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Transverse observables in colour-singlet production

I Focus on global transverse observables V in colour-singlet production, e.g.
pHt in gluon-fusion Higgs production, φ∗η or pt(`+`−) in Drell-Yan, pt(j1), ET , ...

I Independent of the rapidity of radiation. V → 0 for soft/collinear QCD radiation.

I Among these, restrict to inclusive observables

V (k1, ..., kn) = V (k1 + ...+ kn).

I k1, ..., kn = QCD radiation off incoming partons.

I Directly probe the kinematics of the colour singlet.

I Drell-Yan transverse observables measured at the % level at the LHC.

I Need for very accurate theoretical prediction over the entire phase space.
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Fixed-order vs resummation

I Fixed-order prediction for cumulative cross section Σ

Σ(v) =

∫ v

0
dV

dσ

dV
∼ αbS

[
1︸︷︷︸

LO

+ αS︸︷︷︸
NLO

+ α2
S︸︷︷︸

NNLO

+...
]
.

I In regions dominated by soft/collinear radiation, fixed order spoiled by large logarithms

dσ

dv
∼

1

v
αnSL

k, k ≤ 2n− 1, L = ln(1/v).

I Enhanced logarithmic contributions to be resummed at all orders.

I Logarithmic accuracy defined on the logarithm of Σ:

ln Σ(v) ∼ O(αnSL
n+1)︸ ︷︷ ︸

LL

+ O(αnSL
n)︸ ︷︷ ︸

NLL

+ O(αnSL
n−1)︸ ︷︷ ︸

NNLL

+ O(αnSL
n−2)︸ ︷︷ ︸

N3LL

+ ...
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Conjugate vs direct space

Σ(v) ∼
∑
n

∫
dΦrad,n |M(k1, ..., kn)|2 Θ(v − V (k1, ..., kn)) .

I Traditional approach to resummation of V : find a conjugate space where observable
dependence on multiple radiation factorises, and resum there.

I Not always possible. Observables may not factorise, or need several nested transforms.

I Observable factorisation not necessary. V resummable if recursive IRC (rIRC) safe [Banfi,

Salam, Zanderighi, 0112156, 0304148, 0407286], allowing exponentiation of leading logarithms.

* Same soft/collinear scaling properties for any number of emissions.

* The more soft/collinear the emission, the less it contributes to the value of V .

I ‘CAESAR/ARES’ approach follows [Banfi et al., 1412.2126, 1607.03111, 1807.11487]: resummation of
rIRC observables in direct space.

I Classes of interesting transverse observables e.g. pHt are rIRC-safe, but eluded
resummation in direct space for some time. Why?
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Example: Higgs production at small pt

I Two dynamical mechanisms compete in the small-pt region:

H

H

I Left. Commensurate transverse momentum for all emissions:
max kti ≡ kt1 ∼ pt ∼ 0.

I Sudakov limit, sensible ln(M/pt) counting, exponential suppression of Σ(pt) at small pt

=⇒ included by CAESAR/ARES approach.

I Right. Large azimuthal cancellations: kt1 � pt ∼ 0.

I pt → 0 away from the Sudakov limit, Σ(pt) ∼ p2
t at small pt [Parisi, Petronzio, 1979].

I Power-like suppression from the region kti � pt dominates over Sudakov.

=⇒ not included by CAESAR/ARES approach.
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Example: Higgs production at small pt

H H

I ln(M/pt) hierarchy not sensible at small pt: neglected power effects dominate the limit.

I Impossible to recover power behaviour at a given order in ln(M/pt). Standard
(logarithmically-correct) direct-space resummed formula diverges at finite pt since it
misses kt1 � pt contributions.

I Beyond LL in ln(M/pt), resummation in pt space cannot be simultaneously free of
subleading terms and of spurious singularities [Frixione, Nason, Ridolfi, 9809367].

I Limitation bypassed [Monni, Re, PT, 1604.02191], [Bizon, Monni, Re, Rottoli, PT, 1705.09127] (see also [Ebert,

Tackmann, 1611.08610]).
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Direct-space resummation: all-order structure

I Consider v = pt/M , with M the invariant mass of the colour singlet.

Σ(pt) =

∫
dΦB V(ΦB)

∞∑
n=0

∫ n∏
i=1

[dki]|M(p̃1, p̃2, k1, ..., kn)|2 Θ(pt − V ({p̃}, k1, ..., kn))

I V(ΦB) = all-order virtual form factor (see [Dixon, Magnea, Sterman, 0805.3515]).
For example, quark form factor:

• Write all-order cross section as (                                                      )

14

Direct space: virtual corrections
V ({p̃}, k1, . . . , kn) = |~kt1 + · · · + ~ktn|

All-order	form	factor
e.g.	[Dixon,	Magnea,	Sterman	’08]

V(�B) =
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Direct-space resummation: all-order structure

Σ(pt) =

∫
dΦB V(ΦB)

∞∑
n=0

∫ n∏
i=1

[dki]|M(p̃1, p̃2, k1, ..., kn)|2 Θ(pt − V ({p̃}, k1, ..., kn))

I |M(p̃1, p̃2, k1, ..., kn)|2 = all-order real radiation.

I Θ(pt − V ({p̃}, k1, ..., kn)) = Θ(pt − |~kt1 + ...+ ~ktn|) = measurement function.

I Multi-emission amplitude organised into n-particle-correl. (nPC) blocks |M̃(k1, ..., kn)|2.

I For example n = 2 particles ka and kb emitted off incoming gluons:

= +

(
...

)

|M(p̃1,p̃2,ka,kb)|2
|MB(p̃1,p̃2)|2 = 1

2!
|M(ka)|2|M(kb)|2 + |M̃(ka, kb)|2

I Log. hierarchy of the blocks (rIRC-safety): the more correlated, the more subleading.

