Combining QED and QCD transverse-momentum resummation

Giancarlo Ferrera

Milan University & INFN Milan

HARPS meeting Genoa – October 31th 2018

Outline

- Overview of transverse-momentum resummation in QCD
- 2 q_T resummation for Drell-Yan and Higgs: numerical results
- 3 DYTurbo: fast predictions for Drell-Yan processes
- 4 Combining QED and QCD q_T resummation

q_T distribution

 $\begin{array}{rcl} \mathbf{h_1(p_1) + h_2(p_2)} & \rightarrow & \mathsf{F}(\mathsf{M}) + \mathsf{X} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

Fixed-order perturbative expansion not reliable for $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \overset{q_{T} \ll M}{\sim} c_{0} + \alpha_{S} \left[c_{12} \ln^{2} \frac{M^{2}}{q_{T}^{2}} + c_{11} \ln \frac{M^{2}}{q_{T}^{2}} + c_{10} \right] + \cdots$$

 $lpha_S \ln(M^2/q_T^2) \gg 1$: need for resummation of large logs.

$$\frac{d\sigma}{dq_T^2} = \frac{d\sigma^{(res)}}{dq_T^2} + \frac{d\sigma^{(fin)}}{dq_T^2}; \qquad \begin{array}{l} \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(fin)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{=} 0 \\ \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(res)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{\sim} c_0 + \sum_{n=1}^{\infty} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \ln^m \frac{M^2}{q_T^2} \end{array}$$

q_T distribution

 $h_1(p_1) + h_2(p_2) \rightarrow F(M) + X$

 $\begin{array}{ll} \mbox{where} & \textit{F} = \textit{V},\textit{V}_{1}\textit{V}_{2},\gamma\gamma,\textit{H},\textit{HH} \\ \mbox{and} & \textit{V} \rightarrow \textit{I}_{1}\textit{I}_{2},\textit{V}_{1}\textit{V}_{2} \rightarrow \textit{4I},\textit{H} \rightarrow \gamma\gamma/\textit{4I},\ldots \end{array}$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

Fixed-order perturbative expansion not reliable for $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \overset{q_{T} \ll M}{\sim} c_{0} + \alpha_{S} \left[c_{12} \ln^{2} \frac{M^{2}}{q_{T}^{2}} + c_{11} \ln \frac{M^{2}}{q_{T}^{2}} + c_{10} \right] + \cdots$$

 $lpha_S \ln(M^2/q_T^2) \gg 1$: need for resummation of large logs.

$$\frac{d\sigma}{dq_T^2} = \frac{d\sigma^{(res)}}{dq_T^2} + \frac{d\sigma^{(fin)}}{dq_T^2}; \qquad \begin{array}{l} \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(fin)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{=} 0\\ \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(res)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{\sim} c_0 + \sum_{n=1}^{\infty} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \ln^m \frac{M^2}{q_T^2} \end{array}$$

q_T distribution

 $\begin{array}{l} \mathsf{h}_1(\mathsf{p}_1) + \mathsf{h}_2(\mathsf{p}_2) \rightarrow \mathsf{F}(\mathsf{M}) + \mathsf{X} \\ \text{where} \quad F = V, V_1 V_2, \gamma \gamma, H, HH \\ \text{and} \quad V \rightarrow l_1 l_2, V_1 V_2 \rightarrow 4l, H \rightarrow \gamma \gamma/4l, \dots \end{array}$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

Fixed-order perturbative expansion not reliable for $q_T \ll M$: $\int_{\tau}^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_T} \frac{q_T \ll M}{\sim} c_0 + \alpha_S \left[c_{12} \ln^2 \frac{M^2}{2} + c_{11} \ln \frac{M^2}{2} + c_{10} \right] + \cdots$

$$\int_{0}^{1} dq_{T}^{2} \frac{dq_{T}^{2}}{d\bar{q}_{T}^{2}} \sim c_{0} + \alpha_{S} \left[c_{12} \ln^{2} \frac{dq_{T}^{2}}{q_{T}^{2}} + c_{11} \ln \frac{dq_{T}^{2}}{q_{T}^{2}} + c_{10} \right] + \cdot$$

 $\alpha_{S} \ln(M^{2}/q_{T}^{2}) \gg 1$: need for resummation of large logs.

Giancarlo Ferrera – Milan University & INFN

Combining QED and QCD transverse-momentum resummation

State of the art: q_T resummation

- Large qT logarithms resummation in b-space
 [Parisi,Petronzio('79)], [Kodaira,Trentadue('82)], [Collins,Soper,Sterman('85)],
 [Altarelli et al.('84)], [Catani,d'Emilio,Trentadue('88)], [Catani,de Florian,
 Grazzini('01)], [Catani,Grazzini('10)], [Catani,Grazzini,Torre('14)]
- Various phenomenological studies [ResBos:Balasz,Yuan,Nadolsky et al. ('97, '02)],
 [Ellis et al. ('97)], [Kulesza et al. ('02)], [Banfi et al. ('12)], [Guzzi et al. ('13)].
- Results for q_T resummation in the framework of Effective Theories and within p_T space formalisms: [Gao,Li,Liu('05)], [Idilbi,Ji,Yuan('05)], [Mantry,Petriello('10)], [Becher,Neubert('10)], [Chiu et al.('12)], [Dokshitzer,Diakonov,Troian('78)], [Frixione,Nason,Ridolfi('99)], [Erbert,Tackmann('17)], [Monni,Re,Torrielli('16)], [Bizon et al.('17,'18)](→ see P.Torrielli, P.Monni talks).
- Studies within transverse-momentum dependent (TMD) factorization and TMD parton densities[D'Alesio,Murgia('04)], [Roger,Mulders('10)], [Collins('11)], [D'Alesio et al.('14)].
- Effective q_T-resummation obtained with Parton Shower algorithms POWHEG/MC@NLO combined with higher orders

[Alioli et al. ('13), [Hoeche et al. ('14)], [Karlberg et al. ('14)].

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation

Soft gluon exponentiation

Sudakov resummation feasible when: dynamics AND kinematics factorize \Rightarrow exponentiation.

 Dynamics factorization: general propriety of QCD matrix element for soft emissions.
 1 n

$$dw_n(q_1,\ldots,q_n)\simeq rac{1}{n!}\prod_{i=1}^n dw_i(q_i)$$

• Kinematics factorization: not valid in general. For q_T distribution it holds in the impact parameter space (Fourier transform)

$$\int d^2 \mathbf{q}_{\mathsf{T}} \, \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}}) \, \delta^{(2)} \left(\mathbf{q}_{\mathsf{T}} - \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j} \right) = \exp(-i\mathbf{b} \cdot \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}) = \prod_{j=1}^n \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}_j}) \, .$$

 Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space: q_T ≪ M ⇔ Mb≫1, log M/q_T ≫1 ⇔ log Mb≫1.

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{split} \frac{d\sigma_{F}^{(res)}(p_{1},p_{2};\mathbf{q_{T}},M,y,\Omega)}{d^{2}\mathbf{q_{T}}\,dM^{2}\,dy\,d\Omega} &= \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} \, e^{i\mathbf{b}\cdot\mathbf{q_{T}}} \, S_{q}(M,b) \\ &\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \, \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \, \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} \, f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2}) \, f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2}) \, , \\ b_{0} &= 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57\ldots \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} \, e^{\pm y} \, , \quad L \equiv \ln Mb \quad [\text{Catani, de Florian, Grazzini(`01)]} \\ & \left[S_{q}(M,b) &= \exp\left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \, \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} \, . \end{split}$$

 $\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{split} \frac{d\sigma_{F}(^{\text{res})}(p_{1},p_{2};\mathbf{q_{T}},M,y,\Omega)}{d^{2}\mathbf{q_{T}}dM^{2}dy\,d\Omega} &= \frac{M^{2}}{s}\sum_{c=q,\bar{q}}\left[d\sigma_{c\bar{c},F}^{(0)}\right]\int\frac{d^{2}\mathbf{b}}{(2\pi)^{2}}\,e^{i\mathbf{b}\cdot\mathbf{q_{T}}}\,S_{q}(M,b)\\ &\times\sum_{a_{1},a_{2}}\int_{x_{1}}^{1}\frac{dz_{1}}{z_{1}}\,\int_{x_{2}}^{1}\frac{dz_{2}}{z_{2}}\,\left[H^{F}C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}}\,f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2})\,f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2})\,,\\ b_{0} &= 2e^{-\gamma_{E}}\left(\gamma_{E}=0.57\ldots\right), \quad x_{1,2} = \frac{M}{\sqrt{s}}\,e^{\pm y}\,, \quad L \equiv \ln Mb \quad \text{[Catani,de Florian,Grazzini(`01)]}\\ &\left[S_{q}(M,b) &= \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M^{2}}\frac{dq^{2}}{q^{2}}\left[A_{q}(\alpha_{S}(q^{2}))\,\ln\frac{M^{2}}{q^{2}}+B_{q}(\alpha_{S}(q^{2}))\right]\right\}\,. \end{split}$$

