end{aligned}
$$

- $\Sigma^{\mathrm{EXP}}(v)=$ expansion of $\Sigma^{\mathrm{N}^{3} \mathrm{LL}}(v)$ up to the relevant order in α_{S}.

Determined as an analytic linear combination of master integrals evaluated numerically.

- $\Sigma_{\text {asym. }} \mathrm{N}^{3} \mathrm{LL}$ avoids $\left(\mathrm{N}^{4} \mathrm{LL}\right) K$ factors at large $v \Longrightarrow$ fixed order cumulative recovered.
- At NNLO, the multiplicative scheme includes constant terms of $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)$ from the fixed order, absent in an additive scheme $\Sigma_{\text {add }}^{\text {MAT }}(v)=\Sigma^{\mathrm{N}^{3} \mathrm{LL}}(v)+\Sigma^{\mathrm{N}^{3} \mathrm{LO}}(v)-\Sigma^{\mathrm{EXP}}(v)$.

Validation

Inclusive Higgs production.
Expansion of resummation against fixed NNLO from NNLOJET [Gehrmann et al., 1607.08817].

Left $=$ full distribution.
Right $=$ NNLO coefficient alone.
Analogously for Drell Yan, channel by channel.

Matching-scheme dependence.
Multiplicative vs additive scheme at $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NLO}$ (i.e. using $\sigma_{p p \rightarrow H}^{\mathrm{NNLO}}$ and $\sigma_{p p \rightarrow H j}^{\mathrm{NLO}}$).

Robustness against scheme choice (central value and band) across the entire p_{t}^{H} range.

Inclusive Higgs production at 13 TeV (HEFT)

- Multiplicative matching up to NNLO (i.e. using $\sigma_{p p \rightarrow H}^{\mathrm{N}^{3} \mathrm{LO}}$ and $\sigma_{p p \rightarrow H j}^{\mathrm{NNLO}}$).
- $\mathrm{N}^{3} \mathrm{LO} p p \rightarrow H$ cross section from [Anastasiou et al., 1503.06056]. NNLO $p p \rightarrow H j$ cross section from NNLOJET [Gehrmann et al., 1607.08817].
- Perturbative $\mathrm{N}^{3} \mathrm{LL}$ uncertainty reduced with respect to NNLL below $10-15 \mathrm{GeV}$.
- Resummation effects important below 40 GeV .

Fiducial distributions for $p p \rightarrow H \rightarrow \gamma \gamma$ at 13 TeV (HEFT)

- ATLAS selection cuts [1802.04146] (no photon isolation to avoid non-global logarithms):

$$
\begin{gathered}
\min \left(p_{t}^{\gamma_{1}}, p_{t}^{\gamma_{2}}\right)>31.25 \mathrm{GeV}, \quad \max \left(p_{t}^{\gamma_{1}}, p_{t}^{\gamma_{2}}\right)>43.75 \mathrm{GeV}, \\
0<\left|\eta^{\gamma_{1}, 2}\right|<1.37 \text { or } 1.52<\left|\eta^{\gamma_{1,2}}\right|<2.37, \quad\left|Y_{\gamma \gamma}\right|<2.37 .
\end{gathered}
$$

$-\sigma_{\text {fiducial }}^{\mathrm{N}^{3} \mathrm{LO}} \sim \sigma_{\text {fiducial }}^{\mathrm{NNLO}} \times \sigma_{\text {inclusive }}^{\mathrm{N}^{3} \mathrm{LO}} / \sigma_{\text {inclusive }}^{\mathrm{NNLO}}$, correct up to $\mathrm{N}^{4} \mathrm{LL}$ effects.

- Uncertainty reduction w.r.t. fixed order below 80 GeV , effects on shape below 40 GeV .
- Pattern comparable to inclusive case.

Fiducial distributions for $p p \rightarrow Z \rightarrow \ell^{+} \ell^{-}$at 8 TeV

- ATLAS selection cuts [1512.02192]:
$p_{t}^{\ell^{ \pm}}>20 \mathrm{GeV}, \quad\left|\eta^{\ell^{ \pm}}\right|<2.4$,
$\left|Y_{\ell \ell}\right|<2.4, \quad 46 \mathrm{GeV}<M_{\ell \ell}<150 \mathrm{GeV}$.
- Fixed order from NNLOJET collaboration [Gehrmann, et al.,1610.01843], central $\mu_{R}=\mu_{F}=\sqrt{M_{\ell \ell}^{2}+\left(p_{t}^{Z}\right)^{2}}$, central resummation scale $Q=M_{\ell \ell} / 2$.