O(α2
SL

4) + O(α2
SL

3)
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Direct-space resummation: all-order structure
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dΦB V(ΦB)
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n=0
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I |M(p̃1, p̃2, k1, ..., kn)|2 = all-order real radiation.

I Multi-emission amplitude organised into n-particle-correl. (nPC) blocks |M̃(k1, ..., kn)|2.

• Pure virtual corrections (massless form factor) exponentiate at all orders in momentum 
space: need to devise a way to cancel poles against all-order real corrections 
!

• rIRC safety suggests to decompose the squared amplitude in terms of n-particle-
correlated blocks: 
!
!
!
!
!
!
!
!
!
!
!
!

Momentum-space formulation

11

⌘ + +

+ + . . .

+ . . .

e.g.'n'soft'partons'case'(analogous'considerations'for'hardJcollinear)

2JparticleJcorrelated'(i.e.'2'real'emissions)'squared'amplitude'defined'in'terms'of'cut'webs

+ . . .

+ . . .

+ . . .

I Higher-orders in αS at fixed n or larger n =⇒ logarithmically subleading
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I For inclusive observables V ({p̃}, k1, ..., kn) = V ({p̃}, k1 + ...+ kn), integrate nPC blocks
inclusively prior to evaluating the observable:

on the family of inclusive observables V for which

V ({p̃}, k1, . . . , kn) = V ({p̃}, k1 + · · · + kn) . (2.29)

In this case, we can integrate the nPC blocks for n > 1 inclusively prior to evaluating the observable.
Hence, starting from Eq. (2.9) for the pure gluonic case, we can replace it with the following squared
amplitude

|M(p̃1, p̃2, k1, . . . ,kn)|2 = |MB(p̃1, p̃2)|2

⇥ 1

n!

(
nY

i=1

✓
|M(ki)|2 +

Z
[dka][dkb]|M̃(ka, kb)|2�(2)(~kta + ~ktb � ~kti)�(Yab � Yi)

+

Z
[dka][dkb][dkc]|M̃(ka, kb, kc)|2�(2)(~kta + ~ktb + ~ktc � ~kti)�(Yabc � Yi) + . . .

◆ )
,

(2.30)

where Yabc... is the rapidity of the ka + kb + kc + . . . system in the centre-of-mass frame of the
collision. We refer to this treatment of the squared amplitude as to the inclusive approximation.
For non-inclusive observables, namely the ones that do not fulfil Eq. (2.29), this reorganisation is
not correct starting at NNLL. Therefore in that case one must correct for the non-inclusive nature
of the observables. The full set of NNLL corrections for a generic global, rIRC safe observable is
defined in refs. [43, 49]. In the rest of this article we refer to observables of the type (2.29).

Higher-order corrections require the inclusion of higher-multiplicity and higher-order blocks
with respect to those relevant to Eq. (2.28). The relevant blocks necessary to a given order are
summarised in Table 2.2. For instance, at NNLL, for the observables (2.29), one has to include

Logarithmic order Blocks required

LL {1PC(0) (sc)}

NLL {1PC(0), 1PC(1) (sc)}; {2PC(0) (sc)}

NNLL {1PC(m1), 1PC(2) (sc)}; {2PC(0), 2PC(1) (sc)};
{3PC(0) (sc)}

N3LL {1PC(m2), 1PC(3) (sc)}; {2PC(m1), 2PC(2) (sc)};
{3PC(0), 3PC(1) (sc)}; {4PC(0) (sc)}

...
...

NkLL {1PC(mk�1), 1PC(k) (sc)}; · · · ; {(k + 1)PC(0) (sc)}

Table 1. Blocks to be included in the squared-amplitude decomposition at a given logarithmic order. At
each order, the higher-rank blocks are to be included in the soft-collinear limit (“sc” in the table).

2PC(0) (i.e. the fully correlated double emission), and 1PC(1) both in the soft and in the hard-
collinear limit, and the fully inclusive contribution of the 3PC(0), 2PC(1), and 1PC(2) blocks in the
soft-collinear limit.

In order to repeat the procedure that led to Eq. (2.28) at higher logarithmic accuracy, we need
to handle the phase space in the multiple-emission kinematics. In the NLL case derived in the
previous section, indeed, all resolved real emissions are soft and collinear and therefore they do not
modify each other’s phase space. However, starting at NNLL one or more real emissions can be
hard and collinear to the emitting leg and this changes the available phase space for subsequent
real emissions. The kinematics and the proper treatment of hard-collinear emissions, still missing
in our formulation, will be discussed in the following section.

– 10 –

= |MB(p̃1, p̃2)|2
1

n!

n∏
i=1

|Minc(ki)|2
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Direct-space resummation: cancellation of IRC singularities

Σ(pt) =

∫
dΦB V(ΦB)|MB(p̃1, p̃2)|2

∞∑
n=0

1

n!

∫ n∏
i=1

[dki]|Minc(ki)|2 Θ(pt − V ({p̃}, k1, ..., kn))

I Virtual and real radiation separately IRC divergent: need cancellation of singularities.

I Introduce a slicing parameter εkt1, (kt1 hardest emission).

I Blocks with kti < εkt1 are unresolved, those with kti > εkt1 are resolved.

I Unresolved contribute negligibly to V : drop them in Θ(pt − V ({p̃}, k1, ..., kn)).
Correct up to εpkt1 terms by rIRC safety.

I Unresolved exponentiate and regularise the virtuals =⇒ Sudakov form factor:

V(ΦB)
∞∑
m=0

1

m!