 $\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\begin{aligned} \frac{d\sigma_{F}^{(res)}(p_{1},p_{2};\mathbf{q_{T}},M,y,\Omega)}{d^{2}\mathbf{q_{T}}\,dM^{2}\,dy\,d\Omega} &= \frac{M^{2}}{s}\sum_{c=q,\bar{q}}\left[d\sigma_{c\bar{c},F}^{(0)}\right]\int\frac{d^{2}\mathbf{b}}{(2\pi)^{2}}\,e^{i\mathbf{b}\cdot\mathbf{q_{T}}}\,S_{q}(M,b) \\ &\times\sum_{a_{1},a_{2}}\int_{x_{1}}^{1}\frac{dz_{1}}{z_{1}}\,\int_{x_{2}}^{1}\frac{dz_{2}}{z_{2}}\,\left[H^{F}C_{1}C_{2}\right]_{c\bar{c};a_{1}a_{2}}\,f_{a_{1}/h_{1}}(x_{1}/z_{1},b_{0}^{2}/b^{2})\,f_{a_{2}/h_{2}}(x_{2}/z_{2},b_{0}^{2}/b^{2})\,,\\ b_{0} &= 2e^{-\gamma_{E}}\,(\gamma_{E}=0.57\ldots)\,, \quad x_{1,2} = \frac{M}{\sqrt{s}}\,e^{\pm y}\,, \quad L \equiv \ln Mb \quad \text{[Collins,Soper,Sterman(`85)]},\\ S_{q}(M,b) &= \exp\left\{-\int_{b_{0}^{2}/b^{2}}^{M^{2}}\frac{dq^{2}}{q^{2}}\left[A_{q}(\alpha_{S}(q^{2}))\,\ln\frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2}))\right]\right\} \quad . \end{aligned}$$

 $\left[\left[H^{F} C_{1} C_{2} \right]_{q\bar{q};a_{1}\bar{a}_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) \ C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) \ C_{\bar{q}a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) \ ,$

 $A_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)},$

 $H_q^F(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z).$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57 \dots \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}, \quad L \equiv \ln Mb \quad \text{[Collins, Soper, Sterman(`85)],}$$

$$S_{q}(M, b) = \exp \left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$\begin{aligned} A_q(\alpha_S) &= \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)}, \\ H_q^F(\alpha_S) &= 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z). \end{aligned}$$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$B_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57... \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y} , \quad L \equiv \ln Mb \quad [\text{Catani, de Florian, Grazzini(`01)]}$$

$$S_{q}(M, b) = \exp\left\{ -\int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$A_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n A_c^{(n)}, \quad B_q(\alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n B_c^{(n)},$$
$$H_q^F(\alpha_S) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_q^{F(n)}, \quad C_{qa}(z;\alpha_S) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{qa}^{(n)}(z).$$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57... \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y} , \quad L \equiv \ln Mb \quad \text{[Collins, Soper, Sterman(`85)],}$$

$$S_{q}(M, b) = \exp \left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$A_{q}(\alpha_{S}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} A_{c}^{(n)}, \quad B_{q}(\alpha_{S}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} B_{c}^{(n)},$$

$$H_{q}^{F}(\alpha_{S}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{q}^{F(n)}, \quad C_{qa}(z;\alpha_{S}) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} C_{qa}^{(n)}(z).$$

 $\mathsf{LL}(\sim \alpha_{S}^{n} L^{n+1}) \colon A_{q}^{(1)}; \ \mathsf{NLL}(\sim \alpha_{S}^{n} L^{n}) \colon A_{q}^{(2)}, B_{q}^{(1)}, H_{q}^{F(1)}, C_{q\mathfrak{a}}^{(1)}; \ \mathsf{NNLL}(\sim \alpha_{S}^{n} L^{n-1}) \colon A_{q}^{(3)}, B_{q}^{(2)}, H_{q}^{F(2)}, C_{q\mathfrak{a}}^{(2)}$

Hadroproduction of a system F of *colourless* particles initiated at Born level by $q_f \bar{q}_{f'} \rightarrow F$.

$$\frac{d\sigma_{F}^{(res)}(p_{1}, p_{2}; \mathbf{q_{T}}, M, y, \Omega)}{d^{2}\mathbf{q_{T}} dM^{2} dy \, d\Omega} = \frac{M^{2}}{s} \sum_{c=q,\bar{q}} \left[d\sigma_{c\bar{c},F}^{(0)} \right] \int \frac{d^{2}\mathbf{b}}{(2\pi)^{2}} e^{i\mathbf{b}\cdot\mathbf{q_{T}}} S_{q}(M, b)$$

$$\times \sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F}C_{1}C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}/z_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}/z_{2}, b_{0}^{2}/b^{2}) ,$$

$$b_{0} = 2e^{-\gamma_{E}} \left(\gamma_{E} = 0.57 \dots \right), \quad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}, \quad L \equiv \ln Mb \quad \text{[Collins, Soper, Sterman(`85)],}$$

$$S_{q}(M, b) = \exp \left\{ - \int_{b_{0}^{2}/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \left[A_{q}(\alpha_{S}(q^{2})) \ln \frac{M^{2}}{q^{2}} + B_{q}(\alpha_{S}(q^{2})) \right] \right\} .$$

$$\left[H^{F}C_{1}C_{2}\right]_{q\bar{q};a_{1}a_{2}} = H^{F}_{q}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) C_{qa_{1}}(z_{1}; \alpha_{5}(b_{0}^{2}/b^{2})) C_{\bar{q},a_{2}}(z_{2}; \alpha_{5}(b_{0}^{2}/b^{2})) ,$$

$$A_{q}(\alpha_{5}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} A_{c}^{(n)}, \quad B_{q}(\alpha_{5}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} B_{c}^{(n)},$$
$$H_{q}^{F}(\alpha_{5}) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} H_{q}^{F(n)}, \quad C_{qa}(z;\alpha_{5}) = \delta_{qa} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} C_{qa}^{(n)}(z).$$

Transverse-momentum resummation formula

$$h_{1}(p_{1}) = f_{a_{1}/h_{1}} = f_{a_{1}/h_{1}/h_{1}} = f_{a_{1}/h_{1}} = f_$$

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_{a} \int_{x}^{1} \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

Transverse-momentum resummation formula

$$h_{1}(p_{1}) = f_{a_{1}/h_{1}} = f_{a_{1}$$

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_a \int_x^1 \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

Giancarlo Ferrera – Milan University & INFN

Combining QED and QCD transverse-momentum resummation

Universality in q_T resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ [\ h_c(\alpha_S)]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ [\ h_c(\alpha_S)]^{1/2} \ . \end{array}$$

• This implies that H_c^F , S_c (B_c) and C_{cb} not unambiguously computable separately.

- Resummation scheme: define H^F_c (or C_{ab}) for single processes (one for qq̄ → F one for gg → F) and unambiguously determine the process-dependent H^F_c and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_q(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- H^F_c(α_S) = 1 (i.e. h_c(α_S) = H^F_c(α_S)) does not correspond to a resummation scheme (S^F_c and C^F_{ab} would be process dependent, [de Florian, Grazzini('00)]).

Universality in q_T resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ [\ h_c(\alpha_S) \]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ [\ h_c(\alpha_S) \]^{1/2} \ . \end{array}$$

• This implies that H_c^F , S_c (B_c) and C_{cb} not unambiguously computable separately.

- Resummation scheme: define H_c^F (or C_{ab}) for single processes (one for $q\bar{q} \rightarrow F$ one for $gg \rightarrow F$) and unambiguously determine the process-dependent H_c^F and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_q(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- H^F_c(α_S) = 1 (i.e. h_c(α_S) = H^F_c(α_S)) does not correspond to a resummation scheme (S^F_c and C^F_{ab} would be process dependent, [de Florian, Grazzini('00)]).