- Significant impact of $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$ w.r.t. NNLL+NLO in shape and normalisation. Prediction at the $\pm 3-5 \%$ level across the entire range.

Fiducial distributions for $p p \rightarrow Z \rightarrow \ell^{+} \ell^{-}$at 8 TeV

$$
\phi_{\eta}^{*}=\tan \left(\frac{\pi-\Delta \phi}{2}\right) \sin \theta^{*}
$$

- $\Delta \phi=$ azimuth between leptons, $\theta^{*}=$ angle between leptons and beam in the Z frame. $\phi_{\eta}^{*}=\left(k_{t} / M\right) \sin \phi+$ power corrections for a single emission.

- Significant impact of $\mathrm{N}^{3} \mathrm{LL}+\mathrm{NNLO}$ w.r.t. $\mathrm{NNLL}+\mathrm{NLO}$ in shape and normalisation. Prediction at the $\pm 3-5 \%$ level across the entire range, resummation important for $\phi_{\eta}^{*} \lesssim 0.2$.

Outlook

- A framework to resum inclusive transverse observables V in momentum space.
- Clean interpretation of the dominant dynamics (Sudakov or not) at $V \rightarrow 0$.
- Efficient numerical implementation through Monte-Carlo techniques: RadISH.
- Connections with parton-shower formalisms.
- A solution in momentum space is much less observable-dependent w.r.t. one in conjugate space: one resolution scale for a class of observables.
- Extensions conceptually known: exclusive is a subleading effect \Longrightarrow only few correlated blocks to be treated exclusively.
- Access to multi-differential information.
- Towards a single MC generator to resum classes of observables at high accuracy.

Thank you for your attention

Backup

Small- p_{t} behaviour at NLL

$$
\frac{d^{2} \Sigma\left(p_{t}\right)}{d^{2} \vec{p}_{t} d \Phi_{B}} \propto \int \frac{d k_{t 1}}{k_{t 1}} \frac{d \phi_{1}}{2 \pi} e^{-R\left(k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) \int d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] \delta^{(2)}\left(\vec{p}_{t}-\left(\vec{k}_{t 1}+\cdots+\vec{k}_{t(n+1)}\right)\right) .
$$

- Fourier transform of the delta: $\delta^{(2)}\left(\vec{p}_{t}-\left|\sum_{i} \vec{k}_{t i}\right|\right)=\int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n+1} e^{i \vec{b} \cdot \vec{k}_{t i}}$.
- Integrate over azimuthal direction of all $\vec{k}_{t i}$ and of $\overrightarrow{p_{t}}$:

$$
\begin{gathered}
\frac{d^{2} \Sigma(v)}{d p_{t} d \Phi_{B}}=\sigma^{(0)}\left(\Phi_{B}\right) p_{t} \int b d b J_{0}\left(p_{t} b\right) \int \frac{d k_{t 1}}{k_{t 1}} e^{-R\left(k_{t 1}\right)} R^{\prime}\left(k_{t 1}\right) J_{0}\left(b k_{t 1}\right) \\
\\
\times \exp \left\{-R^{\prime}\left(k_{t 1}\right) \int_{0}^{k_{t 1}} \frac{d k_{t}}{k_{t}}\left(1-J_{0}\left(b k_{t}\right)\right)\right\} .
\end{gathered}
$$

- In the limit where $M \gg k_{t 1} \gg p_{t}$ this gives

$$
\begin{array}{r}
\int b d b J_{0}\left(p_{t} b\right) J_{0}\left(b k_{t 1}\right) \exp \left\{-R^{\prime}\left(k_{t 1}\right) \int_{0}^{k_{t 1}} \frac{d k_{t}}{k_{t}}\left(1-J_{0}\left(b k_{t}\right)\right)\right\} \simeq 4 \frac{k_{t 1}^{-2}}{R^{\prime}\left(k_{t 1}\right)} \\
\Longrightarrow \frac{d^{2} \Sigma(v)}{d p_{t} d \Phi_{B}}=4 \sigma^{(0)}\left(\Phi_{B}\right) p_{t} \int_{\Lambda_{\mathrm{QCD}}}^{M} \frac{d k_{t 1}}{k_{t 1}^{3}} e^{-R\left(k_{t 1}\right)} .
\end{array}
$$