∫ m∏
i=2

[dki]|Minc(ki)|2Θ(εkt1 − kti) ∝ He−R(εkt1)

R(εkt1) =

2∑
`=1

∫ M

εkt1

dkt

kt
R′`(kt) =

2∑
`=1

∫ M

εkt1

dkt

kt

(
A`(αS(kt)) lnM2/k2

t +B`(αS(kt))

)
I A and B known up to N3LL [Davies, Stirling, 1984], [de Florian, Grazzini, 0008152], [Becher, Neubert,

1007.4005], [Li, Zhu, 1604.01404], [Moch, et al., 1805.09638].
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Direct-space resummation: logarithmic counting

Σ(pt) ≈
∫
dΦB |MB(p̃1, p̃2)|2

∫
[dk1]e−R(εkt1)R′(kt1)

∞∑
n=0

1

n!

∫
εkt1

n∏
i=2

[dki]|Minc(ki)|2 Θ(pt − V ({p̃}, k1, ..., kn))

I All resolved kti are ∼ kt1 but not necessarily ∼ pt: all configurations (kti ∼ pt and
kti � pt) correctly accounted for, no assumptions on the hierarchy between kti and pt.

I kti � pt region included =⇒ spurious singularity at finite pt is gone.

I Standard CAESAR/ARES would choose ε pt as slicing, missing kti � pt.

I Logarithmic counting defined in terms of ln(M/kti).

* In the Sudakov limit, where the hierarchy in ln(M/pt) makes sense, kti ∼ pt ∼ 0.
Logarithmic accuracy in ln(M/kti) translates into the same accuracy in ln(M/pt) plus
subleading terms ...

* ... the subleading terms necessary to remove the spurious singularity.
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Direct-space resummation: master formula at NLL

dΣNLL(pt)

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
kt1

∂

∂kt1

(
−e−R(εkt1)LNLL(kt1)

)
×

×
∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kti)

)
Θ(pt − |~kt1 + ...+ ~kt(n+1)|).

I Expand around kt1 (as opposed to around pt) in Sudakov and resolved radiation up to
the desired logarithmic accuracy:

R(εkt1) = R(kt1) + R′(kt1) ln 1/ε +
1

2
R′′(kt1) ln2 1/ε + ...

R′(kti) = R′(kt1)︸ ︷︷ ︸
NLL

+ R′′(kt1)︸ ︷︷ ︸
NNLL

ln kt1/kti︸ ︷︷ ︸
small

+ ...

I Subleading terms in the expansions of R′(kti) needed only for few resolved blocks:
0, 1, 2, ... at NLL, NNLL, N3LL, ...

dΣNLL(pt)

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
kt1

∂

∂kt1

(
−e−R(kt1)LNLL(kt1)

)
×

× e−R
′(kt1) ln 1/ε

∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kt1)

)
︸ ︷︷ ︸

≡
∫
dZ[{R′,ki}]

Θ(pt − |~kt1 + ...+ ~kt(n+1)|).

I
∫
dZ Θ finite as ε→ 0: real vs virtual cancellation, no leftover ε dependence.
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Finiteness in four dimensions, NLL case

dΣNLL(pt)

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
kt1

∂

∂kt1

(
−e−R(kt1)LNLL(kt1)

)
×

× εR
′(kt1)

∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kt1)

)
︸ ︷︷ ︸

≡
∫
dZ[{R′,ki}]

Θ(pt − |~kt1 + ...+ ~kt(n+1)|).

I Luminosity LNLL(kt1) =
∑
a,b

d|MB |2ab
dΦB

fa(x1, kt1)fb(x2, kt1).

I
∫
dZ[{R′, ki}]Θ finite as ε→ 0:

εR
′(kt1) = 1−R′(kt1) ln(1/ε) + ... = 1−

∫ 2π

0

dφ

2π

∫ kt1

εkt1

dkt

kt
R′(kt1) + ...,

∫
dZ[{R′, ki}]Θ =

[
1−

∫ 2π

0

dφ

2π

∫ kt1

εkt1

dkt

kt
R′(kt1) + ...

] [
Θ(pt − |~kt1|) +

∫ 2π

0

dφ2

2π

∫ kt1

εkt1

dkt2

kt2
R′(kt1)Θ(pt − |~kt1 + ~kt2|) + ...

]
= Θ(pt − |~kt1|) +

∫ 2π

0

dφ2

2π

∫ kt1

0︸ ︷︷ ︸
ε→0

dkt2

kt2
R′(kt1)

[
Θ(pt − |~kt1 + ~kt2|)−Θ(pt − |~kt1|)

]
︸ ︷︷ ︸

finite: real-virtual cancellation

+...

Paolo Torrielli Transverse-momentum resummation at N3LL 14 / 24



Singularity at finite pt in the CAESAR/ARES approach

dΣNLL(pt)

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
kt1

∂

∂kt1

(
−e−R(kt1)LNLL(kt1)

)
×

× εR
′(kt1)

∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kt1)

)
Θ(pt − |~kt1 + ...+ ~kt(n+1)|).

I Expand up to NLL all kti around pt instead of expanding around kt1 (OK
logarithmically, but missing all non-logarithmic configurations kti � pt)

R(kti) = R(pt) +R′(pt) ln pt/kti + ..., R′(kti) = R′(pt) + ...

dΣNLL(pt)

dΦB
∼ LNLL(pt)e

−R(pt)R′(pt)
∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π

(
kt1

pt

)R′(pt)
×

× εR
′(pt)

∞∑
n=0

1

n!

(
n+1∏
i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(pt)

)
Θ(pt − |~kt1 + ...+ ~kt(n+1)|)︸ ︷︷ ︸

∼
(
pt
kt1

)2
for kt1� pt

.