Universality in q_T resummation

The resummation formula is invariant under the *resummation scheme* transformations [Catani,deFlorian,Grazzini('01)] (for $h_c(\alpha_S) = 1 + \sum_{n=1}^{\infty} \alpha_S^n h_c^{(n)}$):

$$\begin{array}{lll} H_c^F(\alpha_S) & \to & H_c^F(\alpha_S) \ [\ h_c(\alpha_S) \]^{-1} \ , \\ B_c(\alpha_S) & \to & B_c(\alpha_S) - \beta(\alpha_S) \ \frac{d \ln h_c(\alpha_S)}{d \ln \alpha_S} \ , \\ C_{cb}(z,\alpha_S) & \to & C_{cb}(z,\alpha_S) \ [\ h_c(\alpha_S) \]^{1/2} \ . \end{array}$$

• This implies that H_c^F , S_c (B_c) and C_{cb} not unambiguously computable separately.

- Resummation scheme: define H_c^F (or C_{ab}) for single processes (one for $q\bar{q} \rightarrow F$ one for $gg \rightarrow F$) and unambiguously determine the process-dependent H_c^F and the universal (process-independent) S_c and C_{ab} for any other process.
- DY/H resummation scheme: H^{DY}_q(α_S) ≡ 1, H^H_g(α_S) ≡ 1. Hard resummation scheme: C⁽ⁿ⁾_{ab}(z) for n ≥ 1 do not contain any δ(1 − z) term (other than plus distributions).
- $H_c^F(\alpha_S) = 1$ (i.e. $h_c(\alpha_S) = H_c^F(\alpha_S)$) does not correspond to a resummation scheme $(S_c^F \text{ and } C_{ab}^F \text{ would be process dependent, [de Florian, Grazzini('00)]}).$

q_T resummation for heavy-quark hadroproduction

- Main difference with colourless case: soft factor (colour matrix) $\Delta(\mathbf{b}, M; \Omega)$ which embodies soft (wide-angle) emissions from $Q\bar{Q}$ and from initial/final-state interference (no collinear emission from heavy-quarks). Its contribution starts at NLL.
- Soft radiation produce colour-dependent azimuthal correlations at small-q_T entangled with the azimuthal dependence due to gluonic collinear radiation.
- Explicit results for coefficients obtained up NLO and NNLL accuracy.
- Soft-factor Δ(b, M; Ω) consistent with breakdown (in weak form) of TMD factorization (additional process-dependent non-perturbative factor needed) [Collins,Qiu('07)].

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ ($A_c^{(1,2)}$, $B_c^{(1,2)}$).
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. C_{ca}(z, α_S) up to O(α²_S) (G_{ga}(z, α_S) up to O(α_S)), and of the hard-virtual factor H^F_c(α_S) up to O(α²_S) for DY/H processes. In the hard scheme:

$$C_{qq}^{(1)}(z) = \frac{C_F}{2}(1-z), \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z),$$

$$C_{gg}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a = q, g).$$

$$H_q^{DY(1)} = C_F \left(\frac{\pi^2}{2} - 4\right), \ H_g^{H(1)} = C_A \pi^2 / 2 + \frac{11}{2}.$$

Analogous (longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_q^{DY(2)}$, $H_g^{H(2)}$.

• Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ ($A_c^{(1,2)}$, $B_c^{(1,2)}$).
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. C_{ca}(z, α_S) up to O(α²_S) (G_{ga}(z, α_S) up to O(α_S)), and of the hard-virtual factor H^F_c(α_S) up to O(α²_S) for DY/H processes. In the hard scheme:

$$C_{qq}^{(1)}(z) = \frac{C_F}{2}(1-z), \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z),$$

$$(1)_{gg}^{(1)}(z) = C_{q\bar{q}}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a = q, g).$$

$$H_q^{DY(1)} = C_F\left(\frac{\pi^2}{2} - 4\right), \ H_g^{H(1)} = C_A \pi^2 / 2 + \frac{11}{2}.$$

Analogous (longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_q^{DY(2)}$, $H_g^{H(2)}$.

• Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].

Hard-collinear coefficients at NNLO

- Resummation coefficients in Sudakov form factor known since some time up to $\mathcal{O}(\alpha_5^2)$ ($A_c^{(1,2)}$, $B_c^{(1,2)}$).
- Explicit NNLO analytic calculations of the q_T cross section (at small-q_T):
 (i) SM Higgs boson production [Catani,Grazzini('07,'12)] and
 (ii) DY process [Catani,Cieri,de Florian,G.F.,Grazzini('09,'12)].
- These calculations provide complete knowledge of the process-independent collinear coeff. C_{ca}(z, α_S) up to O(α²_S) (G_{ga}(z, α_S) up to O(α_S)), and of the hard-virtual factor H^F_c(α_S) up to O(α²_S) for DY/H processes. In the hard scheme:

$$\begin{split} C_{qq}^{(1)}(z) &= \frac{C_F}{2}(1-z), \ C_{gq}^{(1)}(z) = \frac{C_F}{2}z, \ C_{qg}^{(1)}(z) = \frac{z}{2}(1-z), \\ C_{gg}^{(1)}(z) &= C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = C_{q\bar{q}'}^{(1)}(z) = 0, \ G_{ga}^{(1)}(z) = C_a \frac{1-z}{z} \quad (a=q,g). \\ H_q^{DY(1)} &= C_F\left(\frac{\pi^2}{2}-4\right), \ H_g^{H(1)} = C_A \pi^2/2 + \frac{11}{2}. \end{split}$$

Analogous (longer) expressions for : $C_{qq}^{(2)}(z)$, $C_{qg}^{(2)}(z)$, $C_{gg}^{(2)}(z)$, $C_{gq}^{(2)}(z)$, $H_{q}^{DY(2)}$, $H_{g}^{H(2)}$.

 Explicit independent computation of the hard-collinear coefficients in a TMD factorization approach in full agreement [Gehrmann,Lubbert,Yang('12,'14)].

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

 $\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}),$

enormalized virtual amplitude (UV finite but IR divergent).

 $I(s, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \tilde{I}_c^{(n)}(\epsilon),$ IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \widetilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) \quad,$$

hard-virtual subtracted amplitude (IR finite).

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

$$\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$$

 $) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^n \tilde{l}_c^{(n)}(\epsilon) , \qquad \begin{array}{c} \text{IR subtraction universal operators} \\ (\text{contain IR } \epsilon\text{-poles and IR finite terms}) \end{array}$

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) = \left[1 - \tilde{l}_c(\epsilon,M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1,\hat{p}_2;\{q_i\}) \;\;,$$

hard-virtual subtracted amplitude (IR finite).

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

$$\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \text{renormalized virtual amplitude} \quad (\text{UV finite but IR divergent}).$$

 $\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon), \qquad \begin{array}{c} \text{IR subtraction universal operators} \\ (\text{contain IR } \epsilon\text{-poles and IR finite terms}) \end{array}$

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\})$$

hard-virtual subtracted amplitude (IR finite).

$$\alpha_{5}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

$$\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \begin{array}{c} \text{renormalized virtual amplitude} \\ (\text{UV finite but IR divergent}). \end{array}$$

$$\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon), \qquad \begin{array}{c} \text{IR subtraction universal operators} \\ (\text{contain IR } \epsilon\text{-poles and IR finite terms}) \end{array}$$

$$\widetilde{\mathcal{M}}_{car{c}
ightarrow F}(\hat{p}_1,\hat{p}_2;\{q_i\}) = \left[1 - \widetilde{l}_c(\epsilon,M^2)
ight] \mathcal{M}_{car{c}
ightarrow F}(\hat{p}_1,\hat{p}_2;\{q_i\}) \;\;,$$

hard-virtual subtracted amplitude (IR finite).