Equivalence with b space

- Take direct-space formula for $d \Sigma / d \overrightarrow{p_{t}}$, Fourier-transform the $\delta^{(2)}\left(p_{t}-\left|\sum_{i} \vec{k}_{t i}\right|\right)$, and get

$$
\begin{aligned}
& \frac{d}{d p_{t}} \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1} c_{2}}\left(p_{t}\right)=\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}(M)\right) H(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}(M)\right) p_{t} \int b d b J_{0}\left(p_{t} b\right) \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \\
& \quad \times \sum_{\ell_{1}=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t 1}\right)+\frac{\alpha_{s}\left(k_{t 1}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell_{1}}}\left(\alpha_{s}\left(k_{t 1}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell_{1}}}^{(C)}\left(\alpha_{s}\left(k_{t 1}\right)\right)\right) J_{0}\left(b k_{t 1}\right) \\
& \quad \times \exp \left\{-\sum_{\ell=1}^{2} \int_{k_{t 1}}^{M} \frac{d k_{t}}{k_{t}}\left(\mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)+\frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\mathbf{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right) J_{0}\left(b k_{t}\right)\right\} \\
& \quad \times \exp \left\{-\sum_{\ell=1}^{2} \int_{\epsilon k_{t 1}}^{M} \frac{d k_{t}}{k_{t}}\left(\mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)+\frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\mathbf{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\left(1-J_{0}\left(b k_{t}\right)\right)\right\} .
\end{aligned}
$$

- Take limit $\epsilon \rightarrow 0$. Integrand in $k_{t 1}$ is a total derivative and integrates to 1 , leaving

$$
\begin{aligned}
& \frac{d}{d p_{t}} \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1} c_{2}\left(p_{t}\right)=\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}(M)\right) H(M) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}(M)\right) p_{t} \int b d b J_{0}\left(p_{t} b\right)} \\
& \quad \times \exp \left\{-\sum_{\ell=1}^{2} \int_{0}^{M} \frac{d k_{t}}{k_{t}}\left(\mathbf{R}_{\ell}^{\prime}\left(k_{t}\right)+\frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\left(1-J_{0}\left(b k_{t}\right)\right)\right\} .
\end{aligned}
$$

- Transform $1-J_{0}$ in a Θ up to subleading logarithms, and plug this into the hadronic cross section, to get the traditional b-space formulation.

$$
\left(1-J_{0}\left(b k_{t}\right)\right) \simeq \Theta\left(k_{t}-\frac{b_{0}}{b}\right)+\frac{\zeta_{3}}{12} \frac{\partial^{3}}{\partial \ln \left(M b / b_{0}\right)^{3}} \Theta\left(k_{t}-\frac{b_{0}}{b}\right)+\ldots .
$$

- ζ_{3} term starts at $\mathrm{N}^{3} \mathrm{LL}$, is resummation-scheme change w.r.t. b space.

Generating secondary radiation as a simplified parton shower

- Secondary radiation:

$$
\begin{aligned}
d \mathcal{Z}\left[\left\{R^{\prime}, k_{i}\right\}\right] & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t 1}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
& =\sum_{n=0}^{\infty}\left(\prod_{i=2}^{n+1} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \int_{\epsilon k_{t 1}}^{k_{t(i-1)}} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right)\right) \epsilon^{R^{\prime}\left(k_{t 1}\right)} \\
\epsilon^{R^{\prime}\left(k_{t 1}\right)} & =e^{-R^{\prime}\left(k_{t 1}\right) \ln 1 / \epsilon}=\prod_{i=2}^{n+2} e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}
\end{aligned}
$$

with $k_{t(n+2)}=\epsilon k_{t 1}$.

- Each secondary emissions has differential probability

$$
d w_{i}=\frac{d \phi_{i}}{2 \pi} \frac{d k_{t i}}{k_{t i}} R^{\prime}\left(k_{t 1}\right) e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=\frac{d \phi_{i}}{2 \pi} d\left(e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}\right) .
$$

- $k_{t(i-1)} \geq k_{t i}$. Scale $k_{t i}$ extracted by solving $e^{-R^{\prime}\left(k_{t 1}\right) \ln k_{t(i-1)} / k_{t i}}=r$, with r uniform random number in $[0,1]$.
- Extract ϕ_{i} randomly in [0, 2 π].