I kt1 integrand goes as k
R′(pt)−3
t1 , singularity for R′(pt) = 2. Conversely, expanding

around kt1 one has e−R(kt1), which makes it converge.

Paolo Torrielli Transverse-momentum resummation at N3LL 15 / 24



Direct-space resummation: master formula at N3LL
dΣ(v)

dΦB
=

∫
dkt1

kt1

dφ1

2π
kt1

∂

∂kt1

(
−e−R(kt1)LN3LL(kt1)

)∫
dZ[{R′, ki}]Θ (v − V ({p̃}, k1, . . . , kn+1)) +

+

∫
dkt1

kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs

ζs

dφs

2π

{(
R′(kt1)LNNLL(kt1)− kt1

∂

∂kt1
LNNLL(kt1)

)
×
(
R′′(kt1) ln

1

ζs
+

1

2
R′′′(kt1) ln2 1

ζs

)
−R′(kt1)

(
kt1

∂

∂kt1
LNNLL(kt1)− 2

β0

π
α2
s(kt1)P̂ (0) ⊗ LNLL(kt1) ln

1

ζs

)
+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}{
Θ (v − V ({p̃}, k1, . . . , kn+1, ks))−Θ (v − V ({p̃}, k1, . . . , kn+1))

}
+

+
1

2

∫
dkt1

kt1

dφ1

2π
e−R(kt1)

∫
dZ[{R′, ki}]

∫ 1

0

dζs1

ζs1

dφs1

2π

∫ 1

0

dζs2

ζs2

dφs2

2π
R′(kt1)

×
{
LNLL(kt1)

(
R′′(kt1)

)2
ln

1

ζs1
ln

1

ζs2
− kt1

∂

∂kt1
LNLL(kt1)R′′(kt1)

(
ln

1

ζs1
+ ln

1

ζs2

)

+
α2
s(kt1)

π2
P̂ (0) ⊗ P̂ (0) ⊗ LNLL(kt1)

}

×
{

Θ (v − V ({p̃}, k1, . . . , kn+1, ks1, ks2))−Θ (v − V ({p̃}, k1, . . . , kn+1, ks1))−

Θ (v − V ({p̃}, k1, . . . , kn+1, ks2)) + Θ (v − V ({p̃}, k1, . . . , kn+1))

}
+O

(
αns ln2n−6 1

v

)
.

I Luminosities (LN3LL, LNNLL, LNLL) include hard H and coefficient C functions.

I Finite in four dimensions (
∫
dZ and difference of Θ’s)
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Features of the master formula at N3LL
I Reproduces analytically resummation in impact-parameter b space ([Parisi, Petronzio, 1979],

[Collins, Soper, Sterman, 1985], [Bozzi et al., 0508068], [Becher, Neubert, Wilhelm, 1212.2621]).

I Reproduces the correct Σ(pt) ∼ p2
t scaling at small pt. No singularities at finite pt.

* NLL (DY and nf = 4) gives exactly the original [Parisi, Petronzio, 1979] result:

d2Σ(pt)

dptdΦB
= 4

dσB

dΦB
pt

∫ M

ΛQCD

dkt1

k3
t1

e
−R(kt1) ' 2

dσB

dΦB
pt

(
Λ2

QCD

M2

) 16
25

ln 41
16

.

* Control of logarithms ln(M/kti) up to N3LL =⇒ improve the perturbative prediction
for the coefficient in front of pt (non-perturbative effects not included).

* Each subleading order in ln(M/kti) induces a relative O(αS) correction w.r.t. the
previous in the coefficient of pt: region kti � pt under control.

* Formula implemented in Monte-Carlo framework.

* Resolved radiation dZ[{R′, ki}] generated as a simplified shower over secondary
emissions.

* εkt1 is a correct resolution scale for all observables with the same LL as pt.

* A single generator can compute them all (pHt , φ∗η in Drell Yan, pt(j1), ET , ...).

* Formulae implemented in MC code RadISH (Radiation off Initial-State Hadrons): fully
differential in the Born phase space.
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Multiplicative matching to fixed order

ΣMAT
mult (v) =

ΣN3LL(v)

ΣN3LL
asym.

[
ΣN3LL

asym.

ΣN3LO(v)

ΣEXP(v)

]
EXPANDED TO N3LO

,

where

ΣN3LO(v) = σN3LO
pp→X −

∫ ∞
v

dv′
dσNNLO
pp→Xj(v

′)

dv′
,

ΣN3LL
asym. =

∫
with cuts

dΦB

(
lim

ln(Q/kt)→0
LN3LL

)
= lim

large v
ΣN3LL(v).

I ΣEXP(v) = expansion of ΣN3LL(v) up to the relevant order in αS.
Determined as an analytic linear combination of master integrals evaluated numerically.

I ΣN3LL
asym. avoids (N4LL) K factors at large v =⇒ fixed order cumulative recovered.

I At NNLO, the multiplicative scheme includes constant terms of O(α3
S) from the fixed

order, absent in an additive scheme ΣMAT
add (v) = ΣN3LL(v) + ΣN3LO(v) − ΣEXP(v).
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Validation
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Figure 1. Comparison between the fixed-order transverse momentum distribution for Higgs boson produc-
tion at

p
s = 13 TeV at NLO (left) and NNLO (right) and the expansion of the N3LL resummation formula

given in Eq. (3.3) to the corresponding order, i.e. O(↵4
s ) and O(↵5

s ) (namely O(↵2
s ) and O(↵3

s ) relative to
Born), respectively.
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Figure 2. Left: difference between the full NLO and NNLO pH
t distribution and the expansion of the NNLL

and N3LL resummation formulae (3.3) to the respective perturbative order. Right: difference between the
fixed-order NNLO coefficient, i.e. the O

�
↵5

s

�
term alone, and the corresponding coefficient obtained from

the expansion of the N3LL resummation.