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}} ,$$

[Catani,Cieri,deFlorian,G.F.,Grazzini('14)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- However H^F_c(α_S) has an all-order universal structure: it can be directly related to the virtual amplitude of the corresponding process c(p̂₁) + c̄(p̂₂) → F({q_i}).

$$\mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \alpha_S^k \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{2\pi}\right)^n \mathcal{M}_{c\bar{c}\to F}^{(n)}(\hat{p}_1, \hat{p}_2; \{q_i\}), \quad \begin{array}{c} \text{renormalized virtual amplitude} \\ (\text{UV finite but IR divergent}). \end{array}$$

$$\tilde{l}_{c}(\epsilon, M^{2}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{2\pi}\right)^{n} \tilde{l}_{c}^{(n)}(\epsilon) , \qquad \begin{array}{ll} \text{IR subtraction universal operators} \\ (\text{contain IR } \epsilon\text{-poles and IR finite terms}) \end{array}$$

$$\widetilde{\mathcal{M}}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) = \left[1 - \tilde{l}_c(\epsilon, M^2)\right] \mathcal{M}_{c\bar{c}\to F}(\hat{p}_1, \hat{p}_2; \{q_i\}) \quad,$$

hard-virtual subtracted amplitude (IR finite).

$$\alpha_{S}^{2k}(M^{2}) H_{q}^{F}(x_{1}p_{1}, x_{2}p_{2}; \mathbf{\Omega}; \alpha_{S}(M^{2})) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}(x_{1}p_{1}, x_{2}p_{2}; \{q_{i}\})|^{2}},$$

q_T recoil and angular distribution

 ${\ensuremath{\, \bullet }}$ The dependence of the resummed cross section on the final state variables Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\mathbf{\Omega}}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\mathbf{\Omega})\;\;,\;\; ext{with}\;\;\int d\mathbf{\Omega}\;F(\mathbf{q_T}/M;\mathbf{\Omega})=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the high-mass system due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \mathbf{\Omega}) = F(\mathbf{0}/M; M^{2}, \mathbf{\Omega}) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(q_T/M)$ ambiguity start at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over $\tilde{\Omega}$ the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani,de Florian,G.F.,Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) high-mass system rest frame to generate final state momenta: e.g. the Collins-Soper rest frame.

q_{T} recoil and angular distribution

 ${\ \, \bullet \ \, }$ The dependence of the resummed cross section on the final state variables Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\mathbf{\Omega}}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\mathbf{\Omega})\;\;,\;\; ext{with}\;\;\int d\mathbf{\Omega}\;F(\mathbf{q_T}/M;\mathbf{\Omega})=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the high-mass system due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{\mathsf{T}}/M; M^2, \Omega) = F(\mathbf{0}/M; M^2, \Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^3)$ ($\mathcal{O}(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over $\tilde{\Omega}$ the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) high-mass system rest frame to generate final state momenta: e.g. the Collins-Soper rest frame.

q_T recoil and angular distribution

 ${\ \, \bullet \ \, }$ The dependence of the resummed cross section on the final state variables Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\mathbf{\Omega}}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\mathbf{\Omega})\;\;,\;\; ext{with}\;\;\int d\mathbf{\Omega}\;F(\mathbf{q_T}/M;\mathbf{\Omega})=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the high-mass system due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \Omega) = F(\mathbf{0}/M; M^{2}, \Omega) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^3)$ ($\mathcal{O}(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over $\tilde{\Omega}$ the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].

• This procedure is directly related to the choice of a particular (among the infinite ones) high-mass system rest frame to generate final state momenta: e.g. the Collins-Soper rest frame.

q_{T} recoil and angular distribution

 ${\ \, \bullet \ \, }$ The dependence of the resummed cross section on the final state variables Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\mathbf{\Omega}}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\mathbf{\Omega})\;\;,\;\; ext{with}\;\;\int d\mathbf{\Omega}\;F(\mathbf{q_T}/M;\mathbf{\Omega})=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the high-mass system due to *soft* and *collinear* multiparton emissions.

• This dependence cannot be *unambiguously* calculated through resummation (it is not singular)

$$F(\mathbf{q}_{T}/M; M^{2}, \Omega) = F(\mathbf{0}/M; M^{2}, \Omega) + \mathcal{O}(\mathbf{q}_{T}/M)$$
,

- After the matching between resummed and finite component the $\mathcal{O}(\mathbf{q_T}/M)$ ambiguity start at $\mathcal{O}(\alpha_5^2)$ ($\mathcal{O}(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over $\tilde{\Omega}$ the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) high-mass system rest frame to generate final state momenta: e.g. the Collins-Soper rest frame.

q_{T} resummation in QCD at partonic level

dσ	_	$d\hat{\sigma}^{(res)}$	1	$d\hat{\sigma}^{(\mathit{fin})}$.
dq_T^2		dq_T^2	Т	dq_T^2 '

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M),$$

In the Mellin space (with respect to $z = M^2/\hat{s}$) we have:

$$\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with $L \equiv \log(M^2 b^2)$

 $\mathcal{G}(\alpha_S, L) = Lg^{(1)}(\alpha_S L) + g^{(2)}(\alpha_S L) + \frac{\alpha_S}{\pi}g^{(3)}(\alpha_S L) + \cdots \qquad \mathcal{H}(\alpha_S) = 1 + \frac{\alpha_S}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_S}{\pi}\right)^2\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_{S}^{n}L^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_{S}^{n}L^{n})$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_{S}^{n}L^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

q_T resummation in QCD at partonic level

$$rac{d\hat{\sigma}}{dq_T^2} = rac{d\hat{\sigma}^{(res)}}{dq_T^2} + rac{d\hat{\sigma}^{(fin)}}{dq_T^2};$$

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2{f b}}{4\pi}e^{i{f b}\cdot{f q}_{f T}}\,{\cal W}(b,M),$$

In the Mellin space (with respect to $z = M^2/\hat{s}$) we have:

$$\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with $L \equiv \log(M^2 b^2)$

 $\mathcal{G}(\alpha_{\mathcal{S}},L) = Lg^{(1)}(\alpha_{\mathcal{S}}L) + g^{(2)}(\alpha_{\mathcal{S}}L) + \frac{\alpha_{\mathcal{S}}}{\pi}g^{(3)}(\alpha_{\mathcal{S}}L) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_{S}^{n}L^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_{S}^{n}L^{n})$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_{S}^{n}L^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

q_T resummation in QCD at partonic level

$$rac{d\hat{\sigma}}{dq_T^2} = rac{d\hat{\sigma}^{(res)}}{dq_T^2} + rac{d\hat{\sigma}^{(fin)}}{dq_T^2};$$

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2\mathbf{b}}{4\pi}e^{i\mathbf{b}\cdot\mathbf{q_T}}\,\mathcal{W}(b,M),$$

In the Mellin space (with respect to $z=M^2/\hat{s})$ we have:

$$\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with
$$L \equiv \log(M^2 b^2)$$

$$\mathcal{G}(\alpha_{\mathcal{S}}, L) = L g^{(1)}(\alpha_{\mathcal{S}}L) + g^{(2)}(\alpha_{\mathcal{S}}L) + \frac{\alpha_{\mathcal{S}}}{\pi} g^{(3)}(\alpha_{\mathcal{S}}L) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi} \mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^2 \mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \ (\sim \alpha_S^n L^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n L^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n L^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

q_T resummation in QCD at partonic level

$$rac{d\hat{\sigma}}{dq_T^2} = rac{d\hat{\sigma}^{(res)}}{dq_T^2} + rac{d\hat{\sigma}^{(fin)}}{dq_T^2};$$

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2\mathbf{b}}{4\pi}e^{i\mathbf{b}\cdot\mathbf{q_T}}\,\mathcal{W}(b,M),$$

In the Mellin space (with respect to $z = M^2/\hat{s}$) we have:

$$\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with
$$L \equiv \log(M^2 b^2)$$

$$\mathcal{G}(\alpha_{\mathcal{S}}, \mathcal{L}) = \mathcal{L}g^{(1)}(\alpha_{\mathcal{S}}\mathcal{L}) + g^{(2)}(\alpha_{\mathcal{S}}\mathcal{L}) + \frac{\alpha_{\mathcal{S}}}{\pi}g^{(3)}(\alpha_{\mathcal{S}}\mathcal{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \ (\sim \alpha_S^n L^{n+1}): \ \mathbf{g}^{(1)}, \ (\hat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n L^n): \ \mathbf{g}^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n L^{n-1}): \ \mathbf{g}^{(3)}, \ \mathcal{H}^{(2)};$
- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale Q ~ M: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_{c}^{F}(\alpha_{S})$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_{c}^{F}(\alpha_{S})$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_s)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover exactly the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_s)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

- avoids unjustified higher-order contributions in the small-b region.
- recover exactly the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_s)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

 $\ln\left(Q^2b^2\right) \ \rightarrow \ \widetilde{L} \equiv \ln\left(Q^2b^2 + 1\right) \ \Rightarrow \ \exp\left\{\alpha_S^n\widetilde{L}^k\right\}\big|_{b=0} = 1$