Modified logarithms

- Ensure resummation does not affect the hard region of the spectrum.
- Supplement logarithms with power-suppressed terms, irrelevant at small $k_{t 1}$, that enforce resummation to vanish at $k_{t 1} \gg Q$.
- Modified logarithms

$$
\ln \left(\frac{Q}{k_{t 1}}\right) \quad \rightarrow \quad \tilde{L}=\frac{1}{p} \ln \left(\left(\frac{Q}{k_{t 1}}\right)^{p}+1\right)
$$

- $Q=$ resummation scale of $\mathcal{O}(M)$, varied to assess systematics due to higher logarithms.
- $p=$ chosen so that resummation vanishes faster than fixed order in the hard region.
- Checked that variation of p does not induce visible effects.
- Modified logarithms map $k_{t 1}=Q$ into $k_{t 1} \rightarrow \infty$.

Checks

- b-space resummation reproduced analytically.
- Correct small- p_{t} scaling reproduced analytically.
- Numerical checks down to very low p_{t} against b-space codes at the resummed level (HqT [Bozzi et al., 0302104, 0508068], [de Florian et al., 1109.2109, CuTe [Becher et al., 1109.6027, 1212.2621]).
- Fixed-order expansion checked against NNLOJET partonic channel by partonic channel.

Luminosity to $\mathrm{N}^{3} \mathrm{LL}$

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{N}^{3} \mathrm{LL}}\left(k_{t 1}\right)=\sum_{c, c^{\prime}} \frac{d\left|\mathcal{M}_{B}\right|_{c c^{\prime}}^{2}}{d \Phi_{B}} \sum_{i, j} \int_{x_{1}}^{1} \frac{d z_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{d z_{2}}{z_{2}} f_{i}\left(\mu_{F} e^{-L}, \frac{x_{1}}{z_{1}}\right) f_{j}\left(\mu_{F} e^{-L}, \frac{x_{2}}{z_{2}}\right) \\
& \times\left\{\delta_{c i} \delta_{c^{\prime} j} \delta\left(1-z_{1}\right) \delta\left(1-z_{2}\right)\left(1+\frac{\alpha_{\mathrm{S}}\left(\mu_{R}\right)}{2 \pi} H^{(1)}\left(\mu_{R}, x_{Q}\right)+\frac{\alpha_{\mathrm{S}}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} H^{(2)}\left(\mu_{R}, x_{Q}\right)\right)\right. \\
& \quad+\frac{\alpha_{\mathrm{S}}\left(\mu_{R}\right)}{2 \pi} \frac{1}{1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L}\left(1-\alpha_{\mathrm{S}}\left(\mu_{R}\right) \frac{\beta_{1}}{\beta_{0}} \frac{\ln \left(1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L\right)}{1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L}\right) \\
& \quad \times\left(C_{c i}^{(1)}\left(z_{1}, \mu_{F}, x_{Q}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right) \\
& \quad+\frac{\alpha_{\mathrm{S}}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} \frac{1}{\left(1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L\right)^{2}}\left(C_{c i}^{(2)}\left(z_{1}, \mu_{F}, x_{Q}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right) \\
& \quad+\frac{\alpha_{\mathrm{S}}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} \frac{1}{\left(1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L\right)^{2}}\left(C_{c i}^{(1)}\left(z_{1}, \mu_{F}, x_{Q}\right) C_{c^{\prime} j}^{(1)}\left(z_{2}, \mu_{F}, x_{Q}\right)+G_{c i}^{(1)}\left(z_{1}\right) G_{c^{\prime} j}^{(1)}\left(z_{2}\right)\right) \\
& \left.\quad+\frac{\alpha_{\mathrm{S}}^{2}\left(\mu_{R}\right)}{(2 \pi)^{2}} H^{(1)}\left(\mu_{R}, x_{Q}\right) \frac{1}{1-2 \alpha_{\mathrm{S}}\left(\mu_{R}\right) \beta_{0} L}\left(C_{c i}^{(1)}\left(z_{1}, \mu_{F}, x_{Q}\right) \delta\left(1-z_{2}\right) \delta_{c^{\prime} j}+\left\{z_{1} \leftrightarrow z_{2} ; c, i \leftrightarrow c^{\prime}, j\right\}\right)\right\},
\end{aligned}
$$

with $\quad L=\ln \left(Q / k_{t 1}\right)$, and $\quad x_{Q}=Q / M$.