As a check on the theoretical setup that will be used in the next sections, it is interesting to
compare the predictions for the pH

t spectrum obtained with the two matching schemes defined in
Eqs. (4.2) and (4.7). In order to compare the multiplicative and additive schemes on an equal foot-
ing, hence including the same ingredients for both schemes, in this section we consider a matching
to NNLO at the level of the cumulative cross section that will allow us to estimate the systematic
uncertainty associated with the choice of the matching scheme. In this case the resummed cross
section is defined as in Eqs. (4.2) and (4.7) with the obvious replacement of N3LO by NNLO. The
result of the comparison is reported in Figure 3. We observe a very good agreement between the
two matching schemes, which is a sign of robustness of the predictions shown below. The lower
panel of Figure 3 shows the relative uncertainty bands obtained within the two schemes, where each
prediction is divided by its own central value. The theory uncertainties have a very similar pattern.
Given that the difference between the two schemes is always quite moderate with respect to the
scale uncertainty, in the following we decide to proceed with the multiplicative prescription (4.7)
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Figure 3. Comparison between additive and multiplicative matching schemes at N3LL+NLO for the
transverse momentum distribution for Higgs boson production at
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s = 13 TeV. The lower panel shows the

relative uncertainty bands obtained within the two schemes.
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Figure 4. Left: difference between the full NLO and NNLO pZ
t distribution and the expansion of the NNLL

and N3LL resummation formulae (3.3) to the respective perturbative order. Right: difference between the
fixed-order NNLO coefficient, i.e. the O

�
↵3

s

�
term alone, and the corresponding coefficient obtained from

the expansion of the N3LL resummation.

as our default. We find analogous conclusions for DY production, and therefore we choose not to
report this further comparison here.

4.2 Validation of the expansion for Drell-Yan pair production

Similarly to the validation performed for inclusive Higgs production, in this section we consider
the difference between the NNLO differential distribution and the corresponding expansion of the
N3LL resummed calculation. In particular, we focus on the differential distribution

d⌃(pZ
t )

d ln(pZ
t /GeV)

, (4.10)

in order to highlight potential logarithmic differences in the pZ
t ! 0 region.
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Inclusive Higgs production.

Expansion of resummation against
fixed NNLO from NNLOJET [Gehrmann

et al., 1607.08817].

Left = full distribution.
Right = NNLO coefficient alone.

Analogously for Drell Yan, channel
by channel.

Matching-scheme dependence.

Multiplicative vs additive scheme at
N3LL+NLO (i.e. using σNNLO

pp→H and

σNLO
pp→Hj).

Robustness against scheme choice
(central value and band) across the
entire pHt range.
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Inclusive Higgs production at 13 TeV (HEFT)

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations

 d
Σ

/d
 p

tH
 [

p
b

/G
e

V
]

NNLL+NLO

N3LL+NLO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ra
tio

 t
o

 N
3
L

L
+

N
L

O

pt
H [GeV]

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 10  20  30

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations

 d
Σ

/d
 p

tH
 [

p
b

/G
e

V
]

NNLL+NNLO

N3LL+NNLO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
ra

tio
 t

o
 N

3
L

L
+

N
N

L
O

pt
H [GeV]

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 10  20  30

Figure 6. Comparison between different combinations of fixed-order (NLO and NNLO) and resummation
(NNLL and N3LL) for the transverse momentum distribution for Higgs boson production at

p
s = 13 TeV.

Left: NLO and Right: NNLO. The lower panel shows the ratio of predictions to that obtained with N3LL
resummation.

5.1 Matched predictions for inclusive Higgs

We start by quantifying the size of the N3LL effects compared to NNLL resummation. In the left
plot of Figure 6 we compare the differential distributions at N3LL+NLO and NNLL+NLO in the
small-pH

t region. The lower panel of the plot shows the ratio of both predictions to the central line
of the N3LL+NLO band, which corresponds to central scales in our setup. We observe that N3LL
corrections are very moderate in size, with effects of order 2% on the central prediction in most of
the displayed range, growing up to at most 5% only in the region of extremely low pH

t . The central
N3LL+NLO result is entirely contained in the NNLL+NLO uncertainty band. On the other hand,
the inclusion of the N3LL corrections reduces the perturbative uncertainty for pH

t . 5 GeV.
The right plot of Figure 6 shows the same comparison for the matching to NNLO. The effect

of the N3LL corrections is consistent with the previous order, with a percent-level correction in
most of the range, growing up to 5% at very small pH

t . Similarly, the perturbative uncertainty is
significantly reduced below 10 GeV with respect to the NNLL+NNLO case. It is important to stress
that in the NNLL+NNLO matching the fixed order and the expansion of the resummation differ by
a divergent term ⇠ 1/pH

t at small pH
t . The fact that the divergence is not visible in the distribution

reported in the upper panel of Figure 6 is entirely due to the nature of the multiplicative scheme,
which ensures that the distribution follows the resummation scaling at small pH

t , therefore damping
the divergence. A multiplicative matching of N3LL resummation to NNLO was already shown in
Ref. [85], where however no significant reduction in the uncertainty band at small pH

t was observed in
that case. This feature was due to the limited statistics of the fixed-order distributions used in that
analysis at small pH

t , whose fluctuations dominated the uncertainty band at very small transverse
momentum. An additive matching of N3LL to NNLO was recently performed in Ref. [96].