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_s)$.
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a *Minimal Prescription* without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

• Perturbative unitarity constraint:

$$\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2 + 1) \quad \Rightarrow \quad \exp\left\{\alpha_{\mathsf{S}}^n \widetilde{L}^k\right\}|_{b=0} = 1 \quad \Rightarrow \quad \int_0^\infty dq_{\mathsf{T}}^2 \left(\frac{d\widehat{\sigma}}{dq_{\mathsf{T}}^2}\right) = \widehat{\sigma}^{(tot)};$$

- avoids unjustified higher-order contributions in the small-b region.
- recover *exactly* the total cross-section (upon integration on q_T)

q_T resummation: numerical implementations

- q_T resummation performed for DY/Higgs process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_s^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT/HqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('06,'09,'11,'12)]

DYRes/HRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions) [Catani, de Florian, G.F., Grazzini ('15)]

http://pcteserver.mi.infn.it/~ferrera/research.html.

q_T resummation: numerical implementations

- q_T resummation performed for DY/Higgs process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_s^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT/HqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('06,'09,'11,'12)]

DYRes/HRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions) [Catani, de Florian, G.F., Grazzini ('15)]

http://pcteserver.mi.infn.it/~ferrera/research.html.

q_T resummation: numerical implementations

- q_T resummation performed for DY/Higgs process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1})$);
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT/HqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('06,'09,'11,'12)]

DYRes/HRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions) [Catani, de Florian, G.F., Grazzini('15)]

http://pcteserver.mi.infn.it/~ferrera/research.html.

Higgs results: q_T-resummation with H boson decay

 $H q_T$ spectrum $(H \rightarrow WW)$: theory predictions (HRes [deFlorian,G.F.,Grazzini,Tommasini ('12])) compared with CMS data (from [CMS Coll.('16)]).

Lower panel: ratio to theory (HRes).

 $H q_T$ spectrum $(H \rightarrow \gamma \gamma)$: various theory predictions (HRes [deFlorian, G.F., Grazzini, Tommasini('12])) compared with ATLAS data (from [ATLAS Coll.('18)]). Lower panel: ratio to data).

DY results: q_T and ϕ^* spectrum of Z boson at the LHC

NLL+NLO and NNLL+NNLO bands from DYRes [Bozzi, Catani, G. F, de Florian, Grazzini ('15)] for $Z/\gamma^* q_T$ spectrum compared with ATLAS data. Lower panel: ratio with respect to the NNLL+NNLO central value.

NLL+NLO and NNLL+NNLO bands from DYRes [Bozzi,Catani,G.F, de Florian,Grazzini('15)] for $Z/\gamma^* \phi^*$ spectrum compared with ATLAS data. Lower panel: ratio with respect to the NNLL+NNLO central value.

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott (in preparation)]

DYTurbo project

Optimised version of DYNNLO, DYqT, DYRes with improvements in

Software	Numerical integration
Code profiling	Quadrature with interpolating functions
Loop vectorisation	Factorisation of integrals
Hoisting	Analytic integration
Loop unrolling	
Multi-threading	

- Achieved significant enhancement in time performance for a given numerical precision
- The main application is the measurement of the W mass at the LHC
- Other applications: PDF fits including qt-resummation for cross-section predictions, $sin^2\theta_w,~\alpha_s(m_y)$
- Two main modes of operation: Vegas integration and Quadrature rules based on interpolating functions

Stefano Camarda

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott (in preparation)]

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott (in preparation)]

The most demanding calculation is V+jet

→ can use APPLgrid/FASTnlo for this term

Stefano Camarda

11

Combining QED and QCD q_T resummation

LHC measurements for DY process (e.g. M_W) sensitive to pure QED and mixed QCD-QED effects.

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation

Combining QED and QCD q_T resummation

[Cieri,G.F.,Sborlini('18)]

We start considering QED contributions to the q_T spectrum in the case of colourless and **neutral** high mass systems, e.g. on-shell Z boson production

$$h_1 + h_2 \rightarrow Z^0 + X$$

In the impact parameter and Mellin spaces resummed partonic cross section reads:

 $\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}'_{N}(\alpha_{S},\alpha) \times \exp\left\{\mathcal{G}'_{N}(\alpha_{S},\alpha,L)\right\}$

$$\mathcal{G}'(\alpha_{\mathcal{S}},\alpha,L) = \mathcal{G}(\alpha_{\mathcal{S}},L) + Lg'^{(1)}(\alpha L) + g'^{(2)}(\alpha L) + \sum_{n=3}^{\infty} \left(\frac{\alpha}{\pi}\right)^{n-2} g'^{(n)}(\alpha L)$$

+
$$g'^{(1,1)}(\alpha_{\mathcal{S}}L, \alpha L)$$
 + $\sum_{\substack{n,m=1\\n+m\neq 2}}^{\infty} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{n-1} \left(\frac{\alpha}{\pi}\right)^{m-1} g_{N}'^{(n,m)}(\alpha_{\mathcal{S}}L, \alpha L)$

$$\mathcal{H}'(\alpha_{\mathcal{S}}, \alpha) = \mathcal{H}(\alpha_{\mathcal{S}}) + \frac{\alpha}{\pi} \mathcal{H}'^{(1)} + \sum_{n=2}^{\infty} \left(\frac{\alpha}{\pi}\right)^n \mathcal{H}_N'^{(n)} + \sum_{n,m=1}^{\infty} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^n \left(\frac{\alpha}{\pi}\right)^m \mathcal{H}_N'^{F(n,m)}$$

LL QED (
$$\sim \alpha^{n}L^{n+1}$$
): $g'^{(1)}$; NLL QED ($\sim \alpha^{n}L^{n}$): $g'^{(2)}$, $\mathcal{H}'^{(1)}$;
LL mixed QCD-QED ($\sim \alpha_{S}^{n}\alpha^{n}L^{2n}$): $g'^{(1,1)}$;

The LL and NLL QED functions $g'^{(1)}$ and $g'^{(2)}$ has the same functional form of the QCD ones:

$$\begin{split} g^{\prime(1)}(\alpha L) &= \frac{A_q^{\prime(1)}}{\beta_0^{\prime}} \frac{\lambda^{\prime} + \ln(1-\lambda^{\prime})}{\lambda^{\prime}} \ , \\ g_N^{\prime(2)}(\alpha L) &= \frac{\widetilde{B}_{q,N}^{\prime(1)}}{\beta_0^{\prime}} \ln(1-\lambda^{\prime}) - \frac{A_q^{\prime(2)}}{\beta_0^{\prime 2}} \left(\frac{\lambda^{\prime}}{1-\lambda^{\prime}} + \ln(1-\lambda^{\prime})\right) \\ &+ \frac{A_q^{\prime(1)}\beta_1^{\prime}}{\beta_0^{\prime 3}} \left(\frac{1}{2}\ln^2(1-\lambda^{\prime}) + \frac{\ln(1-\lambda^{\prime})}{1-\lambda^{\prime}} + \frac{\lambda^{\prime}}{1-\lambda^{\prime}}\right) \ , \end{split}$$

the novel LL mixed QCD-QED function reads:

$$g'^{(1,1)}(\alpha_{5}L,\alpha L) = \frac{A_{q}^{(1)}\beta_{0,1}}{\beta_{0}^{2}\beta_{0}'} h(\lambda,\lambda') + \frac{A_{q}'^{(1)}\beta_{0,1}'}{\beta_{0}'^{2}\beta_{0}} h(\lambda',\lambda) \ ,$$

$$\begin{split} h(\lambda,\lambda') &= -\frac{\lambda'}{\lambda-\lambda'}\ln(1-\lambda) + \ln(1-\lambda')\left[\frac{\lambda(1-\lambda')}{(1-\lambda)(\lambda-\lambda')} + \ln\left(\frac{-\lambda'(1-\lambda)}{\lambda-\lambda'}\right)\right] \\ &- \operatorname{Li}_2\left(\frac{\lambda}{\lambda-\lambda'}\right) + \operatorname{Li}_2\left(\frac{\lambda(1-\lambda')}{\lambda-\lambda'}\right), \end{split}$$

where $\lambda = \frac{1}{\pi}\beta_0 \alpha_5 L$, $\lambda' = \frac{1}{\pi}\beta'_0 \alpha L$, and β_0 , β'_0 , β'_1 , $\beta_{0,1}$, $\beta'_{0,1}$ are the coefficients of the QCD and QED β functions.