Next, we consider the comparison between the matched prediction and the fixed-order one.
Figure 7 shows this comparison for two different central scales. The left plot is obtained with
central µF = µR = mH/2, while the right plot is obtained with µF = µR = mH . The rest of
the setup is kept as described above. We observe that at µF = µR = mH/2 the uncertainty band
is affected by cancellations in the scale variation, which accidentally lead to a small perturbative
uncertainty. Choosing mH as a central scale (right plot of Figure 7) leads to a broader uncertainty
band resulting in a more robust estimate of the perturbative error. This is particularly the case
for predictions above 50 GeV, where resummation effects are progressively less important. We
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Figure 7. Comparison of the transverse momentum distribution for Higgs boson production at NNLO and
N3LL+NNLO for a central scale choice of µR = µF = mH/2 (left) and µR = µF = mH (right). In both
cases, Q = mH/2. The lower panel shows the ratio to the N3LL+NNLO prediction.

RadISH+NNLOJET, 13 TeV, mH = 125 GeV

µR = µF = mH/2, Q = mH/2

PDF4LHC15 (NNLO)
uncertainties with µR, µF, Q variations

d
Σ

/d
 p

tH
 [
p
b
/G

e
V

]

NNLL+NLO

NNLO

N3LL+NNLO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

ra
tio

 t
o
 N

3
L
L
+

N
N

L
O

pt
H [GeV]

 0.8

 1

 1.2

 10  20  30  40  50  60  70  80  90  100  110  120

Figure 8. Comparison of the transverse momentum distribution for Higgs boson production between
N3LL+NNLO, NNLL+NLO, and NNLO at central scale choice of µR = µF = mH/2. The lower panel
shows the ratio to the N3LL+NNLO prediction.

notice indeed that in both cases the effect of resummation starts to be increasingly relevant for
pH

t . 40 GeV.
In the following we choose mH/2 as a central scale. Nevertheless, we stress that a comparison to

data (not performed here for Higgs boson production) will require a study of different central-scale
choices.

To conclude, Figure 8 reports the comparison between our best prediction (N3LL+NNLO),
the NNLL+NLO, and the NNLO distributions. The plot shows a very good convergence of the
predictions at different perturbative orders, with a significant reduction of the scale uncertainty in
the whole kinematic range considered here.

5.2 Matched predictions for fiducial H ! ��

Experimental measurements are performed within a fiducial phase-space volume, defined in order
to comply with the detector geometry and to enhance signal sensitivity. On the theoretical side it
is therefore highly desirable to provide predictions that exactly match the experimental setup. The
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I Multiplicative matching up to NNLO (i.e. using σN3LO
pp→H and σNNLO

pp→Hj).

I N3LO pp→ H cross section from [Anastasiou et al., 1503.06056]. NNLO pp→ Hj cross section
from NNLOJET [Gehrmann et al., 1607.08817].

I Perturbative N3LL uncertainty reduced with respect to NNLL below 10-15 GeV.

I Resummation effects important below 40 GeV.
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Fiducial distributions for pp→ H → γγ at 13 TeV (HEFT)
I ATLAS selection cuts [1802.04146] (no photon isolation to avoid non-global logarithms):

min(pγ1
t , pγ2

t ) > 31.25 GeV, max(pγ1
t , pγ2

t ) > 43.75 GeV,

0 < |ηγ1,2 | < 1.37 or 1.52 < |ηγ1,2 | < 2.37, |Yγγ | < 2.37 .

I σN3LO
fiducial ∼ σNNLO

fiducial × σN3LO
inclusive / σ

NNLO
inclusive, correct up to N4LL effects.
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Figure 9. Comparison of the transverse momentum distribution for Higgs boson production at
p

s =

13 TeV in the fiducial volume defined by Eq. (5.1) at N3LL+NLO and NLO (left) and N3LL+NNLO and
NNLO (right). The lower panel shows the ratio to the N3LL+NNLO prediction.

availability of matched predictions that are fully differential in the Born phase space also allows for
a direct comparison to data without relying on Monte Carlo modeling of acceptances. In this section
we consider the process pp ! H ! �� and, in particular, we focus on the transverse momentum of
the �� system in the presence of fiducial cuts.

The fiducial volume is defined by the set of cuts detailed below [7]

min(p�1

t , p�2

t ) > 31.25 GeV, max(p�1

t , p�2

t ) > 43.75 GeV,

0 < |⌘�1,2 | < 1.37 or 1.52 < |⌘�1,2 | < 2.37, |Y�� | < 2.37 , (5.1)

where p�1

t , p�2

t are the transverse momenta of the two photons, ⌘�i are their pseudo-rapidities in the
hadronic centre-of-mass frame, and Y�� is the photon-pair rapidity. In the definition of the fiducial
volume we do not include the photon-isolation requirement, since this would introduce additional
logarithmic corrections of non-global nature in the problem, spoiling the formal N3LL+NNLO
accuracy of the differential distributions.4 We consider on-shell Higgs boson production followed
by a decay into two photons under the narrow-width approximation with a branching ratio of
2.35 ⇥ 10�3.

In Figure 9 we show the comparison of the matched and the fixed-order predictions for the
transverse momentum of the photon pair in the fiducial volume, at different perturbative accuracies:
N3LL+NLO vs. NLO in the left panel, and N3LL+NNLO vs. NNLO in the right one.

By comparing the two panels of Figure 9 we notice a substantial reduction in the theoretical
uncertainty in the medium-high-p��t region, driven by the increase in perturbative accuracy of
the fixed-order computation; at very low p��t , the prediction is dominated by resummation, which
is common to both panels. The pattern observed in the right panel is very similar to what we
obtained in the inclusive case in the left panel of Figure 7. We stress again that the particularly
small uncertainty of the matched prediction is to a certain extent due to the choice of central scales
we adopt, namely µR = µF = mH/2, which suffers from large accidental cancellations.