Abelianization procedure

$$\frac{d\ln\alpha_{\mathcal{S}}(\mu^2)}{d\ln\mu^2} = \beta(\alpha_{\mathcal{S}}(\mu^2), \alpha(\mu^2)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{n+1} - \sum_{n,m+1=0}^{\infty} \beta_{n,m} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{n+1} \left(\frac{\alpha}{\pi}\right)^m,$$

$$\frac{d\ln\alpha(\mu^2)}{d\ln\mu^2} = \beta'(\alpha(\mu^2), \alpha_s(\mu^2)) = -\sum_{n=0}^{\infty} \beta'_n \left(\frac{\alpha}{\pi}\right)^{n+1} - \sum_{n,m+1=0}^{\infty} \beta'_{n,m} \left(\frac{\alpha}{\pi}\right)^{n+1} \left(\frac{\alpha_s}{\pi}\right)^m \,.$$

Novel QED coefficients obtained through an Abelianization algorithm

$$\begin{aligned} A_q^{\prime(1)} &= e_q^2 \,, \qquad A_q^{\prime(2)} = -\frac{5}{9} \, e_q^2 \, N^{(2)} \qquad \widetilde{B}_{q,N}^{\prime(1)} = B_q^{\prime(1)} + 2\gamma_{qq,N}^{\prime(1)} \,, \\ &\text{with} \quad B_q^{\prime(1)} = -\frac{3}{2} \, e_q^2 \,, \quad N^{(n)} = N_c \sum_{q=1}^{n_f} e_q^n + \sum_{l=1}^{n_l} e_l^n \,, \\ &\gamma_{qq,N}^{\prime(1)} = e_q^2 \, \left(\frac{3}{4} + \frac{1}{2N(N+1)} - \gamma_E - \psi_0(N+1)\right) \,, \quad \gamma_{q\gamma,N}^{\prime(1)} = \frac{3}{2} \, e_q^2 \, \frac{N^2 + N + 2}{N(N+1)(N+2)} \,. \end{aligned}$$

$$\mathcal{H}_{q\bar{q} \leftarrow q\bar{q},N}^{\prime F\,(1)} = \frac{e_q^2}{2} \left(\frac{2}{N(N+1)} - 8 + \pi^2 \right) , \qquad \mathcal{H}_{q\bar{q} \leftarrow \gamma q,N}^{\prime F\,(1)} = \frac{3 \, e_q^2}{(N+1)(N+2)} ,$$

Resummed result *matched* with corresponding finite $\mathcal{O}(\alpha)$ term.

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation HARPS – Genoa – 29/10/2018 23/29

Combined QED and QCD q_T resummation for Z production at

1.02

0.99

0.98

1.01

1.00

0.99

0.98

SATIO to (NNLL+NNLO)

the Tevatron

[Cieri,G.F.,Sborlini('18)]

Z qT spectrum at the LHC. NNLL+NNLO QCD results combined with the LL (red dashed) and NLL+NLO (blue solid) QED effects together with the corresponding QED uncertainty bands. qt (GeV) Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

20

10

1/2<\u5/M_l<2

Combining QED and QCD transverse-momentum resummation

30

Combined QED and QCD q_T resummation for Z production at

the LHC

[Cieri,G.F.,Sborlini('18)]

Z qT spectrum at the LHC. NNLL+NNLO QCD results combined with the LL (red dashed) and NLL+NLO (blue solid) QED effects together with the corresponding QED uncertainty bands.

Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

Combining QED and QCD transverse-momentum resummation

Combining QED and QCD q_T resummation for W production

[Cieri,G.F.,Sborlini (in preparation)]

We next consider QED contributions to the q_T spectrum in the case of colourless and **charged** high mass systems, e.g. on-shell W^{\pm} boson production

$$h_1 + h_2 \rightarrow W^{\pm} + X$$

• Initial state QED emissions sensitive to different quark charges $(q\bar{q'} \rightarrow W^{\pm})$:

$$2e_q^2
ightarrow e_q^2 + e_{ar q'}^2$$

Final state QED emissions: *abelianizion* of QCD resummation formula q_T resummation for tt production [Catani,Grazzini,Torre('14)]:

$$\Delta'(b,M) = \exp\left\{-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} D'(\alpha(q^2))\right\}$$

with
$$D'(\alpha) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n D'^{(n)}$$
, and $D'^{(1)} = -\frac{e^2}{2}$.

Factor Δ'(b, M) resums soft (non collinear) QED emissions from final state (and from initial-final interference). Effects from D'(α) start to contribute at NLL. Same functional dependence, in terms of g'⁽ⁱ⁾ functions, as the B'(α) term.

Combined QED and QCD q_T resummation for W production at the LHC (preliminary)

[S.Rota (degree thesis '18)]

W qT spectrum at the LHC (13 TeV). $O(\alpha)$ fixed-order QED results compared with the asymptotic expansion of the resummed result.

Combined QED and QCD q_T resummation for W production at the LHC (preliminary)

[S.Rota (degree thesis '18)]

 $W\ qT$ spectrum at the LHC. NNLL QCD results combined with the NLL QED effects.

Conclusions

- Overview on q_T resummation formalism: $q\bar{q}$ annihilation and gluon fusion processes, hard-collinear factors and universality.
- NNLL+NNLO *q*_T-resummation for Drell-Yan and Higgs production with full final-state kinematical dependence. Public numerical codes HqT/DYqT and HRes/DYRes available.
- New DYTurbo numerical code: significant enhancement in time performance and numerical precision.
- Extension of the QCD q_T resummation formalism to deal with the simultaneous QCD and QED emissions
- Phenomenological studies up to NLL+NLO for Z production at Tevatron and LHC: QED effects at O(+1%) level. QED coupling scale ambiguity reduced by roughly a factor 2 including NLL+NLO corrections.
- Preliminary results for combined QCD and QED resummation from initial and final states and phenomenological study of W^{\pm} production at the LHC.

Back up slides

Giancarlo Ferrera – Milan University & INFN Combining QED and QCD transverse-momentum resummation HARPS – Genoa – 29/10/2018 30/29

In processes initiated at Born level by the gluon fusion channel ($gg \rightarrow F$), collinear radiation from gluons leads to spin and azimuthal correlations [Catani, Grazzini('11)].

$$\begin{bmatrix} H^{F} C_{1} C_{2} \end{bmatrix}_{gg;a_{1}a_{2}} = H^{F}_{g;\mu_{1}\nu_{1},\mu_{2}\nu_{2}}(x_{1}p_{1},x_{2}p_{2};\boldsymbol{\Omega};\alpha_{5}(M^{2})) \\ \times C^{\mu_{1}\nu_{1}}_{ga_{1}}(z_{1};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})) C^{\mu_{2}\nu_{2}}_{ga_{2}}(z_{2};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})) .$$

where $H_g^{F\mu_1\nu_1,\mu_2\nu_2}(\alpha_S) = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_g^{F(n)\mu_1\nu_1,\mu_2\nu_2}$,

$$C_{ga}^{\mu\nu}(z; p_1, p_2, \mathbf{b}; \alpha_S) = d^{\mu\nu}(p_1, p_2) C_{ga}(z; \alpha_S) + D^{\mu\nu}(p_1, p_2; \mathbf{b}) G_{ga}(z; \alpha_S) ,$$

$$d^{\mu\nu}(p_1, p_2) = -g^{\mu\nu} + \frac{p_1^{\mu}p_2^{\nu} + p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2} , \quad D^{\mu\nu}(p_1, p_2; \mathbf{b}) = d^{\mu\nu}(p_1, p_2) - 2 \frac{b^{\mu}b^{\nu}}{\mathbf{b}^2} ,$$

$$C_{ga}(z; \alpha_S) = \delta_{ga} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{ga}^{(n)}(z) , \quad G_{ga}(z; \alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n G_{ga}^{(n)}(z) .$$

• Unlike $q\bar{q}$ annih. $[H^F C_1 C_2]$ does depend on the azimuthal angle $\phi(\mathbf{b})$, this leads to azimuthal correlations with respect to the azimuthal angle $\phi(\mathbf{q_T})$ (consistent with [Mulders,Rodrigues('00)], [Henneman et al.('02)]).

 Small-q_T cross section expressed in terms of φ(q_T)-independent plus cos (2φ(q_T)), sin (2φ(q_T)), cos (4φ(q_T)) and sin (4φ(q_T)) dependent contributions.

In processes initiated at Born level by the gluon fusion channel ($gg \rightarrow F$), collinear radiation from gluons leads to spin and azimuthal correlations [Catani, Grazzini('11)].

$$\begin{bmatrix} H^{F} C_{1} C_{2} \end{bmatrix}_{gg; \mathfrak{d}_{1} \mathfrak{d}_{2}} = H^{F}_{g; \mu_{1} \nu_{1}, \mu_{2} \nu_{2}}(x_{1} p_{1}, x_{2} p_{2}; \mathbf{\Omega}; \alpha_{5}(M^{2})) \\ \times C^{\mu_{1} \nu_{1}}_{g\mathfrak{d}_{1}}(z_{1}; p_{1}, p_{2}, \mathbf{b}; \alpha_{5}(b_{0}^{2}/b^{2})) C^{\mu_{2} \nu_{2}}_{g\mathfrak{d}_{2}}(z_{2}; p_{1}, p_{2}, \mathbf{b}; \alpha_{5}(b_{0}^{2}/b^{2})).$$

where $H_{g}^{F\mu_{1}\nu_{1},\mu_{2}\nu_{2}}(\alpha_{5}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{5}}{\pi}\right)^{n} H_{g}^{F(n)\mu_{1}\nu_{1},\mu_{2}\nu_{2}},$ $C_{ga}^{\mu\nu}(z; p_{1}, p_{2}, \mathbf{b}; \alpha_{5}) = d^{\mu\nu}(p_{1}, p_{2}) C_{ga}(z; \alpha_{5}) + D^{\mu\nu}(p_{1}, p_{2}; \mathbf{b}) G_{ga}(z; \alpha_{5}) ,$ $d^{\mu\nu}(p_{1}, p_{2}) = -g^{\mu\nu} + \frac{p_{1}^{\mu}p_{2}^{\nu} + p_{2}^{\mu}p_{1}^{\nu}}{p_{1}\cdot p_{2}}, \quad D^{\mu\nu}(p_{1}, p_{2}; \mathbf{b}) = d^{\mu\nu}(p_{1}, p_{2}) - 2 \frac{b^{\mu}b^{\nu}}{\mathbf{b}^{2}},$

$$C_{ga}(z;\alpha_{S}) = \delta_{ga} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} C_{ga}^{(n)}(z), \quad G_{ga}(z;\alpha_{S}) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} G_{ga}^{(n)}(z)$$

• Unlike $q\bar{q}$ annih. $[H^F C_1 C_2]$ does depend on the azimuthal angle $\phi(\mathbf{b})$, this leads to azimuthal correlations with respect to the azimuthal angle $\phi(\mathbf{q_T})$ (consistent with [Mulders,Rodrigues('00)], [Henneman et al.('02)]).

 Small-q_T cross section expressed in terms of φ(q_T)-independent plus cos (2φ(q_T)), sin (2φ(q_T)), cos (4φ(q_T)) and sin (4φ(q_T)) dependent contributions.

In processes initiated at Born level by the gluon fusion channel ($gg \rightarrow F$), collinear radiation from gluons leads to spin and azimuthal correlations [Catani, Grazzini('11)].

$$\begin{bmatrix} H^{F} C_{1} C_{2} \end{bmatrix}_{gg;a_{1}a_{2}} = H^{F}_{g;\mu_{1}\nu_{1},\mu_{2}\nu_{2}}(x_{1}p_{1},x_{2}p_{2};\Omega;\alpha_{5}(M^{2})) \\ \times C^{\mu_{1}\nu_{1}}_{ga_{1}}(z_{1};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})) C^{\mu_{2}\nu_{2}}_{ga_{2}}(z_{2};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})).$$

where $H_{g}^{F\mu_{1}\nu_{1},\mu_{2}\nu_{2}}(\alpha_{S}) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{S}}{\pi}\right)^{n} H_{g}^{F(n)\mu_{1}\nu_{1},\mu_{2}\nu_{2}},$

$$C_{ga}^{\mu\nu}(z; p_1, p_2, \mathbf{b}; \alpha_S) = d^{\mu\nu}(p_1, p_2) C_{ga}(z; \alpha_S) + D^{\mu\nu}(p_1, p_2; \mathbf{b}) G_{ga}(z; \alpha_S) ,$$

$$d^{\mu\nu}(p_1, p_2) = -g^{\mu\nu} + \frac{p_1^{\mu}p_2^{\nu} + p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2} , \quad D^{\mu\nu}(p_1, p_2; \mathbf{b}) = d^{\mu\nu}(p_1, p_2) - 2 \frac{b^{\mu}b^{\nu}}{\mathbf{b}^2} ,$$

$$C_{ga}(z; \alpha_S) = \delta_{ga} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{ga}^{(n)}(z) , \quad G_{ga}(z; \alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n G_{ga}^{(n)}(z)$$

• Unlike $q\bar{q}$ annih. $[H^F C_1 C_2]$ does depend on the azimuthal angle $\phi(\mathbf{b})$, this leads to azimuthal correlations with respect to the azimuthal angle $\phi(\mathbf{q}_{T})$ (consistent with [Mulders,Rodrigues('00)],[Henneman et al.('02)]).

• Small- q_T cross section expressed in terms of $\phi(\mathbf{q}_T)$ -independent plus $\cos(2\phi(\mathbf{q}_T))$,

31/29

In processes initiated at Born level by the gluon fusion channel ($gg \rightarrow F$), collinear radiation from gluons leads to spin and azimuthal correlations [Catani, Grazzini('11)].

$$\begin{bmatrix} H^{F} C_{1} C_{2} \end{bmatrix}_{gg;a_{1}a_{2}} = H^{F}_{g;\mu_{1}\nu_{1},\mu_{2}\nu_{2}}(x_{1}p_{1},x_{2}p_{2};\Omega;\alpha_{5}(M^{2})) \\ \times C^{\mu_{1}\nu_{1}}_{ga_{1}}(z_{1};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})) C^{\mu_{2}\nu_{2}}_{ga_{2}}(z_{2};p_{1},p_{2},\mathbf{b};\alpha_{5}(b_{0}^{2}/b^{2})).$$

where $H_g^{F\mu_1\nu_1,\mu_2\nu_2}(\alpha_S) = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n H_g^{F(n)\mu_1\nu_1,\mu_2\nu_2}$,

$$C_{ga}^{\mu\nu}(z; p_1, p_2, \mathbf{b}; \alpha_S) = d^{\mu\nu}(p_1, p_2) C_{ga}(z; \alpha_S) + D^{\mu\nu}(p_1, p_2; \mathbf{b}) G_{ga}(z; \alpha_S) ,$$

$$d^{\mu\nu}(p_1, p_2) = -g^{\mu\nu} + \frac{p_1^{\mu} p_2^{\nu} + p_2^{\mu} p_1^{\nu}}{p_1 \cdot p_2} , \quad D^{\mu\nu}(p_1, p_2; \mathbf{b}) = d^{\mu\nu}(p_1, p_2) - 2 \frac{b^{\mu} b^{\nu}}{\mathbf{b}^2} ,$$

$$C_{ga}(z; \alpha_S) = \delta_{ga} \ \delta(1-z) + \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n C_{ga}^{(n)}(z) , \quad G_{ga}(z; \alpha_S) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n G_{ga}^{(n)}(z)$$

- Unlike $q\bar{q}$ annih. $[H^F C_1 C_2]$ does depend on the azimuthal angle $\phi(\mathbf{b})$, this leads to azimuthal correlations with respect to the azimuthal angle $\phi(\mathbf{q_T})$ (consistent with [Mulders,Rodrigues('00)], [Henneman et al.('02)]).
- Small-q_T cross section expressed in terms of φ(q_T)-independent plus cos (2φ(q_T)), sin (2φ(q_T)), cos (4φ(q_T)) and sin (4φ(q_T)) dependent contributions.