4However, we point out that photon-isolation criteria in this case are not aggressive, and therefore they could be
safely included at fixed order.
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I Uncertainty reduction w.r.t. fixed order below 80 GeV, effects on shape below 40 GeV.

I Pattern comparable to inclusive case.

Paolo Torrielli Transverse-momentum resummation at N3LL 21 / 24



Fiducial distributions for pp→ Z → `+`− at 8 TeV
I ATLAS selection cuts [1512.02192]:

p`
±
t > 20 GeV, |η`

±
| < 2.4, |Y``| < 2.4, 46 GeV < M`` < 150 GeV.

I Fixed order from NNLOJET collaboration [Gehrmann, et al.,1610.01843], central

µR = µF =
√
M2
`` + (pZ

t )2, central resummation scale Q = M``/2.
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Figure 10. Comparison of the normalised transverse momentum distribution for Drell-Yan pair production
at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at

p
s = 8 TeV integrated over the full

lepton-pair rapidity range (0 < |Y``| < 2.4), in three different lepton-pair invariant-mass windows. For
reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.

In Figure 11 we focus our analysis on the central lepton-pair invariant-mass window defined in
Eq. (6.2) and show predictions for the normalised pZ

t distribution in six different lepton-pair rapidity
slices:

(a) 0.0 < |Y``| < 0.4, (b) 0.4 < |Y``| < 0.8, (c) 0.8 < |Y``| < 1.2,

(d) 1.2 < |Y``| < 1.6, (e) 1.6 < |Y``| < 2.0, (f) 2.0 < |Y``| < 2.4. (6.3)

The comments relevant to Figure 10 by far and large apply in this case as well, with our
best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in the whole pZ

t

range, regardless of the considered rapidity slice. It is moreover in very good agreement with the
experimental data, hence significantly improving on both the NNLL+NLO, in the whole pZ

t range,
and the pure NNLO, in the pZ

t . 20 GeV region.

6.2 Matched predictions for fiducial �⇤
⌘ distributions

Figure 12 shows the �⇤
⌘ distribution for three different lepton-pair invariant-mass windows as defined

in Eq. (6.2).

– 20 –

I Significant impact of N3LL+NNLO w.r.t. NNLL+NLO in shape and normalisation.
Prediction at the ±3− 5% level across the entire range.
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Fiducial distributions for pp→ Z → `+`− at 8 TeV

φ∗η = tan
(π −∆φ

2

)
sin θ∗

I ∆φ = azimuth between leptons, θ∗ = angle between leptons and beam in the Z frame.
φ∗η = (kt/M) sinφ + power corrections for a single emission.
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Figure 13. Comparison of the normalised �⇤
⌘ distribution for Drell-Yan pair production at NNLO (green),

NNLL+NLO (blue) and N3LL+NNLO (red) at
p

s = 8 TeV in the central lepton-pair invariant-mass
window (66 GeV < M`` < 116 GeV) for three different lepton-pair rapidity slices. For reference, the
ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.
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I Significant impact of N3LL+NNLO w.r.t. NNLL+NLO in shape and normalisation.
Prediction at the ±3− 5% level across the entire range, resummation important for
φ∗η . 0.2.
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Outlook

I A framework to resum inclusive transverse observables V in momentum space.

I Clean interpretation of the dominant dynamics (Sudakov or not) at V → 0.

I Efficient numerical implementation through Monte-Carlo techniques: RadISH.

I Connections with parton-shower formalisms.

I A solution in momentum space is much less observable-dependent w.r.t. one in
conjugate space: one resolution scale for a class of observables.

I Extensions conceptually known: exclusive is a subleading effect
=⇒ only few correlated blocks to be treated exclusively.

I Access to multi-differential information.

I Towards a single MC generator to resum classes of observables at high accuracy.

Thank you for your attention
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Backup
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Small-pt behaviour at NLL

d2Σ(pt)

d2~ptdΦB
∝
∫

dkt1

kt1

dφ1

2π
e−R(kt1)R′(kt1)

∫
dZ[{R′, ki}]δ(2)

(
~pt −

(
~kt1 + · · ·+ ~kt(n+1)

))
.

I Fourier transform of the delta: δ(2)

(
~pt − |

∑
i

~kti|
)

=

∫
d2~b

4π2
e−i

~b·~pt
n+1∏
i=1

ei
~b·~kti .

I Integrate over azimuthal direction of all ~kti and of ~pt:

d2Σ(v)

dptdΦB
= σ(0)(ΦB) pt

∫
b dbJ0(ptb)

∫
dkt1

kt1
e−R(kt1)R′(kt1)J0(bkt1)

× exp

{
−R′ (kt1)

∫ kt1

0

dkt

kt
(1− J0(bkt))

}
.

I In the limit where M � kt1 � pt this gives∫
b dbJ0(ptb)J0(bkt1) exp

{
−R′ (kt1)

∫ kt1

0

dkt

kt
(1− J0(bkt))

}
' 4

k−2
t1

R′ (kt1)

=⇒
d2Σ(v)

dptdΦB
= 4σ(0)(ΦB) pt

∫ M

ΛQCD

dkt1

k3
t1

e−R(kt1).
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Equivalence with b space

I Take direct-space formula for dΣ/d~pt, Fourier-transform the δ(2)(pt − |
∑
i
~kti|), and get

d

dpt
Σ̂c1c2
N1,N2

(pt) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(ptb)

∫ M

0

dkt1

kt1

×
2∑

`1=1

(
R′`1 (kt1) +

αs(kt1)

π
ΓN`1

(αs(kt1)) + Γ
(C)
N`1

(αs(kt1))

)
J0(bkt1)

× exp

{
−

2∑
`=1

∫ M

kt1

dkt

kt

(
R′` (kt) +

αs(kt)

π
ΓN` (αs(kt)) + Γ

(C)
N`

(αs(kt))

)
J0(bkt)

}

× exp

{
−

2∑
`=1

∫ M

εkt1

dkt

kt

(
R′` (kt) +

αs(kt)

π
ΓN` (αs(kt)) + Γ

(C)
N`

(αs(kt))

)
(1− J0(bkt))

}
.

I Take limit ε→ 0. Integrand in kt1 is a total derivative and integrates to 1, leaving

d

dpt
Σ̂c1c2
N1,N2

(pt) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(ptb)

× exp

{
−

2∑
`=1

∫ M

0

dkt

kt

(
R′` (kt) +

αs(kt)

π
ΓN` (αs(kt)) + Γ

(C)
N`

(αs(kt))

)
(1− J0(bkt))

}
.

I Transform 1− J0 in a Θ up to subleading logarithms, and plug this into the hadronic
cross section, to get the traditional b-space formulation.

(1− J0(bkt)) ' Θ(kt −
b0

b
) +

ζ3

12

∂3

∂ ln(Mb/b0)3
Θ(kt −

b0

b
) + . . . .

I ζ3 term starts at N3LL, is resummation-scheme change w.r.t. b space.
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Generating secondary radiation as a simplified parton shower

I Secondary radiation:

dZ[{R′, ki}] =
∞∑
n=0

1

n!

(
n+1∏
i=2

∫ 2π

0

dφi

2π

∫ kt1

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1)

=
∞∑
n=0

(
n+1∏
i=2

∫ 2π

0

dφi

2π

∫ kt(i−1)

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1),

εR
′(kt1) = e−R

′(kt1) ln 1/ε =

n+2∏
i=2

e−R
′(kt1) ln kt(i−1)/kti ,

with kt(n+2) = ε kt1.

I Each secondary emissions has differential probability

dwi =
dφi

2π

dkti

kti
R′(kt1)e−R

′(kt1) ln kt(i−1)/kti =
dφi

2π
d
(
e−R

′(kt1) ln kt(i−1)/kti
)
.

I kt(i−1) ≥ kti. Scale kti extracted by solving e−R
′(kt1) ln kt(i−1)/kti = r, with r uniform

random number in [0, 1].

I Extract φi randomly in [0, 2π].
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Modified logarithms

I Ensure resummation does not affect the hard region of the spectrum.

I Supplement logarithms with power-suppressed terms, irrelevant at small kt1, that
enforce resummation to vanish at kt1 � Q.

I Modified logarithms

ln

(
Q

kt1

)
→ L̃ =

1

p
ln

((
Q

kt1

)p
+ 1

)
.

I Q = resummation scale of O(M), varied to assess systematics due to higher logarithms.

I p = chosen so that resummation vanishes faster than fixed order in the hard region.

I Checked that variation of p does not induce visible effects.

I Modified logarithms map kt1 = Q into kt1 →∞.
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Checks

I b-space resummation reproduced analytically.

I Correct small-pt scaling reproduced analytically.

I Numerical checks down to very low pt against b-space codes at the resummed level (HqT
[Bozzi et al., 0302104, 0508068], [de Florian et al., 1109.2109 , CuTe [Becher et al., 1109.6027, 1212.2621]).

I Fixed-order expansion checked against NNLOJET partonic channel by partonic channel.
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Figure 5. Validation between the fixed-oder coefficients (at NLO and NNLO) and the corresponding
expansion of the resummed prediction (at NNLL and N3LL) for the individual partonic channels, with
L = ln(pZ

t /GeV). Note that in contrast to Fig. 4, the curves labelled as “NNLL” only comprises term of
O

�
↵2

s

�
and does not include higher-order O

�
↵3

s

�
terms.

To perform the validation we consider 8 TeV pp collisions with NNPDF3.0 parton densities [141],
and we work within an inclusive setup requiring

80 GeV < M`` < 100 GeV, (4.11)

and setting the scales to µR = µF = MZ with xQ = Q/M`` = 1. This inclusive setup is chosen as to

– 14 –
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Luminosity to N3LL

LN3LL(kt1) =
∑
c,c′

d|MB |2cc′
dΦB

∑
i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e

−L,
x1

z1

)
fj

(
µF e

−L,
x2

z2

)

×
{
δciδc′jδ(1− z1)δ(1− z2)

(
1 +

αS(µR)

2π
H(1)(µR, xQ) +

α2
S(µR)

(2π)2
H(2)(µR, xQ)

)
+
αS(µR)

2π

1

1− 2αS(µR)β0L

(
1− αS(µR)

β1

β0

ln (1− 2αS(µR)β0L)

1− 2αS(µR)β0L

)
×
(
C

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)
+
α2

S(µR)

(2π)2

1

(1− 2αS(µR)β0L)2

(
C

(2)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)

+
α2

S(µR)

(2π)2

1

(1− 2αS(µR)β0L)2

(
C

(1)
ci (z1, µF , xQ)C

(1)
c′j (z2, µF , xQ) +G

(1)
ci (z1)G

(1)
c′j(z2)

)
+
α2

S(µR)

(2π)2
H(1)(µR, xQ)

1

1− 2αS(µR)β0L

(
C

(1)
ci (z1, µF , xQ)δ(1− z2)δc′j + {z1 ↔ z2; c, i↔ c′, j}

)}
,

with L = ln(Q/kt1), and xQ = Q/M .
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