Hard factors at NNLO

- The previous all-order factorization formula was explicitly evaluated up to NNLO: we know the explicit expression of the *universal* subtraction operators up to two-loops $\tilde{I}_c^{(1)}(\epsilon)$, $\tilde{I}_c^{(2)}(\epsilon)$.
- We can straightforward apply the factorization formula to determine the NNLO hard-virtual factors from the knowledge of the two-loops amplitudes.
- E.g. diphoton production: we rederived the result for $H_q^{\gamma\gamma(1)}$ [Balazs et al.('98)] and (using the two-loop amplitudes [Anastasiou et al.('02)]) we obtained the $H_q^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, GF, Grazzini('12)]

$$\begin{split} H_q^{\gamma\gamma(1)} &= \frac{C_F}{2} \left\{ (\pi^2 - 7) + \frac{\left((1 - v)^2 + 1 \right) \ln^2 (1 - v) + v(v + 2) \ln(1 - v) + (v^2 + 1) \ln^2 v + (1 - v)(3 - v) \ln v}{(1 - v)^2 + v^2} \right\} \\ H_q^{\gamma\gamma(2)} &= \frac{1}{4\mathcal{A}_{LO}} \left[\mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{0.52} + \mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{1.51} \right] + 3\zeta_2 \ C_F H_q^{\gamma\gamma(1)} - \frac{45}{4} \zeta_4 \ C_F^2 + C_F N_F \left(-\frac{41}{162} - \frac{97}{72} \zeta_2 + \frac{17}{72} \zeta_3 \right) \\ &+ C_F \ C_A \left(\frac{607}{324} + \frac{1181}{144} \zeta_2 - \frac{187}{144} \zeta_3 - \frac{105}{32} \zeta_4 \right) , \quad \text{where} \quad v = -(p_q - p_\gamma)^2 / M^2. \end{split}$$

• Analogous results were obtained for $ZZ, W\gamma, Z\gamma$ [Grazzini et al.('14)], [Cascioli et al.('14)], [Gehrmann et al.('14)] and $b\bar{b} \rightarrow H$ production [Harlander et al.('14)].

Hard factors at NNLO

- The previous all-order factorization formula was explicitly evaluated up to NNLO: we know the explicit expression of the *universal* subtraction operators up to two-loops $\tilde{I}_c^{(1)}(\epsilon)$, $\tilde{I}_c^{(2)}(\epsilon)$.
- We can straightforward apply the factorization formula to determine the NNLO hard-virtual factors from the knowledge of the two-loops amplitudes.
- E.g. diphoton production: we rederived the result for $H_q^{\gamma\gamma(1)}$ [Balazs et al.('98)] and (using the two-loop amplitudes [Anastasiou et al.('02)]) we obtained the $H_q^{\gamma\gamma(2)}$ [Catani, Cieri, de Florian, GF, Grazzini('12)]

$$\begin{split} H_q^{\gamma\gamma(1)} &= \frac{C_F}{2} \left\{ (\pi^2 - 7) + \frac{\left((1 - v)^2 + 1 \right) \ln^2 (1 - v) + v(v + 2) \ln(1 - v) + (v^2 + 1) \ln^2 v + (1 - v)(3 - v) \ln v}{(1 - v)^2 + v^2} \right\} \\ H_q^{\gamma\gamma(2)} &= \frac{1}{4\mathcal{A}_{LO}} \left[\mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{0.2} + \mathcal{F}_{inite,q\bar{q}\gamma\gamma;s}^{1.2} \right] + 3\zeta_2 \ C_F H_q^{\gamma\gamma(1)} - \frac{45}{4} \zeta_4 \ C_F^2 + C_F N_f \left(-\frac{41}{162} - \frac{97}{72} \zeta_2 + \frac{17}{72} \zeta_3 \right) \\ &+ C_F \ C_A \left(\frac{607}{324} + \frac{1181}{144} \zeta_2 - \frac{187}{144} \zeta_3 - \frac{105}{32} \zeta_4 \right) , \quad \text{where} \quad v = -(p_q - p_\gamma)^2 / M^2. \end{split}$$

• Analogous results were obtained for ZZ, $W\gamma$, $Z\gamma$ [Grazzini et al.('14)], [Cascioli et al.('14)],[Gehrmann et al.('14)] and $b\bar{b} \rightarrow H$ production [Harlander et al.('14)].

Non perturbative intrinsic k_T effects

D0 data for the $Z q_T$ spectrum.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parameterized by a NP form factor S_{NP} = exp{-g_{NP}b²}:

$$S_c(\alpha_S, \widetilde{L}) \rightarrow S_c(\alpha_S, \widetilde{L}) S_{NP}$$

 $g_{NP}\simeq 0.8~GeV^2$ [Kulesza et al.('02)]

 With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

Non perturbative intrinsic k_T effects

D0 data for the $Z q_T$ spectrum.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parameterized by a NP form factor S_{NP} = exp{-g_{NP}b²}:

$$S_c(\alpha_S, \widetilde{L}) \rightarrow S_c(\alpha_S, \widetilde{L}) S_{NP}$$

 $g_{NP}\simeq 0.8~GeV^2$ [Kulesza et al.('02)]

 With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

Non perturbative intrinsic k_T effects

D0 data for the $Z q_T$ spectrum.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parameterized by a NP form factor S_{NP} = exp{-g_{NP}b²}:

$$S_c(\alpha_S, \widetilde{L}) \rightarrow S_c(\alpha_S, \widetilde{L}) S_{NP}$$

 $g_{NP}\simeq 0.8~GeV^2$ [Kulesza et al.('02)]

• With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.
Non perturbative intrinsic k_T effects

CMS data for the Z q_T spectrum.

- Up to now result in a complete perturbative framework (plus PDFs).
- Non perturbative *intrinsic* k_T effects can be parameterized by a NP form factor
 S_{NP} = exp{-g_{NP}b²}:

$$S_c(\alpha_S, \widetilde{L}) \rightarrow S_c(\alpha_S, \widetilde{L}) S_{NP}$$

 $g_{NP}\simeq 0.8~GeV^2$ [Kulesza et al.('02)]

• With NP effects the q_T spectrum is harder. Quantitative impact of intrinsic k_T effects is comparable with perturbative uncertainties and with non perturbative effects from PDFs.

Non perturbative intrinsic k_T effects

 $p+p \rightarrow Z0 \rightarrow |1+|2+X, \sqrt{S} = 7 \text{ TeV}$ Data/Theory 7.1 7 Combined ee+uu CT10 NNLO kc1 Scale parameter dependence Data/Theory_{hat} x²/Npt=1.13 1.1 0.9 0.8 0.7 ^{10²}Q₇ (GeV) 10

ATLAS ('11) data for the Z q_T spectrum compared with ResBos predictions with a Non Perturbative smearing parameter $g_{NP} = 1.1 \text{ GeV}^2$ [Guzzi,Nadolsky,Wang('13)]. i ATLAS/DYRES χ^{2} /Npt=1.18

1.3

 $pp \rightarrow Z^0/\gamma^* + X \rightarrow e^+e^-/\mu^+\mu^- + X, \sqrt{s} = 7$ TeV, MSTW2008

ATLAS ('11) data for the Z q_T spectrum compared with DYRES predictions without Non Perturbative smearing ($g_{NP} = 0$).

The Drell-Yan process: precise LHC measurements

LHC measurements for DY process reaches sub-percent precision.

Z production at the LHC. Data and simulation comparison for lepton pair p_T distribution.

W production at the LHC. Data and simulation comparison for missing p_T distribution.

DYqT results: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum compared with perturbative results.

 Uncertainty bands obtained varying μ_R, μ_F, Q independently:

 $\frac{1}{2} \leq \{\mu_F/m_Z, \mu_R/m_Z, 2Q/m_Z, \mu_F/\mu_R, Q/\mu_R\} \leq 2$

- Significant reduction of scale dependence from NLL to NNLL for all q_T.
- Good convergence of resummed results: NNLL and NLL bands overlap (contrary to the fixed-order case).
- Good agreement between data and resummed predictions (without any model for non-perturbative effects).

The perturbative uncertainty of the NNLL results is comparable with the experimental errors.

DYqT results: q_T spectrum of Z boson at the Tevatron

D0 data for the Z q_T spectrum: Fractional difference with respect to the reference result: NNLL, $\mu_R = \mu_F = 2Q = m_Z$.

- NNLL scale dependence is ±6% at the peak, ±5% at q_T = 10 GeV and ±12% at q_T = 50 GeV. For q_T ≥ 60 GeV the resummed result looses predictivity.
- At large values of q_T, the NLO and NNLL bands overlap.

At intermediate values of transverse momenta the scale variation bands do not overlap.

• The resummation improves the agreement of the NLO results with the data.

In the small- q_T region, the NLO result is theoretically unreliable and the NLO band deviates from the NNLL band.